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Preface 
This teaching and research text for undergraduate and postgraduate stu

dents and researchers will familiarize readers with interval arithmetic and re
lated tools for gaining reliable and validated results and logically correct deci
sions for a variety of geometric computations. 

The aim of this monograph is to make the reader familiar with interval 
arithmetic and related tools for gaining reliable and validated results and logi
cally correct decisions for a variety of geometric computations. 

In parallel it is demonstrated how interval arithmetic can be used to cre
ate simple constructions and structures in the mathematical treatment and 
computational preparation of the basic issues of geometrical computations. 

The results are validated since computations executed with interval arith
metic enable an automatic control of rounding errors and to provide bounds for 
them. Hence, if the result of an interval computation says two given rectangles 
intersect then the interval doctrine guarantees that they in fact intersect, and 
that this result has not been falsified by rounding errors. 

A further advantage of interval arithmetic is the ability to represent and to 
deal not only with points, that is, real numbers, but also with sets of reals such 
as intervals, rectangles, parallelepipeds, balls, or simplices. This means that 
many geometric situations, that need some effort to express in the environment 
of reals, can be simply expressed in an interval arithmetic environment. For 
example, let A and Β be two axes-parallel rectangles. Then, it is quite simple 
from a pure mathematician's point of view to investigate whether the two 
rectangles intersect or not. But if a programmer wants to write a code in some 
programming language like C, Fortran, or Pascal, he will discover that a good 
deal of thinking is necessary to find the right comparisons of all the components 
of the 8 vertices in order to get a consistent and complete procedure for this 
theoretically easy problem. In contrast to this situation, the same problem 
posed in interval arithmetic is very simple: The two rectangles intersect if and 
only if the null point 0 lies in the difference of the two rectangles, that is, 
0 e A — B, where A and Β are interpreted as two-dimensional intervals. 

Another important helpful set-theoretic feature of interval analysis is the 
possibility to construct approximations of the range of a function in a compu
tationally very simple manner. One just has to call up the function expression, 
for example, f(x) and take the domain of the function, say X as variable. 
This results in an approximating interval f(X) which contains the range of / 
over X. Since many of the function expressions which occur in geometrical 
computations are not too involved, the approximation frequently gives the ex
act range. The ability to determine approximations of the range is a valuable 
means for the development of search procedures and, connected with these, 
subdivision strategies for an arbitrarily precise localization of points or areas 
with a required property. Such techniques can be used at finding zeros of sys
tems, extremum points of functions, intersection points of geometric figures, 
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etc. 
It is known that complicated geometrical constructions can, in the main, 

be built upon simpler constructions. The simplest of these are usually called 
geometrical primitives. It is, therefore, in general, sufficient to study the ap
plication of interval arithmetic to such primitives. A famous example is the 
so-called left-turn test which decides whether a given point in the plane lies on 
the left, on the right or on a given directed line. Independent of how degener
ate the situation is or how small the distances of the point to the line is or the 
distance of the points that define the line is (even if it is machine accuracy), a 
wrong answer is never given. However, due to the influence of rounding errors 
there are extreme situations where the interval arithmetic computation renders 
an inconclusive result (but never a wrong result, and most important, it can 
be clearly indicated by the program if an inconclusive result occurs). In order 
that the tests work also for these rare cases, that is, to make the programs com
plete and consistent, an exceptional algorithm called ESSA has been developed 
which always (!) determines the sign of a sum of machine numbers errorfree 
without using variable mantissa length or any hardware tools. 

Summing up, our intention in writing this monograph was primarily to 
demonstrate a few numerical key points with a variety of possible applications 
in the fields of computational geometry, computer graphics and solid modelling. 
Hence we aim to stimulate activities in interval applications rather than to 
provide an exhaustive survey of all possible constructions. 

As usual, the book begins with an introduction which covers the utility and 
helpfulness of interval analysis in dealing with stability and reliability problems 
in computational geometry. Then an extensive discussion of interval arithmetic 
and interval analysis as well as its implementation on a machine is initiated. 
No previous related experience is necessary. Emphasized are the two main 
directions, the error analysis and the set-theoretic use of interval arithmetic. 
The famous interval Newton method is also included which enables the proof 
of existence of zeros of systems of equations and localize them together with 
validated error bounds. 

As already mentioned there is a small percentage of degenerate situations 
where interval tools are too crude for giving a decisive Boolean or arithmetic 
result. For these cases ESSA (Exact Sign of a Sum Algorithm) saves the com
pleteness and correctness of many tests. It is developed in Ch. 4. ESSA is 
especially useful for degenerate constellations at left-turn tests, intersection 
tests with various geometric objects, geographic information systems, convex 
hull computations, etc. 

Some basic issues relating to geometric computations are considered. Since 
the applications of ESSA combined with interval arithmetic are relatively new 
in this field, several proofs of facts are also added since these tools make it nec
essary to rethink and to reformulate various basically well-known geometrical 
facts, problems, constructive proofs and solutions. These basic themes consist 
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of a number of intersection tests (such as line segment vs. line segment, box 
vs. plane, rectangle vs. triangle, box vs. tetrahedron, ellipse vs. rectangle, 
rectangle vs. explicitly given curve, box vs. spheres) and a hybrid method for 
tracing implicitly defined 2D curves where this method particularly addresses 
curves around singularities, for instance, forks or ill-conditioned curve parts. 

Then we added an issue of rather theoretical nature which has several in
teresting practical consequences. It is the interval representation of Bernstein 
polynomials, Bezier curves and the de Casteljau algorithm. One should not 
misunderstand this formulation and believe that the just mentioned represen
tation means nothing more than the replacement of reals or real variables by 
intervals or interval variables. The crux of this section is to show that only 
certain reformulations of the specific definitions and theorems make it possible 
to make the step from reals to intervals successful. 

Another main part of interval and ESSA applications is the investigation 
of complex algorithms for modelling and plotting convex hulls of arbitrary 2D 
finite point sets (we also mean arbitrarily ill-conditioned sets) and to establish 
simple methods to find the hulls errorfree if the points of the sets are machine 
numbers and to find the smallest machine-representable convex hull if the given 
set has points which are not machine representable. 

The errorfree numerical execution of Delaunay and power triangulations, 
which is the next issue, will then already be a routine exercise involving already 
familiar primitives. 

Finally, the monograph concludes with an exact and reproducible line sim
plification algorithm, which is frequently used in geographic information sys
tems. Such an algorithm enables to simplify a polygon with a dense number of 
vertices (think of Norway's shore, for instance) in order to get a more visible 
polygon which is approximating the former one. The replacement shall take 
into account that the "geographic character" of the polygon is maintained, for 
example if the geographic map has to be shrunk. 

Readership: Students and researchers in the fields of engineering, geog
raphy computer graphics, solid modelling, computer aided design and others 
interested in validated geometric computations. 

Level of the readers' knowledge for an easy understanding: one year calculus 
of last year highschool or first year university level. 

Personal comment on this book from R. E. Moore, the progenitor of interval 
arithmetic: 

It is always a pleasure to see a new book by Helmut Ratschek and 
Jon Rokne. Their two, widely cited, previous books Computer 
Methods for the Range of Functions (Ellis Horwood/John Wiley, 
1984) and New Computer Methods for Global Optimization (El
lis Horwood/John Wiley, 1988) are recognized as classics, for their 
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content as well as their clarity of exposition. 

Ramon Moore 

A c k n o w l e d g e m e n t s . Thanks are due to David Hankinson and Chris 
Bone, who assisted with the interval arithmetic implementation, to Karin 
Zacharias who implemented interval geometric primitives, to Georg Macken-
brock who wrote the codes and computed numerical examples for ESSA, the 
SCCI-hybrid method, and the convex hull algorithm, to Ania Lopez who also 
computed examples for the SCCI-hybrid method, to Pavol Federl who wrote 
the applet for the internet implementation of the convex hull algorithm, to 
Lynn Tetreault who wrote the applet for internet implementation of the line 
simplification algorithm, to Jennifer Walker who assisted with the Latex for 
the book and to the National Sciences and Research Council of Canada for 
financial support. 
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Chapter 1 

I n t r o d u c t i o n 

This monograph introduces the reader to the interval arithmetic and related 
tools for a variety of fields collectively grouped under the umbrella of geometric 
computations. 

There are two main tools. 

• The first tool is the interval arithmetic. On the one hand, it monitors and 
controls numerical errors so that the results of geometric computations 
are reliable and logically correct. On the other hand, it employs set 
theoretic properties of intervals together with subdivision techniques to 
simply represent the range of values of geometric functions over relatively 
large domains exactly or, at least to estimate it as sharp as necessary. 

• The second tool is the development of ESS A. It is an algorithm which 
determines the sign of a sum of machine numbers errorfree. It is the 
background for executing several geometric primitives such as the left-
turn-test errorfree. 

As far as we know, the usefulness of interval arithmetic for computer graph
ics was first discovered by Mudur-Koparkar [174]. Following their work a num
ber of researchers realized that it was a tool that could easily be applied to 
many problems encountered in computer graphics, CAD and other areas where 
robust geometric computations are required. For example, a third of the ex
cellent book by Snyder [254] is devoted to interval techniques. ESSA was first 
presented in Ratschek-Rokne [218] and it had impressive applications to geo
metrical computations as shown in this book. 

This introductory chapter first expands on the necessity for error control 
in floating point computations, especially in geometric computations. It then 
gives a survey of the two main tools, that is, interval arithmetic techniques and 
ESSA, how they fit together and supplement each other, and how they can be 
brought together and employed for the geometric computations described in 

1 
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this book. 
We remind the reader that our aim with this book is not to treat a special 

area of computer graphics or to establish the state of the art for interval ap
plications to geometric computations. The intention is rather to demonstrate 
the variety of possible applications in the fields of computational geometry, 
computer graphics and solid modeling. Hence we aim to stimulate activities 
in interval applications for geometric computations as opposed to providing an 
exhaustive survey of all possible applications. 

1.1 Errors in Numerical Computations 
It has been long realized that in order to make reasonable statements about 
numerical computations it is also necessary to include an analysis of the nu
merical errors in the computations. These errors can arise from a variety of 
sources, such as input data, which are not known precisely or representable ex
actly on the machine in use, or from iterative or approximate methods (Newton 
algorithm, Simpson rule etc.), or from rounding errors, etc. 

The latter type of error is focused on in this monograph. The effect of the 
individual elementary errors can build up and they can eventually overwhelm 
the desired result even in a perfectly well formed computational procedure. 
It is also possible that computations that are normally correct can produce 
completely erroneous values when the real result is close to (often unknown) 
singularities. The latter problem can occur with even very simple computa
tional problems, such as solving for the roots of quadratic equation. Normal 
input data to a routine for solving the roots of a quadratic equations will gen
erally result in calculations which are correct to as many figures as is possible 
to represent in the computational device. Particular input data can, however, 
generate results with arbitrarily few correct figures in the result [57, 58]. 

In this monograph we will apply interval arithmetic to bound and control 
the results of numerical computations, in particular the errors in numerical 
computations that occur in fields employing geometric information. Such an 
error control is an unavoidable preparation in order to be able to furnish reliable 
and logically guaranteed statements. 

1.2 Geometric Computations 
Over the last 25 years a number of areas of research and applications have 
developed where numerical computations which deal with geometric data are 
included and where results are interpreted as geometric objects or statements 
about geometric objects. As is normally the case, the algorithms for these nu
merical computations have been established with the assumption that both the 
input data and intermediate results are real quantities and that the operations 
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Geometric Computations 3 

are those defined for real numbers. This assumption is reasonable in order to 
develop algorithms for geometric computations, but it is far from the truth 
when the algorithms are implemented. As stated by Forrest [56]: 

Geometric algorithms are notorious in practice for numerical insta
bility. Many working modellers are far from robust for numerical 
reasons. It seems that implementors seldom remember any of the 
numerical analysis they have learned when it comes to writing ge
ometric code, but the root causes of many of the problems lie in 
elementary numerical ill-conditioning. 

We agree with the notion that some of the problems can be traced to elemen
tary ill-conditioning, but there are also other fundamental problems such as 
cracking that are more difficult to deal with. (Cracking is a phenomenon which 
occurs when 2D surfaces are approximated by a collection of surfaces with geo
metric or mathematical simpler shape such as planar patches. If these surfaces 
approximate the surface optimally in a certain sense then the underlying mesh 
might not be uniform which means that the patches need not fit together at 
the edges. Under these conditions cracks might occur in the approximating 
surface.) Both types of problems will be discussed in this monograph and some 
solutions will be presented. 

Computer graphics is probably the most common area using geometric com
putations. Here geometrical constructs are displayed on computer terminals, 
screens of workstations and other output devices. Two stages can in many 
cases be identified in this process. The first stage consists of the computations 
for the actual geometric constructs and the second stage consists of quantizing 
the result to the (often extremely coarse) output resolution. The second stage 
is dealt with extensively in textbooks in computer graphics, for example Foley 
[54]. Interval tools are rarely applied at this stage and we therefore only con
sider the first stage in this monograph where geometric constructs that include 
artificially generated three-dimensional scenes are manipulated, projected, ro
tated, scaled, and deformed. 

An area closely related to computer graphics is geometric modelling where 
models of solids are displayed on computer terminals and other output devices 
and where they are rotated and scaled as required. Both geometric modelling 
and computer graphics are part of CAD/CAM (computer aided design / com
puter aided machining), cf. Zeid [280]). Another area is computational geometry 
which considers geometric problems in η dimensions (typically η is equal to 2 
and 3) and where the aim is to develop efficient algorithms for the problems. 
Examples include finding the convex hull of a set of points, finding the inter
section between two convex hulls, computing minimum distances between sets 
of points, and so on. 

Other areas using geometric computations are for example geography (mainly 
in geographical information systems, abreviated as GIS), astronomy, civil and 
surveying engineering. 
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The commonality between these areas is that they deal with objects and 
point sets in 2, 3 and more dimensions. Furthermore, computations are exe
cuted that determine relationships between the points and the objects. In a 
very rough sense we can describe the commonality by saying that the input is 
generally continuous and the output is combinatorial. 

Almost all computations on geometric objects is done using digital comput
ing devices. These devices can not store and manipulate the set of real numbers, 
but rather a subset known as the floating point numbers. This means that a 
problem of discretization occurs, albeit at a very fine level. This problem is 
that if two real numbers are given such that there is no floating point number 
between them, then these two numbers must be represented by either the same 
floating point number or two adjacent floating point numbers. Since we know 
there is an infinite number of real numbers between any two real numbers, this 
means that an infinity of real numbers has to be represented by two floating 
point numbers. This causes problems even though a typical computing device 
can represent a relatively large number of floating point numbers. 

This problem occurs at each stage of a computation. The data for the 
elementary operations in a computation are all floating point numbers, but 
the results are not which means that they have to be approximated by floating 
point numbers. The final result of a computation is therefore an approximation 
to the result that would have been computed if the computations were exact, 
i.e. performed with real numbers. 

In [99] floating point computations are described with the following analogy: 

Doing floating-point computations is like moving piles of sand around. 
Every time you move a pile you loose a little sand and you pick up 
a little dirt. 

One of the aims of this book is to discuss some tools for minimizing both the 
loss of sand and the accumulation of dirt. 

1.3 Problems in Geometric Computations Caused 
by Floating Point Computation 

A host of problems arise, when using floating point numbers in geometric 
computations. In the excellent article [107], the problems of accuracy in geo
metric computations with floating point numbers are discussed and related to 
the question of robustness of these computations. It is not quite simple to say 
what robustness is since several approaches to this concept can be found in 
the literature. (The same holds for other notations such as stable, well-posed, 
well-conditioned, etc. which are well-defined in numerical analysis, but which 
are used in different - and not always precise - manners in the areas covered 
by geometric computations.) Fortunately we do not need a precise definition, 
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Problems Caused by Floating Point Computation 5 

since we do not perform a quantitative rounding error analysis. We only wish 
to connect some kind of well-behavior of an algorithm with the attribute ro
bust and to hint at a short selection of explanations: For example by robust 
algorithms Li-Milenkovic [147] understand algorithms "whose correctness is not 
spoiled by round-off errors". Fortune [59] goes one step further: "An algorithm 
is robust if it always produces an output that is correct for some perturbation 
of its input, it is stable if the perturbation is small". 

To quote [118]: 

Everyone who works in CAD/CAM, to say nothing of solid mod
elling knows that there is a problem with robustness. It is usually 
perceived to be a question of choosing tolerances carefully enough 
to make different parts of a system work reliably together. How
ever, the problem is not just one of traditional numerical analysis, 
because of the strong coupling of geometry and topology. Topo
logical data - what is connected to what - are discrete "yes" or 
"no" decisions. Geometrical data defining the physical locations of 
points, curves, and surfaces are almost universally treated as float
ing point numbers. Robustness requires that topological inferences 
drawn from possibly ill-conditioned numerical operations on the ge
ometrical data must be internally consistent, in the sense that they 
describe an object that can exist as a solid in R3. 

For example, if three points are given in the plane, then the question can 
arise whether these points lie on a straight line or not. This seemingly simple 
problem can be the cause of some confusion, if the further computations depend 
on the truth or falsity of the answer to the question. Fixing two points and 
selecting a coordinate system allows us to compute the equation of a line. Since 
the computation is carried out within the set of floating point numbers the 
result is represented by floating point numbers. If the computed coordinates 
of the third point are far enough away from the line, and if the computations 
are carried out properly then it is reasonable to conclude that the three points 
are not on a straight line. If the coordinates of the third point are computed 
to be on the line or very close to the line, then the results are not conclusive 
due to the inaccuracies introduced by the floating point approximations. 

In this particular example the accuracy of the computation is related to 
the question of whether the computation that the three points are on a line is 
correct for a given set of input data. Clearly, this computation is not robust 
in floating point arithmetic since the accuracy of the computation is poor for 
points that lie on a line or which are close to lying on a line. Such points 
may indeed be computed as lying on the line or to the left of the line when in 
fact they are to the right (see also [204]). One learns from this example that 
errors in geometric computations can result in inconsistencies in the model 
analysis. Similarly, small perturbations of the input data may also lead to an 
inconsistency in the topological analysis which can occur if it is investigated 
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Figure 1.1: Going-in and going-out transformations 

whether a line touches the edge of an object or not. For further such examples 
see Hoffmann [107]. 

A slightly more complicated example was given by Dobkin and Silver [32]. 
They suggested that one should choose a pentagon and then perform so-called 
going-in and going-out transformations. By the going-in transformation they 
meant the pentagon formed by the intersection of the chords between non-
adjacent vertices of the pentagon. By the going-out transformation they meant 
the pentagon formed from the vertices that are the intersections of the lines 
containing the edges of the pentagon, see Figure 1.1. Note that the original 
pentagon is the going-in [respectively -out] transformation of the going-out 
[respectively -in] transformation of that pentagon. 

In this example fairly large positional errors can be demonstrated even 
after a few going-in and going-out iterations if the computations are executed 
on a computer. This example is, of course, a little more complex than the 
previous examples since it involves a number of intersections of two lines. Such 
intersections require the solution of 2 χ 2 systems of equations (see also [68]). 
The example of the bad behavior of the solution of a 2 χ 2 system of equations 
was also considered in the article by Forsythe [58]. 

Robustness in geometric computations is also considered on the web page 
[277] with the title Numerical non-robustness and geometric computations. Def-
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Problems Caused by Floating Point Computation 7 

initions for some of the terms discussed above are provided in the following 
form: 

• N u m e r i c a l n o n - r o b u s t n e s s is the informal property of computer pro
grams to behave unpredictably, and often catastrophically, depending on 
the numerical values of its input parameters. 

• In most numerical computation, numerical quantities are approximated 
and as such, q u a n t i t a t i v e e r r o r s are expected and usually benign. How
ever, such quantitative errors can lead to drastic errors that are known 
as "catastrophic errors" or what we prefer to call q u a l i t a t i v e e r r o r s . 
Such errors occur when a program enters some unanticipated state with 
no easy or graceful means of recovery. Colloquially, we say the program 
"crashed". 

• Non-robustness is especially notorious in so-called "geometric" algorithms. 
But what makes a computation "geometric"? It is not the simple pres
ence of numerical data alone. It turns out, an adequate explanation of 
"geometric computation" will also lead to an appropriate solution ap
proach. 

• We identify geometric computation as involving numerical data L that 
are intimately tied to combinatorial structures G under some c o n s i s t e n t 
c o n s t r a i n t s . Informally then, a g e o m e t r i c s t r u c t u r e is a pair (G, L) 
with such constraints. 

• EXAMPLE: Suppose {G, L) represents the convex hull of a set of planar 
points. Here G may be viewed as a graph that represents a cycle, G = 
(vi,V2, ...,vn,vi). L may be regarded as an assignment of the vertices 
Vi to points pi in the plane. The consistency requirement here is that 
these points pi must be in convex position, and be adjacent in the order 
indicated by the graph. 

• Suppose V is a perturbation of the true numerical data L. We may say 
that the perturbation is o n l y q u a n t i t a t i v e as long as (G, L') remains 
consistent. Otherwise, the perturbation has introduced q u a l i t a t i v e e r 
r o r s and {G,L') has become inconsistent. Non-robustness of geometric 
algorithms arises from inconsistencies because all algorithms implicitly 
rely on such consistency properties. 

An example where the effect of errors can be disastrous is given by the 
rendering of animated sequences such as sunsets behind mountains at various 
times of the year. It might happen that the rendering algorithm works well 
for the initial frames whereas the rendering of later frames might encounter 
unexpected behavior. This might result in a complete re-rendering of the ani
mation. 
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Even when rendering still-frames the problem can occur. Changes in the 
scene can give rise to undesired side-effects that necessitate code tuning and 
rewriting to restore the scene to an acceptable quality. 

1.4 Approaches to Controlling Errors in Geo
metric Computations 

Several methods have been suggested for dealing with the problems of errors 
in geometric computations. Some of these methods are discussed in the survey 
article by Hoffmann [107]. 

The first approach suggested by Hoffmann is to use symbolic representation. 
Here the computations are carried out as symbolic computations as far as 
possible. A number of rules are given for them; these are as follows (he uses 
the three-dimensional setting): 

Dl: All lines and points must be declared in advance as triples of variables 
in order that no two lines and no points so declared are equal. 

D2: If a point Ρ is incident to a line L, then this fact is explicitly stated as 
L(P). If two lines L\ and Li intersect in the declared point P, then this fact 
is expressed explicitly by the two incident statements, L\(P) and Li(P). 

D3: No other incidences exist among the declared points and lines except 
those explicitly stated. 

It is unfortunate that this approach leads to exponential complexity of com
putation as the number of input elements increase. Even for simple problems 
a large amount of computations have to be executed. 

Another approach is a perturbation approach, analogous to backward error 
analysis in numerical analysis (see [271]) where the approach to geometric com
putation consists of computing the exact result to a slightly perturbed input. 
The argument is that the input data is not necessarily exact to begin with, in 
which case altering it slightly might be appropriate. The monograph by Knuth 
[137] treats a number of computational geometry problems in this manner. 
This perturbation approach is also known as epsilon geometry (see for example 
the thesis by Salesin [237]). The disadvantage with this approach is that the 
results may still not be correct under all possible conditions. For example, if 
one has to deal with 4 coplanar points (such as 4 box corners of one side of a 
box), then the coplanarity is lost if one of the points is perturbed out of the 
plane defined by the other three points. 

A further approach is to scale the input data so that they can be expressed 
as integers and then use integer arithmetic. Some of the problems inherent 
in this approach, mainly the rapid growth of the length of the integers, are 
discussed in [60]. 
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The Interval Analysis Approach 9 

1.5 The Interval Analysis Approach 
The interval analysis approach to error control and management presented 
in this book has been used extensively in other numerically oriented fields 
(especially numerical analysis and global optimization). 

The motivation for the use of this approach to numerical computations came 
from the desire to control the errors induced by the elementary floating-point 
operations, the basic arithmetic processing steps of a modern computer. 

Some of the fundamental properties of interval computations were already 
known (Young [278], Warmus [270] and Sunaga [262]) when R. E. Moore de
veloped the modern theory of interval analysis via his thesis [164] and his first 
monograph Interval Analysis [165]. Since then there have been a number of 
monographs on the subject, for example Alefeld-Herzberger [6], Bauch et al. 
[16], Hansen [91], Kalmykov et al. [121], Moore [166, 169], Neumaier [179], 
Ratschek-Rokne [212, 213]. Each of these books presents a different point of 
view of interval analysis. Many international conferences have also been held 
devoted to this subject. The first international journal devoted to this subject 
was "Interval Computations", founded in 1992 by V.M. Nesterov. The name of 
the journal was changed to "Reliable Computing" [226] in 1995 and it is now 
published by Kluwer Academic Publishers. 

In investigating the interval analytic approach to numerical computations 
one is also led to develop algorithms tailored to interval spaces. These algo
rithms can be fundamentally different from the real-space algorithms for the 
same problem. Some of the developments in this book will be directed to tak
ing advantage of these algorithms in the geometric context. We mention in 
particular the methods for outer approximations of the range. These methods, 
first developed by Moore [165] are surveyed in the monograph [212] and they 
can be very effective tools for a variety of geometric problems especially when 
they are combined with subdivision techniques. 

The application of interval arithmetic and interval analysis will not cure all 
numerical and combinatorial ills that can occur in practical geometric compu
tations. In general, the results will belong to one of the following two types: 

it is certain that the configuration is correct (the point is not on 
the line segment, the line intersects the region, etc.) 

or 

within the precision of the underlying floating point arithmetic and 
the computational procedure it is not possible to decide whether 
the configuration is correct or not (the point may or may not be 
on the line segment, the line may or may not intersect the region, 
etc.). 

In either of the above cases there is more information than what is provided 
by the standard floating point computations for the same problem since in the 
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first case the result is certain and in the second case an indication is given that 
the computation might not be correct. 

1.6 Global Interval Aspects 
The original intent of interval arithmetic and interval analysis was to monitor 
and control almost all kinds of errors that arose in numerical computations, 
especially those that arose in floating point computations as described in the 
previous sections. It turned out that interval analysis had important appli
cations in the global sense where the tools could be used to derive properties 
of functions over large domains. These applications are based on outer esti
mates of the range (mentioned above) combined with subdivision methods for 
improving the estimates. In the monograph [213] this idea is applied to global 
optimization and in Snyder [254] we find some applications to solid modelling, 
mainly in curve and surface design. In this monograph these ideas are carried 
further, cf. Ch. 5. In many cases it is even possible to not only obtain an 
outer approximation of the range but the range itself, even if the function is 
multivariate. An interesting variety of geometric computation problems can be 
solved by cultivating the underlying techniques, becoming an important tool, 
especially when solving intersection problems, cf. Ch. 5. A few illustrative ex
amples of this kind are also discussed extensively in Sec. 2.10. These examples 
are important since they open the door to an understanding of the interval 
philosophy. This book will open a new horizon for geometric computations if 
one has understood the philosophy. 

1.7 The Exact Sign of Sum Algorithm (ESSA) 
Many geometric algorithms are dependent on the sign of a simple expression 
like a finite sum. Examples of such algorithms are left-turn test, orientation 
questions, Boolean algorithms (point in circle vs. not in circle), etc. Imple
menting such algorithms in fixed length floating point arithmetic can lead to 
inaccurate or wrong geometric configurations due to falsification of the com
putation by rounding errors. Interval analysis techniques can remove some of 
the inaccuracies, however, some cases are left that have to be dealt with using 
exact techniques. 

Because of this an algorithm called ESSA [221] which determines the sign 
of a sum of real quantities errorfree is discussed. 

The algorithm is especially designed for computations involving geometry 
where rounding error free algorithms are particularly desirable due to the strong 
influence of rounding errors on logical decisions as mentioned above. 

In order to meet the condition of being rounding-error-free, the algorithm 
is so constructed that it processes data that is already in a binary form. Con-
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version errors are therefore avoided. The quantities dealt with are 

normalized binary floating point numbers of a fixed mantissa length 
(in short, machine numbers). 

It should be noted that an extensive literature exists on the computation 
of the sum of a set of floating-point numbers and on the relationship of this 
computation to the stability of numerical and geometric computations [45, 104, 
200]. Most of this literature does not mention the restricted problem of the 
determination of the sign of such a sum. 

The algorithm will determine the sign of a sum of floating-point numbers 
exactly provided the input data consists of machine numbers. 

The features of the algorithm are: 
(i) Only computation with simple mantissa length is required. 

(ii) No splitting of mantissas or other mantissa manipulations are re
quired, one only needs to know the exponent part of the floating 
numbers. 

(iii) It is almost never necessary to compute the sum (except when the 
sum is zero). It is only necessary to compute as many partial sums 
and arrangements as are required to decide what the sign is. Ex
tensive test series with randomly generated summands indicate that 
already 5% of the summands are in most cases sufficient to decide 
the sign of the sum after some preprocessing. 

(iv) If the summands are machine numbers, the computed sign is always 
the exact sign, since the computation is rounding-error-free. 

(v) No variable length fixed point accumulator is necessary in order to 
cover the field of possible partial sums. 

(vi) Exponential overflow and underflow control is not part of the algo
rithm. 

1.8 Arithmetic Filters 
The computational cost of any exact arithmetic computation tends to be high. 
One way of reducing this cost is provided by ESSA discussed above, where 
only the essential information is calculated when calculating the sign of a sum. 
Another way is to use error bounding techniques such as a Wilkinson type 
analysis (see [271]), interval arithmetic or other tools to estimate the error in a 
computation. If it can be shown that the estimated error in the computation 
using floating point arithmetic does not lead to incorrect geometric configura
tions in a computation then exact arithmetic can be avoided. The tools used 
to accomplish this are generically called arithmetic filters. 
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Since our main aim is to discuss the application of interval tools in geometric 
computations we focus on the use of interval arithmetic arithmetic filters. A 
more general view is found in the thesis by Pion [196]. 

In the ensuing chapters the interval arithmetic filters will be used extensively 
prior to ESSA due to the lower computational cost of the filters. 

1.9 Computer Implementations 
In the book we have included the basic interval routines and ESSA imple
mented in the Sun Sparc C++ . The C++ language was chosen due to the 
current popularity of C and its derivatives among computer graphics profes
sionals and because it allowed us to define geometric constructs as objects in 
the language. The language also implements parameter overload thus simplify
ing the definition of the elementary interval arithmetic operations. Many good 
implementations can be found on the internet. See also a description of the 
interval library C-XSC in [132]. An interval realization in Pascal is given in 
[133]. For a Fortran 77 interval package called INTLIB see [131]. It can also be 
used in Fortran 90. Other Fortran 90 interval packages are [269], [128]. Inter
val libraries for C++ are PROFIL [135] and a library family in [111]. Another 
package with variable precision interval arithmetics is described in [43]. 
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Chapter 2 

I n t e r v a l A n a l y s i s 

2.1 Introduction 

In this chapter the basic tools and techniques from interval analysis used in 
geometric computations are introduced. The global aspect, which was only 
touched in Sec. 1.6, is treated extensively. First, interval arithmetic is moti
vated and justified in Sec. 2.2. In Sec. 2.3 the interval arithmetic operations 
and some basic rules and properties are introduced including infinite interval 
arithmetic. The computer implementation of interval arithmetic is then dis
cussed in detail, including C++ programs in Sec. 2.4. In Sec. 2.5 the notion of 
interval arithmetic is extended to matrix and vector interval arithmetic. Sec. 
2.6 demonstrates the usefulness of computing inclusions to the range of a func
tion over an interval. This leads into the concept of inclusion functions which 
are introduced in 2.7. Further details of inclusion functions are established in 
Sec. 2.7 to 2.12. In particular, centered forms are introduced as unsurpassable 
means for estimating the range of functions, and two special centered forms 
are recommended; these are the mean value forms and the Taylor forms. These 
forms can be understood and applied without too much theoretical background. 
In Sec. 2.11, a few important and typical examples are given to show how the 
interval concept and geometric computations fit together. They can be seen as 
a key for understanding the whole book. In Sec. 2.13 subdivision is introduced 
as a tool for improving the inclusions for the range. Sec. 2.14 summarizes the 
important recommendations of the chapter. 

Although this chapter illuminates many important aspects of interval anal
ysis it does not cover the whole area. Furthermore, proofs of most statements 
have been omitted. More thorough introductions to the area of interval analy
sis can therefore be found, for example, in Moore [169], Alefeld-Herzberger [6], 
Bauch et al. [16], Shokin [248], Nazarenko et al. [177], Kalmykov et al. [121], 
etc. 

13 
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2.2 Motivation for Interval Arithmetic 
There are two main reasons for using interval arithmetic in numerical compu
tations. These are: 

• A. all kinds of errors can be controlled, especially rounding errors, trun
cation errors, etc. 

• B. infinite data sets can be processed. 

These two reasons are now discussed in some detail: 

A. Present-day computers mainly employ an arithmetic called fixed length 
floating point arithmetic or short, floating point arithmetic for calculations 
in engineering and the natural sciences. In this arithmetic real numbers are 
approximated by a subset of the real numbers called the machine representable 
numbers (abbreviated: machine numbers or floating point numbers when dis
cussing implementation details). Because of this representation two types of 
errors are generated. The first type of error, which is frequently called the 
conversion error, occurs when a real valued input data item is approximated 
by a machine number and vice versa, when a machine number is transformed 
to a decimal number which is required for the output of a calculation. The sec
ond type of error called rounding error is caused by intermediate results being 
approximated by machine numbers. Both types of errors are often combined 
under the term rounding errors. 

Interval arithmetic provides a tool for estimating and controlling these er
rors automatically. Instead of approximating a real value a; by a machine num
ber, the usually unknown real value χ is approximated by an interval X having 
machine number upper and lower boundaries. The interval X contains the 
value x. The width of this interval may be used as measure for the quality of 
the approximation. The calculations therefore have to be executed using inter
vals instead of real numbers and hence the real arithmetic have to be replaced 
by interval arithmetic. When computing with the usual machine numbers χ 
there is no direct estimate of the error | x - x |. The computation with including 
intervals, however, provides the following estimate for the absolute error 

where mid X denotes the midpoint of the interval X and w(X) denotes the 
width of X. An estimate for the relative error is, 

I χ - mid X |< w{X)/2 

χ — mid X w(X) 
- 2min | X \ 

if 
χ 

where | Χ \= {| χ |: χ e X). 
Let us consider an example. The real number 1/3 cannot be represented by 

a machine number (unless the machine uses base 3, etc.). It may, however, be 
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enclosed in the machine representable interval A = [0.33, 0.34] if we assume 
that the machine numbers are representable by two digit decimal numbers 
(without an exponent part). If we now want to multiply 1/3 by a real number 
b which we know lies in Β = [—0.01, 0.02] then we seek the smallest interval 
X which 

(a) contains 6/3, 

(b) depends only on the intervals A and B, and does not depend on 1/3 and 
b, 

(c) has machine numbers as boundaries. 

These requirements are realized by two steps, 

(i) operations for intervals are defined which satisfy (a) and (b), 

(ii) the application of certain rounding procedures to these operations yields 
(c). 

By (i), an interval arithmetic is defined, and by (ii) a machine interval arith
metic is defined. 

B . An example of the second type where an intermediate result is approx
imated by a machine interval, mainly due to lack of information, is now con
sidered. 

We apply the meanvalue formula to obtain a local approximation of a con
tinuously differentiable function / : R -> R (R denotes the set of reals) near a 
point ι 6 R, 

f(x + h) = f(x) + fWh. (2.1) 

For simplicity, it is assumed that h > 0. Then ξ G [χ, χ + h] =: X. How 
can the information given by (2.1) be represented on a computer? How can 
f(x + h) be evaluated on the computer via the right side of (2.1) if χ and h are 
given? Obviously, ξ is not assigned a numerical value which would be necessary 
if we wish to compute /'(£) automatically on a computer. How can (2.1) be 
manipulated so that it can be used for further numerical manipulation? For 
example (2.1) might have to be multiplied by a number. The answer is quite 
simple: Use interval arithmetic and compute 

F(x,h) :=f(x)+f'(X)h 

as will be defined in the sequel. Then F(x,h) will be an interval, i.e. repre
sentable on the computer, and we will know that f(x + h) G F(x, h) where 
f(x + h) is unknown and F(x, h) is known. 

Such principles have many interesting applications in numerical analysis 
and geometric computations. Examples are the computational verification of 
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the existence or the uniqueness of solutions of equations in compact domains, 
cf. Moore [167, 168], strategies for finding safe starting regions for iterative 
methods, cf. Moore-Jones [172], etc. One particular geometric application of 
such iterative methods is to the computation of the intersection of a ray and a 
surface, see [100]. The reader is especially encouraged to study the examples 
in Sec. 2.10. They develop the so-called global aspect of intervals, and they 
are a key to understanding large parts of this monograph. 

A comfortable side effect of the use of interval arithmetic is that when a 
theoretical interval algorithm is implemented using machine intervals via the so-
called outward rounding, the rounding errors are completely under control and 
cannot falsify the results, cf. Sec. 2.4. This means that geometric algorithms 
implemented using interval arithmetic will be robust in the sense discussed in 
the introduction. 

2.3 Interval Arithmetic Operations 
In this section the basic operations on intervals are defined and some of the 
properties of interval arithmetic are given. The differences between real arith
metic and interval arithmetic are emphasized and an arithmetic of infinite 
intervals is also introduced. 

Let J be the set of real compact intervals [a, b], a,b G R (these are the ones 
normally considered). Operations in I satisfying the requirements (a) and (b) 
of Sec. 2.2 are then defined by the expression 

A*B = {a*b:aeA,beB} for Α,Β € I (2.2) 

where the symbol * stands for +, - , ·, and / , and where, for the moment, A/Β 
is only defined if 0 £ B. 

Definition (2.2) is motivated by the fact that the intervals A and Β include 
some exact values, α respectively β, of the calculation. The values α and β are 
generally not known. The only information which is usually available consists 
of the including intervals A and B, i.e., a € Α, β 6 Β. From (2.2) it follows 
that 

a * β € A * Β (2.3) 

which is called the inclusion principle of interval arithmetic This means that 
the (generally unknown) sum, difference, product, and quotient of the two 
reals is contained in the (known) sum, difference, product, respectively in the 
quotient of the including intervals. Moreover, A * Β is the smallest known set 
that contains the real number α * β. Moore [164] proved that A * Β G I if 
0#B. 

It is emphasized that the real and the corresponding interval operations 
are denoted by the same symbols. So-called point intervals, that is intervals 
consisting of exactly one point, [a, a], are denoted by a. Expressions like aA, 
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ο + A, A/a, (-l)A, etc. for a G R, A G / are therefore denned. The expression 
(-l)A is written as -A. 

Definition (2.2) is useless in practical calculations since it involves infinite 
sets. Moore [164] proved that (2.2) is equivalent to the following constructive 
rules, 

[a, b] + [c, d] = [a + c,b + d], 
[a, b]-[c, d] = [a - d, b - cj, 
[a, b] · [c, d] = [min(ac,ad, be, bd), m&x(ac,ad, be, bd)], 
[a, b)/[c, d] = [a, b]-[l/d, l /c ] i fO*[ C > d]. 

Note that (2.4) shows that subtraction and division in I are not the inverse 
operations of addition and multiplication respectively as is the case in R. For 
example, 

[0, 1] - [0, 1] = [-1, 1], 
[1,2]/[1, 2] = [1/2,2]. 

This property is one of the main differences between interval arithmetic and real 
arithmetic. Another main difference is given by the fact that the distributive 
law of real arithmetic does not carry over to interval arithmetic in general. 
Only the so-called subdistributive law, 

A(B + C) C AB + AC for A, B, C G I (2.5) 

holds in J. For example, 

[0, 1][1 - 1] = 0, 
[0, 1]1 - [0, 1]1 = [-1, 1]. 

It follows from this that the order of operations in a formula or an expression 
becomes important. It can be thought of as an extension of the fact that 
the numerical properties of different expressions for a given function can vary 
widely, see for example [57, 58]. 

The above two deviations from real arithmetic are the main reasons why real 
algorithms can not be translated directly into interval arithmetic. Instead new 
algorithms and new ideas have to be provided in order to take full advantage 
of interval arithmetic and interval analysis. 

The distributive law is valid in some special cases, for example, 

a{B + C) = aB + aC if a G R and B,C G J. 

The following properties follow directly from (2.2): Let A,B,C,D,e I and * 
be any interval operation then 

A + B = B + A, 
A + {B + C) = (A + B) + C, 
AB = Β A, (2.6) 
A(BC) = (AB)C, 
A C B, C C D implies A*C C Β * D (ϊί Β * D is defined). 
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The last property of (2.6) is the very important inclusion isotonicity of 
interval operations. This property is essential both for the efficient implemen
tation of interval arithmetic on a computer (see Sec. 2.4) and for the used of 
interval arithmetic together with subdivisions to obtain convergent algorithms. 

An extension of the interval arithmetic operations defined above to un
bounded intervals is used in this chapter and it is therefore denned here. Ale-
feld [4] was the first to use infinite intervals in Newton methods. The following 
formulas are due to Hansen [90]: 

Let 0 G [c, d] and c < d, then 

[a, b]/[c, d] = 
[b/c, +oo) if b < 0 and d = 0, 
(-co, b/d] U [b/c, + 0 0 ) if b < 0,c < 0, and d > 0, 
( - 0 0 , b/d] if 6 < 0 and c = 0, 
(-co, a/c] if ο > 0 and d = 0, (2.7) 
( - 0 0 , a/c] U [a/d, + 0 0 ) if α > 0,c < 0, and d > 0, 
[a/d, + 0 0 ) if α > 0 and c = 0, 
( - 0 0 , + 0 0 ) if a < 0 and b > 0, 

and furthermore [a, 6]/0 = ( — 0 0 , 0 0 ) . 
These formulas are not applicable to every problem, but they are appropri

ate for solving linear equations in connection with the interval Newton method. 
There is also no need for implementing the formulas (2.7) explicitly on the ma
chine since they are finally intersected with a bounded interval such that the 
result is always either a bounded interval, a pair of bounded intervals, or the 
empty set. 

It is hardly possible to deal with larger interval arithmetic calculations 
unless formulas and rules are available for common properties of intervals. For 
a good collection of such formulas and their proofs the reader is referred to 
Alefeld-Herzberger [6] and Neumaier [179]. Examples of such formulas are, 
where w{[c, d]) = d — c and mid ([c, d]) = (c + d)/2: 

w(aA ±bB) = I α I w(A)+ \ b \ w{B), , χ 

(aA ± bB) = mid (A)o ± mid (B)b y ' 

for a, b G R, A, Β G I. If A is symmetric, that is, A = [—a, a] for some a > 0, 
and if Β = [c, d] then 

AB = Amax( |c | , |d | ) , 1 

** - { ΛΑ';λτλ ™ 
w(AB) = 2amax(|c|, |d|), J 

etc. 
We also need symbols a V b, a V δ V c, a V A, or A V Β for a, b, c G R and 

A,Β G J to denote the smallest interval that contains a,b resp. a,b,c resp. 
a, A, resp. A, B. 
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2.4 Implementing Interval Arithmetic 
Let us return to the requirements (c) or (ii) of Sec. 2.3, that is, that the end-
points of our intervals must be machine numbers (i.e. floating point numbers). 
This leads to a special topic called machine interval arithmetic. It can be con
sidered as an approximation to interval arithmetic on computer systems leading 
to the practical use of interval arithmetic. 

Machine interval arithmetic is based on the inclusion isotonicity of the inter
val operations in the following manner: Let us again assume that α, β are the 
unknown exact values at any stage of the calculation, and that only including 
intervals are known, α € Α, β € Β. Then A , Β might not be representable on 
the machine. Therefore A and Β are replaced by the smallest machine intervals 
that contain A and B , 

A C A M , B C B M 

where we denote the replacement of A by A Μ and where a machine interval is 
an interval which has left and right endpoints that are machine numbers. From 
(2.6) it follows that 

A * B C AM *BM-

The interval AM * BM need not be a machine interval and it is therefore ap
proximated by ( A M *BM)M which is representable on the machine. This leads 
to the inclusion principle of machine interval arithmetic: 

a € Α, β e Β implies α* β € (AM * B M ) M - (2-10) 

Thus, the basic principle of interval arithmetic is retained in machine interval 
arithmetic, that is, the exact unknown result is contained in the corresponding 
known interval, and rounding errors are under control. 

We sum up: When a concrete problem has to be solved then our procedure 
is as follows: 

the theory is done in interval arithmetic; 

the calculation is done in machine interval arithmetic; 

the inclusion principle (2.10) provides the transition from interval arith
metic to machine interval arithmetic. 

The practical implementation of a machine interval arithmetic is now dis
cussed. We provide sample programs that facilitate the implementation of 
interval arithmetic on some common computer systems used extensively in ge
ometric computations. These sample programs may also be modified relatively 
easily for the use on other computer systems with other languages. 

Almost all modern computers use floating point numbers of the form 

mbe 
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where TO, 6 and e are the mantissa, base and exponent, respectively, and where 
both TO and e are represented by a fixed number of digits in the base b. This 
representation is a consequence of the fixed size of bits, bytes and words in a 
computer, with words commonly being the smallest addressable unit. 

Although there are already two meanings of the word "rounding" in common 
usage, cf. Sec. 2.2, we have to accept a third meaning when considering specific 
machine behavior. We already mentioned that the exact arithmetic operations 
are performed on floating point numbers the results are in general not floating 
point numbers due to the fixed mantissa length restriction. The result therefore 
has to be assigned to a number representable as a floating point number. If 
the closest floating point number is selected then the process is also called 
rounding (in the proper sense). If the floating point number is selected by 
dropping excess lower order digits then the process is called iruncait'on. Most 
common floating point implementations allow a choice between several modes 
of assigning floating point results. In the sequel we assume that the method 
of assignments follow the IEEE standard for Binary Floating-Point Arithmetic 
(ANSI/IEEE Std. 754-1985 [112], see also [113]) as implemented for the Sparc 
series C compilers via the system function 

i n t i e e e _ f l a g s ( a c t i o n , m o d e , i n , o u t ) 
c h a r * a c t i o n , *mode, * i n , **out 

The function call 

i e e e _ f l a g s ( " s e t " , " d i r e c t i o n " , " t o z e r o " , t o u t ) 

will set the rounding mode to "tozero", that is, the truncation mode, which is 
the preferred choice for interval arithmetic implementations as will be discussed 
below. 

In order to gain a better understanding of the implementation of A M when 
A is given we briefly compare rounding to truncating. Let c be a real number. 
If c is represented as a decimal number and then truncated to a floating point 
number, a number ct is obtained. If the nearest floating point number is chosen 
then the rounded result tv is obtained. Clearly 

c-ct < € if c > 0, 
Ct - c < e if c < 0, 

\cr-c\ < e/2 

where c = l«ip = luip(c) is one unit in the last place of C { . It can also easily 
be shown that |cr - c| < |ct - c| which means that rounding is preferable to 
truncation in numerical computations. In implementing interval arithmetic, 
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however, where all intervals A has to be replaced by machine intervals A M , 
rounding in the proper sense is useless, since the condition A C AM has to be 
met. The transition from A to A M is also called outward rounding which can 
be executed by directed rounding or by utilizing the truncation mode. We use 
the latter way in developing the machine interval arithmetic. 

In the following the skeleton of an implementation of a double precision (64 
bit) class interval is given in C++. The routines are described and presented 
in a natural order, with the basic components being introduced first followed 
by the interval class and interval arithmetic. 

It should also be noted that some of the examples in the latter sections were 
executed using single precision ( 32 bit) floating point numbers in order that 
the effect of the floating point errors would be more easily displayed. The use 
of single precision interval arithmetic will be explicitly mentioned in each case. 

The following C++ code adds a one to the last bit of a double floating point 
number which implements the next.floating-point-number operation required to 
implement the machine interval arithmetic. 

/ * 

T h i s r o u t i n e a d d s 1 t o t h e l a s t d i g i t o f a d o u b l e d a t a 
i t e m w h i c h i s h e r e a s s u m e d t o h a v e 8 b y t e s w h e r e 

s e e e e e e e eeeemmmm mmmmnimmm mmitimmmmm ( 4 l e a d i n g b y t e s ) 
mTnTmnminmm imTrnimmimtmi mmmrmmmiim πιπ)ϊΐιΐϊΐπιπ)ϊϊΐπι ( 4 t r a i l i n g b y t e s ) 

8 = 8 i g n o f n u m b e r 
e = e x p o n e n t o f n u m b e r 
( n o t e t h a t t h e e x p o n e n t 0 1 1 1 1 1 1 1 1 1 1 i s a n e x p o n e n t 
o f t h e r e p r e s e n t a t i o n o f 0 ) 
m = m a n t i s s a b i t s w i t h a s s u m e d l e a d i n g 1 

T h e a l g o r i t h m w o r k s b y a d d i n g o n e t o t h e l a s t t w o b y t e s 
o f t h e m a n t i s s a ( d u e t o t h e i n t e g e r a r i t h m e t i c u s e d ) . 
I f t h e r e s u l t o f t h i s a d d i t i o n i s z e r o t h e n i t m u s t 
o v e r f l o w t o t h e n e x t t w o b y t e s . 
I f t h e m a n t i s s a b i t s a r e e x h a u s t e d t h e n t h e e x p o n e n t 
w i l l b e a u t o m a t i c a l l y i n c r e m e n t e d a n d t h e m a n t i s s a w i l l 
b e s e t t o a l l z e r o s . 

No c h e c k i s made t o s e e i f t h e e x p o n e n t o v e r f l o w s . N e g a t i v e 
n u m b e r s w i l l t u r n i n t o t h e n e x t l a r g e r n e g a t i v e n u m b e r . 

T h i s r o u t i n e a s s u m e s t h a t t h e r e a r e 8 b y t e s i n a d o u b l e 
d a t a i t e m a n d t h a t t h e r e a r e 4 b y t e s i n a n u n s i g n e d i n t e g e r . 
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*/ 

double add_one(double bound) 
/* routine to add 1 to the last digit of a floating point number */ 

{ 
unsigned int *msip, *lsip; 
/* most and least significant parts of the number (msip and lsip) * / 

msip = (unsigned int *)ftbound; 
/* the address of msip */ 

lsip = msip + 1; 
/ * the address of lsip * / 

*lsip += 1; 
/* add one to the least significant portion of the number */ 

if (*lsip == 0) *msip += 1; 
/* if lsip overflows then add 1 to msip */ 

return(bound); 
} 

For simplicity a routine 

setmode. 

is included: 

void setmode_() 
{ 
char *out; 

ieee_flags("set", "direction","tozero",ftout); 
} 

Together with the statement 

extern "C" ί 
int ieee_flags(char *, char *, char *in, char **); 
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} 

the routine sets the mode to "truncation". 
The basic interval operations denned by equation 2.4 are now implemented 

in the class interval as given below. 

/* 
The basic arithmetic operations are embedded in the class 
interval. In each case the pair of double data items 
representing the interval [lo.hi] is checked via the routine 
check_bounds. This routine accesses add_one whenever 

lo<0 
or 

hi>0. 
In both cases the next double representable item is 
calculated in add_one and the result is returned to the 
calling operator. In this manner i t is guaranteed that the 
machine interval result will contain the interval result 
that would have been computed using infinite (real) 
interval arithmetic, i . e . inclusion 

isotonicity\index{inclusion isotonicity} 
is maintained. 
*/ 

/•defining the class interval*/ 

class interval { 
double lo.hi; 

public: 

/•accessing the bound of an interval*/ 

interval(double lo = 0, double hi = 0) { 
this->lo = lo; 
this->hi = hi; 
}; 

/•an interval printing ut i l i ty */ 

void print() { 
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printf("[ '/.31x, */.31x ] \ n \ lo, hi); 
}; 

/•checking lower and upper bounds adding 1 if necessary*/ 

friend interval check_bounds(interval a) { 
i f (a . lo < 0 ) { 
a.lo = add_one(a.lo); 

} 
i f (a.hi > 0 ){ 

a.hi = add_one(a.hi); 
} 
return(a); 

} 

/•interval addition*/ 

friend interval operator+(interval a, interval b){ 
return(check_bounds(interval(a.lo+b.lo,a.hi+b.hi))); 
}; 

/•interval subtraction*/ 

friend interval operator-(interval a, interval b){ 
return(check_bounds(interval(a.lo-b.hi,a.hi-b.lo))); 
}; 

/•interval multiplication^/ 

friend interval operator•(interval a, interval b){ 
double ac,ad,bc,bd; 
ac=a.lo • b.lo; 
ad=a.lo • b.hi; 
bc=a.hi • b.lo; 
bd=a.hi • b.hi; 
return(check_bounds(interval(MIN(ac,ad,be,bd), 

MAX(ac,ad,bc,bd)))); 
}; 

/•interval division^/ 

friend interval operator/(interval a, interval b){ 
double ac,ad,bc,bd; 
i f ( b.lo == 0.0 II b.hi == 0.0 ){ 
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cout « form("\n bad interval for division"); 
} 
ac=a.lo / b.lo; 
ad=a.lo / b.hi; 
bc=a.hi / b.lo; 
bd=a.hi / b.hi; 
return(check_bounds(interval(MIN(ac,ad,be,bd), 

MAX(ac,ad.be,bd)))); 
>; 

/•extract lower and upper bound ut i l i t i e s* / 

friend double lower_bound(interval a) { 
return(a.lo); 

}; 
friend double upper_bound(interval a){ 

return(a.hi); 
}; 
}; 

A few system calls and some definitions are needed to complete the interval 
package: 

#define min(a, b) (((a) < (b)) ? (a) : (b)) 
#define MIN(a, b, c, d) min(min(min(a, b), c) , d) 
#define max(a, b) (((a) > (b)) ? (a) : (b)) 
#define MAX(a, b, c, d) max(max(max(a, b), c) , d) 

#include <stdio.h> 
#include <stream.h> 
#include <sys/ieeefp.h> 

The routines for interval multiplication and interval division can be made 
more efficient by considering 9 cases for each depending on the signs of the 
result. For both interval multiplication and interval division 8 of the cases 
only require 2 multiplications resp. divisions. Only one case requires the full 4 
multiplications resp. divisions. These cases are described in for example [169]. 
In the routines presented above this was not done for the sake of clarity. 

In [254] and in [241], pp. 160-161, it is suggested that the round-to+oo 
mode be used for the upper bound and round-to-oo mode be used to compute 
the lower bound if the arithmetic conforms to the IEEE standards for floating 

�� �� �� �� ��

http://ad.be


26 Interval Analysis 

point arithmetic discussed above. This would in general result in a higher 
operation count unless the above division into cases is implemented. It is also 
conceptually easier to deal with only one truncation mode for a given numerical 
(i.e. interval) computation. 

Further increases in the execution speed of the interval routines would be 
achieved if the routines were implemented at the chip or microcode level, see 
also [261]. 

There are several commercial and public domain software systems and soft
ware packages in which machine interval arithmetic is implemented, for exam
ple TRIPLEX-ALGOL-60, ALGOL 68, C-XSC, PASCAL-SC, PASCAL-XSC, 
FORTRAN-SC, FORTRAN-XSC, MODULA-SC or ACRITH for some IBM 
computers, ARITHMOS for some Siemens computers, etc. For a basic discus
sion of such languages see Kulisch-Miranker [145]. 

The advantage of scientific programming languages, i.e. those that have a 
letter string "sc" in their name, is that not only the arithmetic operations are 
executed via maximum accuracy, also called machine exact, but also vector and 
matrix operations. An interesting report about computer systems that provide 
the "scientific" concept on chips or in microcode is given in Kulisch [144]. 

2.5 Further Notations 
Interval arithmetic can be extended to most spaces considered in numerical 
computations. For each extension new results have to be derived and new 
and interesting properties might be found. In this section the idea of interval 
arithmetic is extended to m-dimensional vectors and matrices in a natural 
manner. The question of the solution of linear interval equations in m-space is 
left to the next chapter. 

If A G I then we also write A = [IbA, ubA] denoting the lower and upper 
boundaries of A by IbA and ubA. If D C R then 1(D) = {Υ : Y G I, Y C D). 
If Β G I then A < Β and A < Β means that ubA < lb-B resp. ubA <\bB. 

The set of real m-dimensional vectors is denoted by Rm and the set of 
m-dimensional interval vectors by Im. 

If A = ( A i , . . . , A m ) G Im then A is commonly interpreted as a right 
parallelepiped Αι χ Αι χ . . . χ Am. The vector of left endpoints of A is denoted 
by IbA = (IbAi,... , lbA m ) and the vector of right endpoints is denoted by 
ubA = (ubAi,... ,ubA m ) . Interval vectors are also called intervals when it is 
clear from the context whether real intervals or interval vectors are intended. 
A box is also a frequently used synonym for an m-dimensional interval vector, 
a particularly appropriate notation in 3D computer graphics. 

If A = (ΑχAm) G Im then the width of A is defined to be 

w(A) = max {w(Ai) : i = 1 , . . . , m} 
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and the midpoint of A to be 

mid A = (mid A\,..., mid Am). 

The set of η χ m real matrices is denoted by R n x m and the set o f n x m 
interval matrices by J n x m . If A = (A{j) G / n x m then 

mid A = (mid A 0 ) G R n x m 

is the midpoint of A. 
If G Im or A, 5 e J n X m then AC Β means that A< C Bj for ι = 

l , . . . ,m or Ay C By for t = Ι , . , . , η ; j = l , . . . ,m. Similarly, if χ G B m , 
A G Im, or if χ G Rn*m,A G J n x m then 

χ G A 

means x< G Aj for i = 1 , . . . , m or x,j G Ay for i = 1 , . . . , n; j = 1 , . . . , m. For 
instance, mid A G A holds. 

Similarly, if Α, Β G 7 m then 

A < Β or A < Β 

shall mean A* < Bj for ι = 1 , . . . , m, or Aj < Bj for i = 1 , . . . , m, respectively. 
Note that A < Β does not mean that A = Β or A < Β holds as is the case 
with inequalities in R. 

The interval arithmetic operations are extended to interval vector and in
terval matrix operations in the usual manner: 

a(A y ) = (aAtj) for a G R, (A 0 ) G I n x m , 
( A ^ i i B y ) = ( A y ± B y ) for (Α^),(Β ϋ) G I"*"», 

lb 
(A«)(B«) = for ( A 0 ) G / n x f c , ( B w ) e J * x m . 

This definition includes the arithmetic for interval vectors (rows as well as 
columns) by setting η = 1 or m = 1. 

If A, B, C, D are interval vectors or interval matrices and if * denotes one 
of the operations +, — or · then 

ACC, BCD implies Α* Β C C * D. (2.11) 

Property (2.11) is the extended form of the inclusion isotonicity of the interval 
arithmetic operations. 

For D C Rm we denote by 1(D) the set of all boxes Y G Im with Y CD. 
For example, if X G Im, and thus X C Rm, the set of all subboxes Y of 
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X is just I(X). In this connection we also say that Y is an interval variable 
over I(X) which shall mean that Y can take each box of I(X) as value. This 
terminology is mainly used when functions F : I(X) -> / etc. are considered. 

An interesting functional is χ : I -t [— 1, 1] denned by χ[0, 0] = — 1 and, if 
[a, b] φ 0, by 

1 ' 1 \ b/a otherwise. 

χ characterizes the degree of symmetry of intervals. For instance, χ A = - 1 
means that A is symmetric, i.e. A = —A, and χΑ = 1 means that A is a 
nonzero point interval and hence completely nonsymmetric. Thus, χ admits 
the geometric interpretation that, for intervals A and B, 

A is more symmetric than Β iff χ A < χΒ. 

χ is an indispensable tool for dealing with interval products. For example, if 
A, Β G I is given then there exists an X G J with AX = Β iff χ A < χΒ 
(Ratschek [207]). Or, if δΑ = mid {\a\ : a G A} and A i , . . . , A n G I then 
(Ratschek-Rokne [217]) 

τϋ(Λ,· . ·Α η ) = \Αι\--·\Αη\-(δΑι)---(δΑη) 
if χ Α < > 0 ( ί = 1, . . . ,η) , 

ιυ(Αι···Α„) = |Αι | · · · |Α„_ι | ι ι;Α η 

if χΑη < χΑί (i = 1 , . . . ,η - 1) and χΑ„ < 0. 
(2.12) 

(Note that all possible cases for A i , . . . , A n are exhausted by the two formulas.) 
The χ-functional also allows a splitting of intervals which can be convenient 

for product considerations: 
Let σΑ = 1 if mid (A) > 0, otherwise set σΑ = — 1. Then each interval A 

can be represented by 
A = (σΑ)|Α|[χΑ, 1] (2.13) 

where the "signum" of A, the modulus of A, and the symmetry character of A 
are involved. More important is that the product of two intervals take on an 
easy form with (2.13), i.e. 

AB = (σΑ){σΒ)\Α\\Β\[(χΑ){χΒ), 1] if #A,0#B, 1 
= (σΑ)(σΒ)\Α\\Β\[ηύη(χΑ,χΒ), 1] otherwise . J v ' 

This formula is needed in Sec. 2.8. 

2.6 The Meaning of Inclusions for the Range 
Computing the range of a function is important for many numerical problems. 
Exact computations of the range are not possible in general, however, important 
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information can be gained from computations of inclusions. In this and the 
following section efficient methods for the computation of an inclusion for a 
function over a closed compact domain is therefore discussed as well as some 
applications of the methods to geometric computations. 

The main application of outer estimates of the range of a function over a 
particular domain is to test whether a particular constraint is satisfied for the 
range or not. Suppose a function f(x) and a region (i.e. interval or box) X is 
given and suppose the constraint is f(x) φ 0 over X. If we compute an inclusion 
F(X) such that f(x) G F{X) for any χ G X with the property that 0 £ F{X) 
then it follows that /(χ) Φ 0 for any χ £ X. If, however, 0 G F(X) then the 
result is inconclusive, i.e. we can not tell whether f(x) φ 0 for any χ G X or 
not. This discussion illustrates two points for inclusion functions: 

• If a property for sets 5 of the form "S does not contain a certain ob
ject" required for the range is satisfied by an inclusion for the range then 
the inclusion computation provides a positive answer to the test for the 
property, that is, the range does not contain this object, 

• if the property required is not satisfied by the inclusion then the result is 
uncertain. 

It is therefore important to calculate inclusions for the range of a function that 
have a small overestimation of the range in order to increase the likelihood of 
obtaining a positive answer to a test for such a property. 

There are three main methods for improving an inclusion for the range of 
a function: 

• Devise improved inclusions by algebraic and analytic means. Typical 
examples are mean value forms, centered forms and Taylor forms, use of 
monotonicity knowledge of the function, 

• subdivide the domain then compute inclusions for the range over each 
subdomain and compute the bounds of the union, 

• compute the global maximum and minimum of the function by optimiza
tion methods. 

In the next section we provide methods for obtaining improved inclusions 
for the range using algebraic and analytic techniques. In the last section the 
very important idea of subdivision to improve the inclusions is discussed. The 
computation of the maximum and mimimum value over the domain of a func
tion will provide the best inclusion. This computation is expensive and it is 
part of the topic of global optimization which was dealt with in [213]. 

The importance of the knowledge of inclusions of the range in interval anal
ysis was first discussed in Moore [165] in 1966. He also introduced the idea of 
the centered form which will be developed later. In the ensuing two decades a 
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number of techniques and algorithms based on the centered form were devel
oped. They were collected and presented in the monograph [212]. More recent 
work on centered forms is found in for example [2, 235, 14, 149]. 

In computer graphics the application of inclusions for the range of functions 
occur in contour and surface tracing, ray tracing and generally intersection of 
surfaces defined parametrically as well as in proximity tests. 

2.7 Inclusion Functions and Natural Interval Ex
tensions 

The main tool in the treatment of geometric problems using interval arithmetic 
are inclusion functions. In this section the concept of an inclusion function is 
therefore introduced together with the idea of the natural interval extension. 
Some further properties are also given. 

Let D C Rm and / : D -> R. Let furthermore • / ( F ) = {f(x) : x € Y} be 
the range of / over Y 6 1(D). A function F : 1(D) -> I is called an inclusion 
function for / if 

Π/(Υ) ς F(Y) for any Y G 1(D). (2.15) 

Inclusion functions for vector-valued or matrix-valued functions are defined 
analogously. The inclusion condition (2.15) must in this case be satisfied com
ponentwise. 

It turns out that interval analysis provides a natural framework for con
structing inclusion functions recursively for a large class of functions. 

In order to outline this class of functions it is assumed that some funda
mental functions are available for which inclusion functions are already known. 
This assumption is verified by existing computer languages for interval com
putations. These languages have pre-declared functions g (examples are sin, 
cos, etc.) available. For these functions it is also assumed that pre-declared 
inclusion functions G satisfying the above conditions (2.15) are given. If the 
functions G are not given then they are easy to construct since their mono
tonicity intervals are generally known, such that even G(Y) = &g(Y) will hold, 
in general. It is also easy to realize these inclusion functions G on a computer 
such that (2.15) is not violated. In this case the influence of rounding errors is 
kept under control by computing 

(G(YM))M instead of G(Y), 

cf. Sec. 2.5. 
Let f : D —τ R, DC Rm be a programmable function, that is, a function 

which may be described as an explicit expression without use of logical or 
conditional statements (such as "if ... then", "while", etc.) in the following 
manner: Each function value f(x),x € D, can be written down as an expression 
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(also denoted by f(x)) which is independent of the value of χ and such that 
this expression consists only of 

(1) the variable or arguments χ (or their components x i , . . - , x m ) ) 

(2) real numbers (coefficients, constants), 

(3) the four arithmetic operations in R, 

(4) the pre-declared functions g, 

(5) auxiliary symbols (parentheses, brackets, commas, etc.). 

Let Y G 1(D) then the natural interval extension of / to Y is defined as 
that expression which is obtained from the expression f(x) by replacing each 
occurrence of the variable χ by the box Y, the arithmetic operations of R by 
the corresponding interval arithmetic operations, and each occurrence of a pre-
declared function g by the corresponding inclusion function G. This definition 
is due to Moore [165]. The natural interval extension of f(x) to Y is denoted 
by f(Y) and is understood as an expression, that is, a string of some specified 
symbols. The function value which is obtained by evaluating this expression is 
also denoted by f(Y). 

It follows from the definition of an expression, from the inclusion isotonicity 
of the interval operations, (2.6), and from the properties of the pre-declared 
inclusions, i.e. the G's, to be inclusion functions (see (2.15)) that 

χ G Y implies f(x) G f(Y). (2.16) 

Since property (2.16) is the key to almost all interval arithmetic applications 
and results, it is called the fundamental property of interval arithmetic. 

If / : D -> R, D C Rm is programmable and can be described by a function 
expression as characterized above then the interval function F : 1(D) -¥ I 
defined by F(Y) = f(Y) is an inclusion function for / . More importantly we 
have here an effective constructive means to find an inclusion function F for a 
real programmable function / using the tool of natural interval extensions. 

The reader preferring a more precise presentation is referred to Ratschek— 
Rokne [212]. 

E x a m p l e . If f(x) = xi sin(x2) — X3 for χ G R3 and if SIN is the pre-
declared interval function for sin then f(Y) = Y\ SIN(r2) — Y3 is the natural 
interval extension of / to Y G I3. 

It is one of the large curiosities of interval arithmetic that different expres
sions for one and the same function / lead to interval expressions which are 
also different as functions: 
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Example. If fi(x) = χ - χ2 and / 2(x) = x(l - x) then f\(x) and / 2(x) 
are different as expressions, but equal as functions. Further, f\{Y) and /2(F) 
are also different as functions, i.e., if Y = [0, 1] then fi(Y) = Y - Y2 = 
[-1, l],f2{Y) = Y(l -Y) = [0, 1]. For comparison, Df(Y) = [0, 1/4]. 

It is therefore a very important and challenging problem to find expressions 
for a given function that lead to the best possible natural interval extensions, 
that is, f(Y) shall approximate • f(Y) as well as possible. Part of the solution 
to this problem can be found in Ratschek-Rokne [212]. 

For construction of inclusion functions of programmable functions contain
ing logical connectives see Ratschek-Rokne [213] 

A measure of the quality of an inclusion function F for / is the excess-width, 

w(F(Y)) - w(nf(Y)) for Y G 1(D), 

introduced by Moore [165]. A measure for the asymptotic decrease of the 
excess-width as w(Y) decreases is the so-called order (also: convergence order) 
of F, due to Moore [165]: An inclusion function F of / : D R,D C Rm is 
called of (convergence) order α > 0 if 

w(F(Y)) - w(Df(Y)) = 0(w(Y)a) 

as w(Y) -τ 0, that is, if there exists a constant c > 0 such that 

w(F(Y)) - w(0f(Y)) < cw(Y)a for Y G 1(D). 

In order to obtain fast computational results it is important to choose inclusion 
functions having as high an order a as possible. A detailed investigation of 
the order of inclusion functions is given in Ratschek-Rokne [212]. A similarly 
looking concept, which is however independent of the order, is the idea of a 
Lipschitz function. Let D C Rm be bounded and F : 1(D) -> J*. Then F is 
called Lipschitz if there exists a real number Κ (Lipschitz constant) such that 

w(F(Y)) < Kw(Y) for Y G 1(D). 

The Lipschitz property delivers us a frequently used criterion for the meanvalue 
form which is a special inclusion function being of convergence order 2, cf. Sec. 
2.9. 

2.8 Combinatorial Aspects of Inclusions 
It was noted in the previous section that if f(x) was an expression for a pro
grammable function / in the variables χ = (xi,...,xn) then the natural interval 
extension was f(X) which resulted from replacing all occurrences of the real 
variables by interval variables, all occurrences of transcendental functions by 
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inclusions and all operations by interval operations. A very important property 
of f(X) was the fundamental property of interval arithmetic 

Df(X) C f(X). (2.17) 

A further property was inclusion isotonicity expressed as 

AC Β implies /(A) C f(B). 

It was also noted earlier that interval arithmetic differs from real arithmetic in 
two important aspects 

1. only the subdistributive law holds, i.e. 

A(B + C) C AB + AC for A,B,C£l, (2.18) 

2. subtraction and division are not the inverse operations of addition and 
multiplication. For example 

[0,1]-[0,1] = [-1,1], 

[1,2]/[1,2] = [1/2,2]. 

Because of these differences it follows that the order of operations is important 
for interval arithmetic. As an example, we have the following 2x2 determinant 
which will be evaluated in three algebraically equivalent ways: 

Di(ai,a2,biM) = 

£> 2 (αι,α2,6 1 ,6 2 ) = 

αϊ bi 

α2 &2 

αϊ δι 
α2 62 

= αι&2 - α 2 6ι, 

= αι(&2 - δι) + δι(αι - α2), 

Ι?3(αι,α2,δι,δ2) = 
αϊ δι 
α2 δ2 

= δί(αι - α2) + α2(δ2 - δι). 

(2.19) 

(2.20) 

(2.21) 

The natural interval extensions of these formulas are different. Let Ai = [—1,1], 
A 2 = [0,2], Βχ = [0,1] and B2 = [-1,1]. When Au B{, i = 1,2 replaces α4, δ4, 
t = 1,2 in the above formulas we obtain 

A([-U] , [0 ,2] , [0 , l ] , [ - l , l ] ) = [-3,1], 
£> 2([-l,l],[0,2],[0,l],[-l,l]) = [-5,5], 
£> 3([-l,l],[0,2],[0,l],[-l,l]) = [-7,5]. 

Another example, which is a typical feature of the set theoretic definition of 
interval equations and narrowly connected with the determination of inclusion 
functions for polynomials, is the interval arithmetic power evaluation. Interval 
arithmetic distinguishes between the simple and the extended power evaluation. 
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The simple version of the power evaluation (also called power evaluation by 
simple arithmetic) is defined by 

A0 = 1 and An = A •... · A(n times) if > 1 

for intervals A. The extended version of the power evaluation (also called power 
evaluation by extended arithmetic) is defined by 

An = {an : a G A} if η > 0. 

We also get explicit formulas for the simple as well as for the extended 
power evaluation. 

Let A = [a, b] and η > 1. Then 

i n _ / a"V&"if0 iM, 
Λ ~ \ 0 V ο" V bn if 0 G A. 

The formula follows directly from the definition of the extended power evalua
tion and the monotonicity of the power function on the positive and negative 
real halfaxes. 

In case of the simple power evaluation we get 

f a"V&"if0fiM, ( 2 2 3 ) 

\ ( σ Α ) η _ 1 | Α | η _ 1 Α if 0 G A. 

The formula in case 0 £ A follows directly from the multiplication rules for 
intervals applied recursively. The formula in case 0 G A follows from (2.13). 

For instance, one can see from (2.23) that if A = [a, b], then 

An = Abn~l H0eA,aA = 1, 
An = Ααη~ι ifOG Α,σΑ = - 1 . 

Or, if A is symmetric, i.e. A = [—a, a], then 

An = [-an,an], 

Λ ~ \ [0, α"] if η 
is odd, 
is even. 

The following two examples explain the need for two kinds of power evalu
ation: If x, y G A then A 2 is the smallest interval that contains xy (w.r.t. the 
information given, that is x, y G A ) If χ G A then A 2 is the smallest interval 
that contains x2 (w.r.t. the information given, i.e. χ € A ) . Hence, if we for 
example need inclusions for the polynomial 

p(x) = x\{2 + x 2 x 3 ) + x\{2 + xix 3) + xl(2 + xix 2), x G R3 
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for Xi,X2,X3 G A, A G I, then the natural interval inclusion 

p(A) = 3A2(2 + A2) 

is one possible inclusion. But, in general, a narrower inclusion will be gained 
with extended arithmetic, that is, by the inclusion 

P(A) = 3A2(2 + A). 

If, for instance, A = [-1, 2], then A2 - [-2, 4], A2 = [0, 4], and one obtains 

p(A) = [-36, 72] and P{A) = [0, 72], 

where, accidentally, P(A) is already the range of ρ over the box Α χ A χ A, 
that is, DP(A) = P(A). 

These few examples show the importance of choosing a good formula for 
the evaluation of an inclusion for the range. Theoretical investigations in this 
area are found in [235, 14, 149, 217]. The selection of the form that results in 
the narrowest inclusion is a difficult problem since there is an infinite number 
of possible forms. In this monograph we focus on the practical aspects of the 
computation of the forms as they apply to geometric computations. 

2.9 Skelboe's Principle 
If a programmable function is given and if it is possible to find an expression 
for the function in a well defined form or if some monotonicity properties are 
known, then there are ways of determining the range more or less directly. This 
is, in short, Skelboe's principle, which we will present here in a very developed 
form. Since the principle can be applied to several problems in geometric 
computations we provide a complete proof of the principle here. 

The notation α V 6 is again used for the interval with endpoints a and b 
(especially if one does not know whether α < b or b < a) for a, b G R. Similarly, 
if A, Β G I, we write A V Β for the smallest interval that contains A and B. 

Let us first consider monotone continuous functions / . If / is a function in 
only one variable then the result is evident, i.e. the range is found immediately 
as 

•/([a, b]) = f{a)Vf{b) 

if defined. If a function / ( x i , . . . , x m ) is defined for Xj G Xi G I (i = 1 , . . . ,m) 
we say that / is monotone in the variable x* if for each choice of values Cj G Xi 
(i = 1 , . . . , k — 1, k + 1 , . . . m) the function 

9(xk) = / ( c i , . . . c f c_i, χ*, C j t + i , . . . , c m ) 

is monotone. The basis for using monotonicity properties is found in the fol
lowing theorem which is due to Skelboe [250]. 
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T H E O R E M 1 Let the continuous function f(xi,. • • ,xm) be defined for Xi G 
Xi (i = 1 , . . . ,m) and monotone in xi (without restricting the generality). If 
Xi = [a, b] and if the function gc is defined for any c 6 Xi by gc(x2 , - . - , i m ) = 
/ ( c , x 2 , . . . , x m ) forxi ζ Xi (i = 2,...,m), then 

• / ( X i , . . . ,Xm) = Vga(X2, ...,Xm)V Dgb(X2,.. .,Xm). 

Proof. Assume y = / (c i , . . . , c m ) for some Cj G Xi [i = l , . . . ,m). Since 
a < Ci < b and using the monotonicity we either obtain 

ffa(C2,--.,Cm) < / ( C i , . . . , C m ) < 5ft(c 2 , . . . ,C m ) 

or the opposite chain (the inequalities reversed), and the value y lies in the in
terval hulls ga(c2,... ,c m ) \Zgb(c2,..., cm) C ga(X2, Xm)V9b(X2, · · ·, Xm)-
The continuity of / is used to find a term f{ci,...,Cm) which lies between the 
given values f(a, da,. • •, dm) and f(b, ei,..., em) in order to prove the inclusion 
in the opposite direction. • 

If this theorem is applied repeatedly then it can be generalized to functions 
that are monotone in several variables. 

Therefore, if it is required to determine the range of the function ex/(x2+y) 
for χ G X = [—1, 1] and y G [3, 4], then it is sufficient to determine the interval 
hull of the ranges of the functions 93(1) = ex/(x2 + 3) and </4(x) = ex/(x2 + 4) 
for χ G X. The ranges Og3(X) and Og4(X) can easily be calculated since 03 
and #4 are monotone (their derivatives are positive!). 

T H E O R E M 2 If a continuous function f is representable in the form 

/ ( x i , . . . , x m ) = g ( x l , . . . , x m _ i ) *h(xm) (2.24) 

for Xi G Xi (i = 1 , . . . , m) and * G { + , —, ·, / } , where h is a monotone function, 
then 

• / ( Χ χ ,...,Xm) = Dg(Xi,..., Xm_i) . Dh(Xm). 

Proof. Since x m is separated out in (2.24), the interval hull given in Theorem 
1 has the desired form. • 

The advantage of the two theorems is that the range determination is re
duced to a range determination for a function with fewer variables plus the 
trivial range determination of the monotone function h. The theorems can also 
be used if one can only find inclusions for ga or g. Then the formulas can be 
applied to obtain inclusions for / . 

Since each occurrence of a variable in which the function is monotone en
ables the reduction of the number of variables in the range computation, it is 
suggested to manipulate the expression for / in such manner that Theorem 2 
can be used as often as possible, cf. the following example from Skelboe [250], 
Moore [166]. Let 

}{x,y,z) = *^-ζ for χ G X = [1, 2],y G Y = [5, 10], and ζ G Ζ = [2, 3], 
χ-y 
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then an optimal arrangement of / is 

f(x>y'z)=(l+uyhdz 

such that the range is determined directly by 

If / is a function in the two variables (for simplicity) χ G X and y G Y then 
it may happen that / is monotone in y but that / is not representable in the 
form (2.24), for example the function f(x,y) = e ( l ~ 1 ) v (x + 1). Then the use 
of Theorem 1 is again recommended. 

Another classical theorem (Skelboe [250]) involves arithmetic expressions 
in which each variable occurs at most once and of power at most 1. Hence, 
(xi +X2) /x3 is such an expression, but (xiX2+X3)/(xi -au) or (1+x 2 ) are not. 
It is obvious that such expressions are monotone with respect to each variable. 

THEOREM 3 Let f(x\,...,xm) be an arithmetic expression in which each 
variable occurs only once and of power at most 1. Then 

af(Xu...,Xm)=f(Xl,...,Xm)for Xu...,Xm<El 

if defined. 

Proof. One only has to show that f{X\Xm) C Of{Xi,..., Xm)- Since 
each variable occurs only once, there exist reals c< G Xi such that 

» = / ( c i , . . . , c m ) G Df(Xu...,Xm).D 

We can generalize this principle essentially by admitting power operations 
and (continuous) transcendental functions. The variables are only allowed to 
occur once. Two further conditions must be satisfied when determining the 
natural interval extension: 

(i) Each occurring power is to be evaluated with extended interval arith
metic, 

(ii) the natural interval extensions of the transcendental functions must be 
equal to their range (related to the current domain). 

Condition (ii) is always satisfiable for the common standard transitive functions 
such as sqrt, log, In, sin, cos, exp, etc. 

THEOREM 4 Let an expression f{x), χ G Rm be given for a programmable 
function f which may contain arithmetic operations, continuous transcendental 
functions and powers. If the box X G Im lies in the domain of f and if the 
above mentioned conditions (i), (ii) are satisfied then 

Uf{Xl,...,Xm)=f{Xl,...,Xm). 
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Proof. The proof is the same as for the previous theorem. The existence of 
the argument c G X follows from the property that a programmable function is 
defined recursively {such that mathematical induction can be applied) and that 
for each step of the recursion the natural interval extension gives the range. It 
then follows that the current range is obtained from requirements (i) and (ii) 
for powers and transcendental functions and from the definitions of the interval 
arithmetic operations. • 

Example 1. The range of the function 

f(x,y,z) = cos3 y/\x3z + cos(l/exp(y4 - 1))| 

over arbitrary intervals Χ, Υ, Ζ € I is obtained by the natural interval extension 

f(X, Υ, Z) = cos 3 y |X 3 Z + cos(l/exp(y 4 - 1))| 

where condition (ii) must be considered. 

Example 2. If f(x,y,z) = ez(x + y)/(x - y) with X = [1, 2], Y = [5, 10], 
and Ζ = [log2, log3] then f(X,Y,Z) = [-108, -12]/9. If / is represented by 
the expression 

Mx,y,z) = ez(l+ 2 ) 
χ/ν-1 

then Theorem 4 can again be used and it yields 

Df(X,Y,Z) = fy(X,Y,Z) = [-63, -22]/9. 

Example 3. f(x,y,z) = xyex~v sinz and X = Υ = Ζ = [1,10] and if / is 
represented as f(x,y,z) = (xex)(ye~v)sinx, then the first two parenthesised 
factors are monotone over X = Y and Theorem 2 can be applied twice yielding 
nf(X,Y,Z) = [ ε , Ι Ο ε ^ ^ - ^ , β - η μ ί , Ι ] = [-10e9,10e9]. 

It is often assumed that the numerical costs of using derivatives are high. 
Derivative based methods are therefore avoided if possible. If, however, auto
matic differentiation or Krawczyk's slope arithmetic, see for example Krawczyk 
[140], Rail [201], Ratschek-Rokne [212] or Griewank-Corliss [83] is available 
then the number of arithmetic operations in the evaluation of the derivative is 
0(n). The next theorem requires the partial derivative Dif of / w.r.t. Χχ to 
obtain an inclusion which can be derived directly from Theorem 1. 

THEOREM 5 (Monotonicity). J/0 £ Dif(X) for some i andXi = [IbA^ubXi 
then f is strictly monotone in the i-th variable and 

Df(X) C / (Χι , . . . , \bX i y . . . ,X n ) V ί{Χχ,...,ubXi,..., Χη).Ώ 
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If the boxes are getting smaller, one has frequently monotonicity in all 
variables (think of contour tracing, for instance), which can easily be discovered 
by checking the natural interval extension of the partial derivatives. If, for 
example, η = 3 and Dif(X) > 0, D2f(Y) < 0, and D3f(Z) > 0, then 

Of(X,Y,Z) = [/(lbX,uby,lbZ), /(ubX,lbr,ubZ)]. 

2.10 Inner Approximations to the Range of Lin
ear Functions 

With a few exceptions, almost the whole rounding error related research in in
terval arithmetic is based on outward rounding. It is as good as self-evident that 
each interval software package uses outward rounding for the interval arithmetic 
operations. The reason is clear historically since the computed interval result 
is required to contain the unknown exact result, cf. Sec. 2.2. The outward 
rounding has almost become a doctrine among the users of interval mathemat
ics. Hence, as one began to develop approximations of the range of functions, 
one arrived at outer approximations. This was, on the one hand, manifested by 
the mean value form, where when starting at the classical meanvalue formula 

f(x) = f(c) + (x- c)/'(£) with ξ G χ V c 

the inclusion 
/(*) e /(c) + (x - c)f\X) 

was obtained and, for the range Of(X), the outer approximation 

f(c) + (X-c)f'(X), 

cf. Sec, 2.2 and 2.11 was computed. On the other hand, there were early 
applications of outer approximations such as 

Df(X)Cf(c) + (X-c)f'(X) 

or 
nf(X) c f(X) 

to subdivision or exhaustion methods, cf. Moore [165], where areas are removed 
that cannot contain function values. In the next section we will see that inner 
approximations of the range are almost more important than outer approxima
tions. The reason for this is the following standard conclusion which we will 
find several times in the sequel. 

Let A be an inner approximation of some range Uf{X) and Β an outer 
approximation. Then clearly 

A C Df(X) C B. 
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Imagine that Of(X) is not known. What can A and Β contribute to explore 
Uf(X)l The information gained from Β is the implication 

\ΐ w $ Β then w # Df(X), 

and the information gained from A is 

if w G A then w G • / ( X ) . 

We see that Β is related to the complement of Of(X) while A is important for 
the affirmative case that a number w is, in fact, a function value. 

How can we get inner inclusions of the range when working with an inter
val arithmetic which is outwardly oriented? There is no simple answer which 
would cover the general case: One has first to elaborate formulas for the inner 
inclusion, that covers the mathematical background of the approximation, cf. 
Krawczyk [139], Markov [163]. Secondly, one needs an inward rounding, which 
certainly could be constructed with directed rounding devices as is the case in 
scientific computation languages, for instance, C-XSC. The average user inter
ested mainly in geometrical computation might not be prepared to implement 
it. 

It is already troublesome to find inner inclusions for the simple case of a 
linear function where the exact range is available. We therefore include this 
separate section which provides formulas whose evaluation approximates the 
range of linear functions from the inside. 

Let φ(χ, y) = αχ+by+c be a linear function with coefficients o, 6, c G R. We 
derive formulas for an inner approximation of the range of ψ over a rectangle 
X xY G I 2 . Since conversion errors can occur, we also allow the coefficients 
to vary over intervals. This means that the subsequent formulas can also be 
applied if o, 6 and c result from preceding computations as will frequently be 
the case (for example, in Sec. 5.8, "Box-Sphere Intersection"). The intervals X 
and Y axe already assumed to be machine intervals. If this is not the case, then 
they are shrunk to machine intervals when the input procedure of the data set 
is executed. 

Let X = [χι,χ2], Y = [ y i , y 2 ] , rad X = w{X)/2, rad Y = w(Y)/2 and 
α = ψ( mid X, mid Y). Since each variable occurs only once in the expression 
defining <p(x,y), the range can be obtained as natural interval extension, 

Πψ(Χ, Υ) = ψ{Χ, Υ) = aX + bY + c. 

A meanvalue development around the midpoint of Χ χ Y gives 

Οφ(Χ,Υ) = α + φ(Χ,Υ)-α 
= a + φ(Χ - mid Χ, Y - mid Y) 
= a + a(X — mid X) + b(Y - mid Y) 
= a + [-\a\ rad X - \b\ rad Y, 

\a\ rad X + \b\ rad Y]. (2.25) 
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The influence of rounding errors and the consideration of inward rounding 
can be investigated easily in formula (2.25): 

Instead of the coefficients, we allow including machine intervals as param
eters, 

α € [01,02], 6 G [61,62] and c G [ci,c2]. 

The following algorithm computes an inner approximation of the range of φ 
over Χ χ Y if a standard machine interval arithmetic is used for the execution 
of the steps. 

ALGORITHM 1 (For functions in 2 variables) 

Step 1 . Compute [0:1,0:2] := [01,02] mid X + [61,62] mid Y + [ci,C2]. 

Step 2 . Compute [ui,u2] := δ([αι,α2]) rod X + δ ([61,62]) rod Y. 

Step 3 . Compute 

[tSi,u>i] := a 2 - w i , 
[u)2,u>2] := ai + « 1 . 

Step 4. If u>\ < u>2 then [w\,W2] C Οφ(Χ,Υ). Otherwise no inner approxi
mation is available. 

Note that mid X, rad X, • • • will in general be intervals. 
The correctness of this algorithm becomes evident if one realizes that an 

inner approximation of [at\, Q2] and an inner approximation of the interval part 
in (2.25) are necessary in order to get one of Ώφ(Χ, Y). Since it is unlikely that 
an inner approximation of [αϊ, a2] is found, a\ is used as left approximation 
of a 2 , and « 2 as right approximation of 0 1 . This has the same effect provided 
w\ <W2- In order to get an inner approximation of the interval part in (2.25), 
one has to choose values out of the intervals [αϊ, 02] and [61,62] so, that the 
interval width is as small as possible. This is achieved with ί([αι,α2]) and 
^([61,62])· 

For later applications, we present the algorithm for functions in 3 variables 
as well. 

Let φ(χ, y, z) — ax + by + cz + d and let the coefficients vary in intervals, 

a G [oi,o2], 6 G [61,62], c G [ci,c2] and d G [di,d2] 

and let Χ χ Υ χ Ζ G I3 be a box. The half width of an interval is again denoted 
by "rad". 

The following algorithm computes an inner approximation of θφ(Χ, Υ, Z) 
provided Χ, Υ, Ζ are machine intervals and the arithmetic operations are ex
ecuted with a usual machine interval arithmetic. If they are not, let the box 
shrink to the largest machine representable box. 
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A L G O R I T H M 2 (For functions in 3 variables) 

Step 1. Compute 

[an,<*2] : = [αι,a2] mid X + [bi,62] mid Y + [ci,c2] mid Ζ +[di, d2]. 

Step 2. Compute 

[uuu2]:= δ ([aua2]) rad X + <5([&i,6 2]) rad V + <S([c i ,c 2 ] ) rad Z . 

Step 3 . Compute 

[wi,wi] : = a 2 - u i , 

[«;2,«)2] : = a i + U\. 

Step 4. 7/ u>i < w2 then [wi, w2] C •y>(X, Y, Z). Otherwise no inner approx
imation is available. 

Remark. One could imagine another conceptually very simple way to 
determine an inner approximation of the range. It would consist of evaluating 
the functions at the 4 corners of the rectangle (or 8 corners of the box) with 
machine interval arithmetic, and to derive the inner approximation from this 
information. An algorithmic description of such a procedure is, already in the 
case of 2 variables, more involved than the algorithm. The reason is that the 
computation might have to be split up into cases in order to figure out which 
of the corners are to be used for the inner approximation, especially, if α or 6 
contains zero. 

2.11 Interval Philosophy in Geometric Compu
tations 

In this section, we apply the results of 2.9 to a few simple standard principles of 
geometric computations in order to demonstrate how the global interval aspect 
and geometrical ideas fit together. One will see that a slightly unusual kind 
of thinking in terms of set theoretic concepts is necessary for understanding 
the interval ideas as applied to geometric concepts. This type of thinking is 
applicable to geometrical objects that can be represented by intervals. (Not 
only intervals, rectangles and boxes, but also balls and simplices belong to this 
class.) The set theoretic aspects are now implemented by point-like compu
tations. The term "point-like" indicates that it does not matter whether a 
continuous function f(x, y) is called up at a point (a, 6) 6 R2 yielding a point 
/ (a ,6) or at an interval pair (Α,Β) e I2 yielding an interval f(A,B). This 
means that there is no real computational difference between invoking f(a, b) 
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or f(A, B) if an interval software package is used, since (a, 6) as well as (A, B) 
are both arguments for / . This relationship between /(a, b) and f(A, B) opens 
up new vistas for geometrical thinking, which has nothing in common with the 
interval arithmetic rounding error control philosophy. In order to introduce 
this to the reader who might not be familiar with this kind of thinking, we give 
a thorough and broad discussion of only a few but important examples in this 
section. However, these examples already express the crux of the philosophy. 
Let us turn to the first example. 

Example 1. In Sec. 2.8 we considered a simple determinant 

D(au 0 2 , 6 1 , 6 2 ) = £ 

and we compared three different expressions for the expansion of the determi
nant which led to natural interval extensions of different widths. The simplest 
expression was 

-Di ( 0 1 , 0 2 , 6 1 , 6 2 ) = 0162 - o 2 6i . 

Later we need the collection of values of D for all αϊ € Ai, 02 G A2 , 61 G Bi, 
62 G B2, that is, just the range of D over Αι χ A2 χ B\ χ B2. In order to 
get this range we apply the theorem to D\ and interpret the elements O j , bi as 
variables over the domains Ai and Bi, respectively (i=l,2). Since each variable 
occurs once, the natural interval extension of D\ gives the range 

OD(Ai,A2,Bi,B2) = Di(Ai,A2,Bi,B2) 

by Skelboe's principle. 

Example 2 . A simple example in the plane is given by the computation to 
test whether the line defined by the two points Pi = (αι,δι) and P2 = (02 ,62 ) 
passes or does not pass through the rectangle Tl = (X, Y) with Χ, Y G I. 

Again the solution to this problem can be found by a range computation 
in the following manner: For each point Q = (x,y) G R2 three possibilities 
exist: Q lies on one side of the line through Pi, P2 or Q lies to the other side 
of the line, or Q lies on the line. Consider the oriented triangle Τ with vertices 
Pi, P2 , Q (the orientation being decided by this order). Then the oriented area 
of Τ is defined as 

αϊ 61 1 
a2 b2 1 . 
x y 1 

Note that |D(Pi,P2,Q)| coincides with the well-known formula for the (unori-
ented) area of Τ as can be found in any formula collection. Now, for all points 
Q G R2 lying on one side of the line, D has the same sign, for all Q lying on 

D{PUP2,Q) = \ 
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the other side of the line D has the opposite sign, and D is zero if Q lies on 
the line. This gives rise to the following criterion: 

If a Q G TI exists such that D(Pi,P2,Q) = 0 (saying that Q is on the 
line) then the line meets the rectangle, and the converse. Equivalently, the line 
passes through the rectangle iff 0 G 0£>(Pi, P 2 l 71). Note that DD(Pi, P 2 , TZ) is 
the range of the determinant function over a continuum, and that the question 
posed can be completely answered just by checking whether zero is in the range 
or not! 

In order to determine the range, one just has to find an appropriate expres
sion such that the theory can be applied. First of all one has to find out what 
the "variables" are. Obviously, in this case they are χ and y since they vary 
over X and Y, respectively. The other symbols, a< and b,, are constants in the 
expression, since they are the coordinates which fixes the line. 

It is clear that the usual expression for the determinant, 

αι&2 + b\x + a2y - 02X — i>io2 - o,\y 

does not satisfy Skelboe's principles directly. However, we can write down a 
different expression such that each variable occurs just once, namely 

D4{PUP2,Q) = ( | , ( α 2 - β ι ) + * ( 6 ι -bi)+ o i f e - a ^ ) / 2 . (2.26) 

By Theorem 3, the natural interval extension of D4 gives the range, 

OD(PuP2,Tl) = D4(Pi,P2,U). (2.27) 

We note that we have used exact arithmetic and exact interval arithmetic to 
describe and to solve the given geometric situation. It is usual to do this when 
one thinks geometrically and mathematically. If, however, the computations 
are executed on a computer then due to the outward rounding, one gets an 
outer approximation 

DM = Di(PuP2,K)M 

of OD{Pi,P2,H), i.e. DM D OD. Depending on the purpose of the com
putation, one can frequently identify the cases 0 G OD and 0 £ OD with 
0 G D m and 0 0 D m , respectively. But if one wants guaranteed answers to the 
intersection question, one only has the conclusion 

O&Dm imples 0 £ •£> 

that is, the line does not pass through the rectangle. The case 0 G D m does 
not allow any guaranteed decision since 

0 G OD as well as 0 £ OD 

are consistent with 0 G D m - The only way out is the construction of an inner 
approximation Dj of OD as described in Sec. 2.10. Now one can differentiate 
between the relations 

0 G ODi and 0 g •£>/. 
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( 3 , 4 ) 

Figure 2.1: Line-box intersection problem 

In the first case, 0 € OD is guaranteed because of Dj C •£). In the second case, 
no guaranteed decision is possible as long as one keeps the current accuracy 
and the methods chosen for getting D\ and D M - One need not worry too much 
about this uncertainty since the the area DM \ Dj will be very tiny in general, 
such that the probability is small that the case 0 G DM \ Dj happens. If one, 
however, relies on a decision, one can repeat the calculation with double or 
multiple precision, but still has a small chance of remaining an unknown area. 
One also can change the method applied completely and switch to a couple of 
left-turn tests (cf. the next example), that can be executed exactly with the 
high performance method ESSA, cf. Ch. 4. The test had then the following 
form: If the four corners of the rectangle lie strictly to the left of the line 
directed from P\ to P2 or if the four corners lie strictly to the right of this line, 
then the line does not pass through the rectangle. 

A particular example is given by the values shown in Figure 2.1 where 
X = [1,3] and Y = [3,4]. This means that 2DA{PuP2,n) = [3,4](5 - 2) + 
[1,3](2 - 3) + 2 χ 3 - 5 χ 2 = [2,8]. Since 0 £ D4{Pi,P2,K) it follows that the 
line through Pi and P2 does not intersect TZ. 

Example 3. The determinant D{P\,P2,Q) is closely connected with the 
so-called left-turn test, which is one of the most important primitives in 2D 
computational geometry. It is, for instance, needed in algorithms for determin
ing the convex hull of a finite number of points in the plane, cf. Sec. 8.2. 

The left-turn test decides, for 3 given points in the plane, say Pi, P2 Φ Pi 
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and Q, whether Q lies left of the line through Pi and P 2 , where the line is 
oriented from Pi to P 2 (that is, one looks from Pi in direction P 2 , which makes 
the property "left of" meaningful). Now, Q lies to the left of the line from Pi 
to P 2 iff the triangle, say T, with vertices Pi, P 2 and Q is surrounded counter
clockwise when passing through the vertices in the order Pi, P 2 , Q, Pi. In this 
case, the triangle is said to be positively oriented (by convention) and the area 
of Τ is positive, i.e. 

D(Pl,P2,Q)>0. 

Clearly, if Q is on the line, the 3 points Pi, P 2 and Q are colinear, and the 
determinant becomes zero. If Q is to the right of the line, then P 2 is to the left 
of the line from Pi to Q, and hence, D{P\,Q,P2) > 0. Swapping the 2 lines 
in the determinant shows that D(Pi,P2,Q) = -D{PX,Q,P2) > 0 Thus, the 
left-turn test can also be used to check, whether the point Q lies on the line or 
to the right of the line. 

Instead of the point Q we can again consider a rectangle V, arguing as in 
Example 2, which means that we have again derived that, 

Κ lies completely to the left to the line through P x and P 2 when the line is 
oriented from Pi to P 2 , iff 

DD(PuP2,n) = £>4(Pi,P2,ft) > 0. 

This criterion is confirmed by Fig. 2.1 reflecting the example and the above 
discussion. 

Example 4. It is interesting to note that the frame of the 2D test, whether 
a line passes through a rectangle or not (Example 2), cannot be transformed to 
a 3D test, whether a line in R3 passes through a box or not. The reason is that 
an appropriate determinant that could be the base of some range determination 
as in Example 2, is missing. 

It is, however, possible to reduce the 3D case to several 2D tests, cf. Haines 
[99]. The line is defined as a parametric ray 

P(t) = Po + tPd 

with P 0 = (xo,Vo,zo) and Pd = (xd,yd, zd). The box is defined to be Β = 
(Χ, Υ, Z) with Χ, Υ, Ζ G I. The procedure is then to check the 2D line-rectangle 
intersections using (2.26) with the generating points P(0) and P(l) in the 
projections into the xj/-plane, the yz-plane and the zx-plane. The ray does not 
intersect the box iff any of the three following 2D tests fails: The computations 
reduce to checking if 

0 G 2(xd(-yd -Y) + yd(xo - X)) >n the xy-plane, 
0 e 2(yd(-zd - Z) + zd(y0 - Y)) in the yz-plane, 
0 G 2(zd(-xd - X) + xd(z0 - Z)) in the zx-plane. 
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A numerical example given by Haines [99] is 

PQ = (0,4,2), Pd = (0.218, -0.436,0.873) 

with the box being Β - ([-1,3], [2,3], [1,3]). The results are 

in the xj/-plane [-1.744,2.180] contains 0, 
in the yz-plane [0.874,4.364] does not contain 0, 
in the zx-plane [—2.182,5.674] contains 0. 

The computation could be terminated after having verified that 0 was not in 
the projection of the box in the yz-plane. 

2.12 Centered Forms and Other Inclusions 
Among the many ways to construct inclusion functions the so-called centered 
forms play an important role since they are inclusion functions of order 2. The 
idea of a centered form was first given in Moore's original book Interval Analysis 
which appeared in 1966 [165]. He noted that if functions were developed in a 
certain manner then the result gave in general narrower inclusions than many 
other possible inclusions. Explicit formulas were found for polynomials by 
Hansen [88], for rational functions [209] and for multivariate rational functions 
[210]. A general definition of centered forms was given by Krawczyk-Nickel 
[142] in 1982. 

When Moore [165] computed inclusions for the range of example functions 
using the natural interval extensions of various algebraically equivalent formu
lations of a given function he also noticed that he often got narrower results 
if the function was developed in a certain manner around the midpoint of the 
domain interval. Moore [165] discussed this phenomenon in some detail and he 
also compared the results with other methods for including the range. 

In 1973 Goldstein-Richman [74] confirmed the results of Moore's [165] ex
periments. 

Historically, the basic feature of any centered form for f(x) was that f(x) 
was rewritten as 

/(*) = /(c) + s(x) 

for a given c, which was most often the center of the domain in which / was to 
be developed. If s(x) is further developed as 

s(x) = (x - c)g(x) 

then the forms have a certain second order convergence property as will be 
made clear later. The approach was therefore to write /(x) as 

/(x) = /(c) + (x - c)g(x) 
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and then to evaluate the natural interval extension of the resulting expression 
over X as 

F(X) = f(c) + (X-c)g(X). 

From the fundamental principle of interval analysis it followed immediately 
that 

Df(X) C F(X). 

It took a surprising amount of time before explicit definitions of g were 
found for functions other than polynomials (Ratschek [210]). It also turned 
out that the explicit definitions that were found were too complicated to be 
useful. For instance, if / was a rational function, / = p/q, and if the maximum 
degree of the the polynomials ρ and q was n, then all partial derivatives of ρ 
and q up to the order η were required for an explicit definition of g. 

The so-called meanvalue form was commonly used as an inclusion function 
of order two. This is nothing more than a natural interval extension of the 
well-known meanvalue formula. More general Taylor forms were introduced by 
[202]. These forms were also inclusion functions of order two being the interval 
extension of the Taylor expansion of the function / . 

Both the meanvalue form and the Taylor form did not fit into the historical 
setting by Moore discussed above. 

It was left to Krawczyk-Nickel [142] to find an ingenious and precise def
inition of a general centered form, which not only covered Moore's historical 
form, but also the meanvalue form, the Taylor form and various other inclusion 
functions of order two. The general definition is, however, too complicated to 
be included in this monograph. Hence we treat the meanvalue form and the 
Taylor form separately and we refer the interested reader to Ratschek-Rokne 
[212]. 

We therefore introduce: 

1. The meanvalue form. 

2. The Taylor form of second order. 

We first give a formal definition of the meanvalue form. Let / : D -t R, D C 
Rm (as before m is usually 2 or 3 in geometric computations) be differentiable 
and let F' : 1(D) -¥ Im be an inclusion function for the gradient, / ' . Then 
Τχ : 1(D) -> I defined by 

Ti(Y) = f(c) + (Y- c)TF'(Y) for Y e 1(D) (2.28) 

where c = mid (Y) or also some other point of Y is called the meanvalue form 
function (or shorter: meanvalue form) of / , cf. Moore [165, 169]. Frequently, 
F'(Y) can be computed via natural interval extensions of /'(£) (see below) or 
via an automatic differentiation arithmetic, or via similar techniques that avoid 
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explicit differentiation, see for example [83]. Because of the meanvalue formula 
of analysis we have, if Y G 1(D) is given, for χ G Y, 

f(x) = /(c) + ( x - off (ξ) G /(c) + (Y - c)TF'(Y) 

where ξ is a point on the line segment connecting χ and c. Since this formula 
holds for any χ G Y it is thus obvious that Of(Y) C Ti(Y). Therefore the 
meanvalue form is an inclusion function for / . Its importance arises from its 
second order property which is obtained with a low computational effort: 

T H E O R E M β (Krawczyk-Nickel [142]). If F' is Lipschitz then the mean-
value form T\ satisfies: 

w(Ti(Y))-w(Df(Y)) = 0(w(Y)2). 

This theorem states that the meanvalue form converges to the range with a 
second order convergence as the width of the domain interval tends to zero. 
Later we will simply refer to this as the second order convergence property. 
This property is extremely useful for subdivision methods when the widths of 
the patches are reduced. An extensive proof of this theorem can be found in 
Ratschek-Rokne [212]. 

Example. Let f{x) = χ - χ2 be defined on D = {χ : χ > 1} C R. (D 
instead of R is chosen for simplicity in order to avoid different cases.) An 
inclusion function for / ' ( x ) = 1 - 2 x is 

F'(Y) = 1 - 2Y for Y G 1(D) 

(natural interval extension of /') and is Lipschitz. The meanvalue form of / is 
then 

Ti(Y) = (c - c2) + (Y - c)(l - 2Y) for Y € 1(D), 

where c = mid Y. The natural interval extension of f(x) to Y is 

f(Y) = Y-Y2 for Ye 1(D). 

Finally, 
af(y) = [y-V2,x- x2] for Y = [x, y] G 1(D) 

since / is monotonically decreasing in D. Let us look at the widths of the 
inclusion functions: 

«>(°/00) = x - x 2 - ( » - y 2 ) = j / 2 - x 2 - ( y - x ) 
= w(Y)(y + x-l). 

Using ( 2 . 8 ) , (2 .13) and the fact that 

|1 - 2Y\ = max{| 1 - 2 x |, | 1 - 2y |} = 2y - 1 
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for Y = [x, y] € 1(D) we get 

ιν(Ά(Υ)) = w[(Y-c)(l-2Y)} 
= w(Y -c)\\-2Y\ 
= w(Y - c)(2y - 1) 
= u.(y)(2y - 1). 

The width of the natural interval extension is 

w(f(Y)) = w(Y) + w(Y2) by (2.8) 
= ω(Κ) + \Y\2 - (6Y)2 by (2.13) 
= (y - χ) + (y2 - χ2) 

= w(Y)(y + x + l). 

The width of the range is 

v(Pf(Y))) =x-x2-(y-y2)= w(Y)(x + y - 1). 

Therefore, 

w^Y)) - w(Of(Y))) = w(Y)(2y - χ - y) = w(Y)2 = 0(w(Y)2), 

and 
w(f(Y))-w(Df(Y))) = 2w(Y) = 0(w(Y)). 

One recognizes that T\ is of order 2 and that /(Υ) is of order 1. 
A short calculation shows that 

w(Tl(Y))<w(f(Y)) iff«;(y)<2, 

which means that the meanvalue form is superior for smaller intervals Y. This 
is consistent with the fact that the meanvalue form is of convergence order 2, 
but the natural interval extension is only of order 1. 

From this example it is clear that it is not always wise to take a meanvalue 
form - especially for boxes Y with larger width - since its excess-width tends 
quadratically to oo as VJ(Y) —• oo whereas the excess-width of the natural 
interval extension tends only linearly to oo. This situation is typical for the 
whole area of inclusion functions such that meanvalue forms as well as Taylor 
forms, which will be defined below, should only be used if w(Y) < l/(2m). This 
is an average recommendation and results from our own numerical experience. 

Remark 1. One obtains, in general, meanvalue forms with smaller widths 
if slopes instead of F'(Y) are used in (2.28). The interested reader is referred 
to Alefeld-Herzberger [6], Krawczyk [140], Ratschek-Rokne [212]. 

Remark 2. The quality of the chosen centered form, for instance the 
meanvalue form, depends on the shape of the function being included such 
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that for special functions special centered forms are superior, cf. for example 
Alefeld-Rokne [7], Rokne [233]. 

Let f : D -¥ R,D C Rm be twice differentiable, and let F" : 1(D) - + i r a x r a 

be an inclusion function for the Hessian matrix /". Then T2 :1(D) I defined 
by 

T2(Y) = f(c) + (Y-c)Tf'(c) 
+ \(Y -c)TF"(Y)(Y -c) for y e 1(D), 

where c = m(Y) or any other point in Y, is called a Taylor form function (or 
shorter: Taylor form) for / of second order. Because of the Taylor formula 
of analysis, T2 is an inclusion function for / . We say that F" is bounded if a 
matrix C € J m x m exists such that F"(Y) C C for all Y € 1(D). 

T H E O R E M 7 (Ratschek-Rokne [212]) If f is twice differentiable, and if f" 
has a bounded inclusion function F" then the Taylor form function, T2, is of 
convergence order two. • 

If m is large then it is better to avoid the explicit evaluation of F"(Y) 
because of the many arithmetic operations one has to perform in order to 
obtain T2(Y). For such a recursive computation the automatic differentiation 
arithmetic is appropriate as well, cf. Rail [201], Griewank-Corliss [83]. 

Table 2.1 is intended to show how the different approximations to the range 
behave as the width of the domain changes. We consider the function f(x) = 
(x2 - 2x + 2)ex over intervals XT = [1 - r, 1 + r], r > 0. (It was decided to 
make the intervals dependent on one parameter such that the results could be 
displayed in a transparent manner.) We compare the range, Of(Xr), with the 
natural interval extension of the function as defined above, f(Xr) — (X2 ~ 
2Xr + 2)ex", a nested form, fn(Xr) = (Xr(Xr - 2) + 2)eXr, the meanvalue 
form, and the Taylor form of second order. Table 2.1 presents the quotient of 
the width of a form through the width of the range together with a last column 
indicating the best form of the 4 for that value of r. The results indicate that 
the overestimation of the range by one of the forms (depending on the range) 
is surprisingly small. Indeed, Table 1 shows that for any area a reasonable 
form can be found, and that especially for large intervals the natural interval 
extension of the original function is an excellent choice. 

A large number of other centered forms are possible. We only mention 
one further possibility for rational functions that does not require the explicit 
computation of derivatives [233]. We let 

η m 

f(x) = p(x)/q(x) = £ atfl £ bix* (2.29) 
i=0 »=0 

be a rational function and k = max(n,m). The polynomials p(x) and q(x) are 
now developed using Horner's rule at c such that 

p(x) = p(c) + s(x)(x - c), 
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Γ nat/rge nest/rge mvf/rge Tayl/rge Best 
0.0020 5.0001 3.0000 1.0060 1.0015 Taylor 
0.0040 5.0000 3.0000 1.0120 1.0030 <t 

0.0060 4.9999 3.0000 1.0181 1.0045 ii 
0.0080 4.9998 2.9999 1.0241 1.0060 ti 
0.0100 4.9997 2.9999 1.0302 1.0076 α 

0.0200 4.9989 2.9995 1.0609 1.0152 α 

0.0400 4.9957 2.9979 1.1236 1.0310 α 

0.0600 4.9904 2.9952 1.1881 1.0473 tt 

0.0800 4.9830 2.9915 1.2542 1.0641 it 
0.1000 4.9736 2.9868 1.3218 1.0816 tl 
0.2000 4.8973 2.9486 1.6800 1.1792 tt 
0.4000 5.0096 2.8151 2.4547 1.4356 u 
0.6000 5.0506 2.6430 3.2324 1.7839 u 
0.8000 4.8896 2.4692 3.9606 2.2215 it 
2.0000 3.4634 2.4448 7.3343 6.2222 nested 
4.0000 2.4126 2.3537 11.7687 16.4847 natural 
6.0000 1.9730 2.2703 15.8920 30.6496 
8.0000 1.7385 2.2154 19.9385 48.7386 tt 

10.0000 1.5941 2.1782 23.9604 70.7921 u 

15.0000 1.3982 2.1239 33.9823 143.3628 tt 

20.0000 1.2993 2.0948 43.9900 240.8978 tt 

25.0000 1.2396 2.0767 53.9936 363.4185 tt 

30.0000 1.1998 2.0644 63.9956 510.9323 tt 

Table 2.1: Quotients of widths of inclusions 
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q(x) = q(c) + t(x){x - c) 

and where the values p(c), q(c) and the coefficients s< and U of 

n - 1 

t = 0 

m - 1 

i=0 

are calculated explicitly as part of the Horner process. 
If we now write f(x) as 

f(x) = f(c) + (x-c)r^ (2.30) 

then r(x) has to obey the relation 

r(x)(x -c)= p(x) - f(c)q(x). 

Using the above representation for p(x) and q(x) we get 

r(x)(x - c) = p(c) + a(x)(x - c) - f(c)(q(c) + t(x)(x - c)) 

and finally 

fc-l / k \ *-i 
r(x) = *(*) - t(x)f(c) = Σ [ Σ (aj - Mbitf-'-1 x* = J^r^ 

i=o y=t+i / »=o 
where the undefined coefficients o,j or bj are set to zero. Algorithmically we 
have rj = s< - tif(c), i = 1 , . . . , k - 1 where s< and ti were calculated by the 
Horner process. The natural interval extension of (2.30) therefore provides an 
outer estimate of Of(X) and it is part of the class of centered forms formed by 
Moore's definition. 

Example. Let p(x) = 4x + 4x2 - x3 - x 5 and q(x) = 2 + 2x + 2x2 + 3x 3 

and let X = [1,1 + c]. Then 

€ inclusion using (2.30) width inclusion using (2.29) width 
0.1 
0.01 
0.001 
0.0001 

[0.58662, 0.67666] 
[0.65987, 0.66676] 
[0.66599, 0.66667] 
[0.66660, 0.66667] 

0.09004 
0.00689 
0.00068 
0.00067 

[0.47663, 0.80444] 
[0.64677, 0.68004] 
[0.66467, 0.66800] 
[0.66647, 0.66680] 

0.32781 
0.03327 
0.00333 
0.00033 

Alander [2] provides further examples of estimating the range of rational func
tions using the forms given in [210]. 

»=0 \j=«+l 
m— 1 / m 

*(*) = Σ Σ h i ^ 1 1 x i = 
i=0 \J=»+1 
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2.13 Subdivision for Range Estimation 
It was noted in Sec. 2.6 that the main purpose in estimating the range in 
geometric computations was to test whether a given condition was satisfied or 
not. For a given function f(x) and an interval X it might be the case that the 
result is inconclusive, i.e. the test required the determination of f(x) Φ 0 for 
any χ G X, but the result was 0 G F(X). It was also noted that one way to 
improve the possibility of a conclusive result was to subdivide X recursively 
rejecting subintervals Y for which 0 £ F(Y) until X was exhausted. 

The following algorithm provides a skeleton for the more general problem 
of computing an outer and inner estimate of the range of a function /(x) over 
an interval X. A second algorithm will be given for a computation of an outer 
estimate of the zero set of / . Both algorithms only assume the existence of 
an inclusion function F for / . However, they will only work in a reasonable 
manner if w(F(Y)) - w(Df(Y)) 0 as w(Y) -> 0, cf. [213]. 

A L G O R I T H M 3 (After Moore-Skelboe) 

S t e p 1. Set Y :=X. 

S t e p 2 . Set Ζ := F(Y), set W := Z, set Q := Z. 

S t e p 3 . Initialize list L = ((Y, W)). Set Z = W. 

S t e p 4 . Choose a coordinate direction k. 

S t e p 5 Bisect Y normal to the coordinate direction k obtaining boxes Vi, V2 

such thatY = Vi U V2. 

S t e p 6. Calculate Zi := F(Vi),Z2 := F(V2). 

S t e p 7 . Remove (Y, W) from the list L. 

S t e p 8. Fori = 1,2 if Z{ £ Q thensetQ := [miniubZj.lbQ^maxObZj,ubQ)]. 
and enter (Vi, Zi) onto the list. 

S t e p 9 . Calculate Ζ := {\J Zi\(Yi,Z{) G L } . 

S t e p 1 0 . / / termination criteria hold, then go to 13. 

S t e p 1 1 . Denote the first pair of the list by (Y, W). 

S t e p 1 2 . Go to 4. 

S t e p 1 3 . End 
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Figure 2.2: Sub-box rejection 

The rejection of boxes in Step 8 is a two-sided version of the rejection step 
in the algorithm in [250]. 

If the inclusion function F is inclusion isotone, that is, Y C Ζ implies 
F(Y) C F(Z) for K , Z e 1(D), then the intersection in step 9 can be dropped. 
Practically, one will avoid the formation of the union in each iteration, but one 
will always keep track of the smallest value lbZ< and the largest value ubZ, 
during the computation. A schematical description of one step of the algorithm 
is shown in Figure 2.2. This figure assumes that in Step 4 of the algorithm the 
list of boxes consisted of the boxes Y i , . . . , Ye, Y- The figures then shows the 
situation after the box Y has been subdivided into boxes Vi, V2 just prior to 
Step 8 of the algorithm. The current inclusion for the range over X is Ζ and Q 
represents the interior portion of the range which cannot contain the endpoints 
of the range. In this example it is clear that Vi will not be added to the list L 
since the endpoints of the range cannot be in Vi. 

There are three points deliberately left open in the above algorithm: 

( A ) The choice of coordinate direction A; in Step 5 and the type of subdivision 
in Step 6. 

( B ) The recursion termination in Step 10 is not specified. 

(C) The order in which the elements are entered onto the list is not specified 
in Step 8. 
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These points are now discussed in detail. 

(A) A number of strategies for choosing the next coordinate direction are 
available. They range from simple selection procedures such as a circular choice 
of coordinate direction (see [169]) to quite expensive computations involving 
Jacobians for functions having the required smoothness properties (see for ex
ample [214]). Each strategy has its own merits depending on the type function 
computed and the required accuracy. Some of the other strategies are: 

1. Bisecting the side of maximum length. This might not be an optimal 
strategy. Consider eliminating domains of the function 

f(x) =χι + 10 1 0 x 2 - l , i € [0,10]2 

using the above algorithm. For any X = (Xi,X2) it is clear that sub
dividing Xi will have little effect on the range of values obtained from 
the natural interval extension of / whereas recursive bisection of X2 will 
eventually result in the elimination of a subbox. 

2. Another strategy was given in [214] where the widths sum 

Wi = η>[/(Υ')] + w[f(Y")} 

is minimized w.r.t. i = 1 , . . . ,n where Υ1, Y" denotes the halves of Y 
that occur if the i-th edge of Y is bisected. 

3. Other bisection recipes are given in Kearfott [125], Csendes [28], Csendes-
Ratz [29], [246], Ratschan [205] and Nataraj-Sheela [176]. 

( B ) The algorithm has to have a termination criterion. A number of pos
sibilities for such criteria exist some of which are: 

1. The standard criterion will be that the computation shall terminate, if, 
given some e > 0 as input parameter for the absolute approximation error 

l b Q - l b Z < e 
and 

ubZ - ubQ < e. 

Since Q C Of(X) C Z, the range is included from the inside as well as 
from the outside with e tolerance. 

2. The computations terminate after a fixed number of steps if no success 
is achieved, that is, if Ζ does not shrink and Q does not grow. 

3. The computations terminate when all boxes Yi are smaller than a certain 
tolerance (this strategy is linked to how the elements are entered onto 
the list in (C)). 

�� �� �� �� ��



Subdivision for Range Estimation 57 

4. The computations terminate when the intervals Zi are all smaller than a 
given width (also linked to the list ordering in (C)). 

(C) The ordering of the boxes on the list is important and depends on the 
purpose and on the side conditions of the computation. Some of the choices 
are: 

1. A simple choice is to order the boxes by last in first out. This results 
in short lists since the newly generated boxes are worked through im
mediately. There is no convergence guarantee that Q or Ζ tend to the 
range. 

2. Another choice is that the widest box is chosen for the bisection. There 
is no additional ordering effort necessary since the eldest boxes are the 
ones with largest width. If the inclusion function satisfies w(F(Y)) -> 0 
as w(Y) -> 0, then Q and Ζ tend to the range. 

3. The choice of the next box might be determined by two factors: the width 
of the box and the extremeness of its range. That is, a widest box Y such 
that lbY = \bZ or ubY" = ubZ of Ζ in Step 9 is chosen for bisection (see 
Skelboe [250]). 

4. One of the boxes corresponding to the extreme points of Ζ and Q is 
chosen. The algorithm circulates among the boxes forming the 4 possible 
endpoints. 

Each of the above choices generate new algorithms with different proper
ties both with respect to expected speed as well as convergence. An initial 
choice might be (A)(1), (B)(1) and (C)(2), however, this should be modified 
depending on the function and depending on the use of the result in succeeding 
computations. If / satisfies certain differentiability conditions then it is possi
ble to enhance the algorithm with other tools. Examples of such tools are the 
monotonicity property discussed in 2.10 which is expected to be more success
ful the smaller the box widths are (just consider the trivial one dimensional 
case of computing the range of y = x2 over [—1,1] where monotonicity will 
occur after only one subdivision) and interval Newton iterations which will be 
discussed in the next chapter. 

The second algorithm aims to shrink the domain, X, of / to an outer 
estimate of the zero set of / in X. (Instead of zero, any other real number can 
be taken.) This algorithm is slightly different from the previous algorithm in 
that it aims to reject parts of the domain guaranteed not to contain zero as 
fast as possible. 

This type of algorithm is used if X is rather large or if the zero set is not a 
discrete set or if it is an involved set such that the application of local methods 
like Newton's method does not serve any purpose. Typical applications of such 
algorithms are in contour tracing of implicitly defined surfaces or curves. (This 
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topic will be treated extensively in Ch. 6.) As an example of this, we consider 
the problem of embedding the curve defined by f(x, y) = x2 + 3xy+j/ 2 - 1 0 = 0 
in the plane, in a working area. This working area will be a collection of smaller 
rectangles which are prepared for a more effective processing of representing or 
drawing the curve (continuation methods, simplex methods, linearization, ev. 
Newton's method, etc.) The output of the algorithm is either that 0 £ • f(X) 
or a list of boxes of width smaller than e > 0 that contain the zero set. 

A L G O R I T H M 4 (Estimating the zero set ofF) 

Step 1. Set Υ := X. 

Step 2. Set Ζ := F(Y), set W := Z. 

Step 3. IfOtf F(X) then output "zero not contained in • / ( Χ ) " and go to 14. 

Step 4. Initialize list L := ((Y,W)). 

Step 5. Choose a coordinate direction k. 

Step β. Bisect Y normal to the coordinate direction k obtaining boxes V\, V2 

such thatY = Vi U V2. 

Step 7. Calculate Zx := F(Vi),Z2 := F(V2). 

Step 8. Remove {Y,W) from the list L. 

Step 9. For i = 1,2 if 0e Ζ* then enter {VuZi) onto the list. 

Step 10. IfL = 0 then output "zero not contained in ^f(X)" and go to 14-

Step 11 . / / the widths of all the boxes on the list are smaller than e then go 
to 14. 

Step 1 1 . Denote the first pair of the list whose underlying box has width 
smaller than e by (Y, W). 

Step 13. Go to 5. 

Step 14. End 

It is interesting to note that when the computation is executed on a ma
chine and the output is "0 £ • f{X)n then it is guaranteed that the result is 
correct (provided the machine interval arithmetic is implemented correctly and 
provided the program is otherwise correct). This means that any logical deci
sion that depends on the correctness of the above computation is correct and 
that anomalous results cannot occur. 

In this algorithm the details of 

(A) the choice of coordinate direction k in Step 5, 
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(Β) the recursion termination in Step 11, and 

( C ) the order in which the elements are entered onto the list in Step 9, 

are again left open. The choices are quite similar to what discussed for the 
previous algorithm except for the list order. In (C) we therefore recommend 
that the list be ordered by increasing min{|lbF(Zj)|, |ubF(Zj)|}, expecting the 
largest success in deleting subintervai when the boundary of the range over a 
subintervai is closest to zero. 

Ab initio one would expect that the ordering of the list is redundant, and 
that the algorithm would function quite well by simply exhausting parts of the 
domain in any order, for example, subdivide a given piece until it is rejected 
and then treat the next piece and so on. This is in fact not the optimal strategy 
since a termination criterion is present. The simple exhausting strategy would 
result in a potentially quite unbalanced list of boxes when the algorithm was 
unsuccessful with large boxes that might have been easily rejected remaining 
on the list. Further processing would then be less effective. 

2.14 Summary 
In this chapter we introduced interval arithmetic both theoretically and in 
a practical implementation. A number of fundamental properties of interval 
arithmetic were discussed. Finally, we discussed the important concept of in
clusion functions in some detail. This discussion is now summarized below. 

There are two main kinds of inclusion functions which can easily be con
structed: 

(1) Natural interval extensions, 

(2) Centered forms: 

(a) Meanvalue forms, 
(b) Taylor forms (of second order). 

Natural interval extensions may be used in general even if / is not differ
entiable. Their use is recommended if the domain Y is "larger", that is, if 

> 1/2 or w(Y) > l/(2m) where m is the number of variables of / . 
Meanvalue forms may be used if / is differentiable, if / ' has an inclusion 

function F' which is Lipschitz, and if w(Y) < \. 
Meanvalue forms involving generalized gradients may be used if it cannot 

be decided from the outset whether / is differentiable or only generalized dif
ferentiable, and if w(Y) < \. Such an indeterminate situation occurs, for 
example, if /(x) = max(/i(x),/2(x)) with / i , / 2 G C1. Then the differentia
bility properties of / at χ cannot be determined before /i(x) and / 2(x) are 
evaluated. 
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This undecided situation does not cause any disturbance when programming 
the code. One just sets F' as an inclusion function for the generalized gradient. 
If / is finally (locally) differentiable in Y, then the generalized gradient shrinks 
to the gradient and F' is an inclusion of the gradient over Y, see Ratschek 
[211]. 

Taylor forms may only be used if a direct computation of the meanvalue 
form is not possible or if the Hessian inclusion F"(Y) is already available and 
can be incorporated without difficulties. / has to be twice differentiable, / " 
must have a bounded inclusion function F" and w(Y) should not be larger 
than l/m. The main advantage of a Taylor form is that the boundedness is 
the only side condition and that it is easy to prove in contrast to the Lipschitz 
condition required for the meanvalue form. 

The above inclusion functions might all be used in the subdivision algo
rithms in Sec. 2.12. 
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Chapter 3 

I n t e r v a l N e w t o n M e t h o d s 

3.1 Introduction 

Many geometric computations involve non-linear equations. These equations 
arise most often when defining non-linear surfaces. Intersecting such surfaces 
in computer aided design (see [78, 108]) or raytracing surfaces in computer 
graphics (see [266]) are a couple of examples where the manipulation of the 
surfaces result in the computation of the zeroes of the non-linear functions. 

Computing the zeroes of non-linear functions (in one or more variables) is 
an active area in numerical analysis and several monographs have been written 
surveying the state of the art (see for example [191] for an excellent survey up 
to the date of publication). 

In the interval setting some effective methods based on a generalization 
of Newton's method have been developed. These methods, known globally 
as interval Newton methods, are now discussed here focusing on a particular 
practical realization. 

The interval Newton method was introduced by Moore [165]. It is an excel
lent method for determining all zeroes of a continuously differentiable function 
φ : Χ - τ Rm where X e J m . The interval Newton method combines global 
reliability with the excellent local behavior commonly known from non-interval 
Newton methods. Refinements and further discussions of the method are due 
to Krawczyk [138], Nickel [181], Hansen[89], Hansen-Sengupta [96], Hansen-
Greenberg [94], Alefeld-Herzberger [6], Krawczyk [141], Neumaier [179], Kear-
fott [127] and many others. 

Before the method is specified we have to define what is meant by solving a 
system of linear interval equations since these occur as an integral part of the 
interval Newton method. An unfortunate notation is widely used to describe 
such equations since it uses the notation of interval arithmetic in a doubtful 
manner. This can lead to misunderstandings. I.e., let A € J m x m , Β € Im then 
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the solution of the linear interval equation (with respect to χ or X) 

Ax = Β or AX - Β 

is not an interval vector Xq that satisfies the equation, A X q = B, as one would 
expect. The solution is defined as the set 

X = {x G Rm : ax = b for some α G A, b G B). 

The historical reason for this definition, which may appear rather cumber
some, is that A and Β are thought of as a matrix resp. a vector which are 
enhanced by small errors or equipped with data perturbations. Hence any 
point matrix of A could be the true matrix of the system and any point vec
tor of Β could be the true right hand side of the system. An interval solution 
that keeps the philosophy of always containing the true (but unknown) solution 
therefore has to include all those combinations that occur in the definition. 

Similarly, if c G Rm, then the solution of the linear interval equation 

A(x - c) = Β or A(X - c) = Β 

with respect to χ or X is defined to be the set 

X:=c + Y:= {c + y:y£Y} 

where Y is the solution of the interval equation Ay = B. 
For example, the solution of the linear interval equation 

[1, 2}x = [1, 2] (3.1) 

is X = [1/2, 2] (which in this case can be found by setting X = [1, 2]/[l, 2] 
according to the definition of interval division). If we multiply, for comparison, 
[1, 2] and X we get 

[1, 2]X = [1, 2][l/2, 2] = [1/2, 4] 

which is an inclusion for the righthand side of (3.1). 
In higher dimensions matters only get worse which can easily be seen by 

considering the system 

/ [2,4] [ - 1 , Π - 3 , 3 ] \ f 3 2 ) 
{[-1,1] [2-4] ) X - \ [0,0] ( 3 2 ) 

In order to describe this set the tools of interval analysis have to be augmented 
by the tools and techniques of linear programming. 

The solution set of (3.2), obtained in [179], is shown in Fig. 3.1. The 
interest, from the point of view of interval analysis, is to find the smallest 
interval vector that contains the solution set. Applying Cramer's rule formally 
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C r a m e r ' s r u l e 

Figure 3.1: Solution set and inclusions 

to (3.2), that is, we adapt Cramer's rule for solving systems of linear equations 
and admit interval entries in the vectors instead of real entries, results in an 
inclusion Xc = ([—4, 4],[—1, 1])T. Further, the smallest box including the 
solution is Xs = ([-2, 2],[-l, 1])T (see for example [179] for how to compute 
Xs for this example). The inclusion Xc computed by Cramer's rule and the 
smallest box X§ including the solution set are also shown in Fig. 3.1. 

We also note that 

AXC = ([-17.0, 17.0], [-8.0, 8.0])T and AXS = ([-9.0, 9.0],[-6.0, 6.0])T. 

Clearly, Β C AXs C AXc, however, even in the case of AXs we have w(AXs — 
B) = 12 which shows that AXs is quite far from B. 

The above examples show that the solution set is not a box in general and 
that even the smallest box including the solution set can be quite far from the 
solution set. It is therefore the aim of interval arithmetic solution methods to 
find a box which contains the solution set and which is as small as possible. 

Below we will clarify why the solution set of a system of linear equations 
need not be an interval vector. Although we can not deal with the whole theory 
of the computation of solutions to linear interval equations in this monograph, 
since it would lead us too far from our aims, we can provide a reasonable 
discussion showing why the solution set can only be expected to be included 
when computing with interval tools. 

The main reason is that simple matrix operations already lead out of the 
interval domain even if they would be executed optimally as is the case with 
the interval arithmetic operations. Let us go back to the interval product. Let 
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Α,Β €l, then 
AB = {ab : α € A,b £ B}. (3.3) 

The right hand side can be interpreted as the range of the function f(x, y) = xy 
over Α χ B. Since each variable occurs only once, we can apply Theorem 3 
saying that the range is equal to the natural interval extension. 

The situation changes if we consider matrix products. Let A = (Aij) and 
Β = (By) be two m x m matrices with interval entries .Ay and By. The 
product was defined in formal analogy to the product of matrices over R, that 
is 

AB = (Cik)i,k=l,...,m 

where 
tn 

This definition guarantees that the fundamental principle of interval arithmetic 
is valid for matrix products. 

The definition can, however, no longer be interpreted as as the range of the 
underlying real matrix products as was the case with the simple product of two 
intervals, such as 

{AB : Αζ Α,Β £ Β}, (3.4) 

cf. the right hand side of (3.3). The set (3.4) is the range of the function 

f(x,y)=xy, x,yGRmxm 

for χ G A, y e B. Skelboe's principle is no longer applicable, since, if m > 2, 
the variables, which are xy, j/y occur several times if the product were to be 
written out as a matrix of arithmetic expressions. Simple examples show that 
it is not possible to avoid it: 

In order to make the example as transparent as possible, we chose the 
product of a real 2 x 2 matrix and an interval vector, 

-(-!!!). "-('-i-1')-
The regular product definition gives 

whereas a product definition via (3.4) gives 
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which is not an interval vector, but is sufficient to include all possible matrix-
vector products for the example such that the fundamental principle of interval 
arithmetic would be valid for this set. 

If one compares the two sets, one recognizes that the second set is just a 
diagonal of the first set AB which is a square. 

Let us finally return to the solution set of a linear system of interval equa
tions. Clearly each interval arithmetic method for solving such a system must 
be an interval extension of a method for solving non-interval systems of equa
tions (since these are the special case of point matrices for which the interval 
method must remain valid). This implies that matrix operations are involved 
which will lead to the overestimates shown in the above example. 

Further discussions on interval linear equations are found in Hansen [92,93], 
Ning-Kearfott [186], Neumaier [180], Shary [245] and Rohn [231, 230]. 

3.2 The Interval Newton Method 
In the following we develop the interval Newton algorithm for determining the 
zeros of φ : X -> Rm in X e J™. Whereas one step of the non-interval Newton 
iteration procedure consists of computing a zero of the system of equations 
linearized about the current iterate to find the new iterate, the interval Newton 
method computes an including interval system for the linearizations of the 
equations about a point over the current iteration interval (or an inclusion to 
these equations) then solves this system in an including manner for the next 
iterate. This means that the algorithm is not a direct generalization of the 
scalar Newton algorithm. It is therefore developed from first principles here. 

Let x,y G X and φ = (φι,...,φτη)τ be expanded componentwise by the 
meanvalue formula at x, 

<Kv) = 4>(x) + - *), 

where 
Ασ) = (νφί(σ1),..., V < M o - m ) ) T 

for a matrix σ = (σι,..., om), σ< G Rm and G χ V y. We define 

J(Y), Yei'X) 

a bit outside our usual convention as the natural interval extension of J to YM, 
that is, each σ< is replaced by Y, i = 1 , . . . ,m. From the definition of J(o) we 
obtain 

j(Y) = MY), 

such that J(Y) is nothing but a natural interval extension of the Jacobian 
matrix 3φ{χ) to Y. Note that J(a) is not a Jacobian matrix. If y = ξ is any 
zero of φ in X then 

J(a)(x - ξ) = φ(χ). 
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This equation leads to interval Newton methods, in the the same manner as 
we get non-interval Newton methods in the non-interval case, cf. the iteration 
statement given below. 

The following prototype is nothing more than a very rough sketch of New
ton's method for a first discussion. It will be refined in Sec. 3.3. The norm in 
Step 2 can be any norm and Φ is an inclusion function for φ. 

A L G O R I T H M 5 (The Interval Newton Algorithm - first sketch) 

Step 1. SetX0 := X. 

Step 2. For η = 0,1,2,... 

(i) choose x„ € X„, 

(ii) determine a superbox Zn+\ of the solution Yn+i of the linear interval 
equation with respect to Y 

^Χη)(χη-Υ) = φ(χη), (3.5) 

(Hi) set 

Xn+i •= Zn+i ΠΛ"„, (3.6) 

(iv) if | |Φ(Χ η +ι)| | < e (or use any other suitable criterion) go to 3. 

Step 3 . End. 

Interval Newton methods are distinguished by the particular choice of the 
superbox Zn+\- For example, if Z„+i is the box hull of Yn+i, that is, the 
smallest box containing Yn+i, then the method is called the interval Newton 
method (in the proper sense). If Zn+i is obtained by using interval Gauss-
Seidel steps combined with preconditioning as will be explained in the next 
section, then the method is named after Hansen-Sengupta [95]. Krawczyk's 
[138] method and Hansen-Greenberg's [94] methods are also widely used. Con
vergence properties exist under certain assumptions. The following general 
properties are useful for understanding the principle of application of the algo
rithm, see Moore [165, 167], Alefeld-Herzberger [6], Neumaier [179]: 

Basic Properties of the Interval Newton Algorithm 

1. If a zero, ξ, of φ exists in X then ξ G Xn for all n. This means that no 
zero is ever lost! This implies that: 

2. If Xn is empty for some η then φ has no zeros in X. 
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3. If Zn+i is obtained by Gauss-Seidel or Gauss elimination suppressing the 
intersection step (3.6) or its variations (3.10), (3.12) or (3.11) (with or 
without preconditioning) then 

(i) if Z„+i C X N for some η then φ has a zero in X , 
(ii) Zn+\ C int X N for some η then φ has a unique zero in X (where int 

means topological interior). 

4. Under certain conditions one obtains 

w(Xn+1)<a(w(XN))2 

for some constant a > 0. 

Point 3(i) of the basic properties gives rise to develop an 

Existence test (first sketch). Execute only one sweep of the interval 
Newton algorithm, i. e. only the sweep η = 0, drop or leave the preconditioning 
and replace the steps 2(iii) and 2(iv) of the above sketched algorithm by the 
step 

2.(Hi') if Z\ C X 0 then Z\ contains a zero of φ X q , 

Although it is likely that the existence test is valid for almost all reasonable 
variants of interval Newton methods its validity has been proven for only a few 
special versions, for example, the Hansen-Sengupta version [96]. 

Remarks. There are a great variety of possible improvements and refine
ments to the interval Newton algorithms. We do not incorporate all of the 
details of these improvements since we want to keep the essentials of the the
ory transparent. Nevertheless, we mention a few of the possibilities so that the 
reader can get an idea of what directions they take. 

(i) Use of slopes. The interval Newton algorithm remains valid if the Ja
cobian J(x„) in (3.5) is replaced by the slope matrix or an inclusion of 
the slope matrix. I.e., the interval in the i-th line and j-th row of such a 
slope matrix could be an inclusion of the set of slopes 

Φί(Χ}) ~ Φί(Χηί) γ 

where Xj, xnj and X n j are the j-th coordinates of x, xn and X N , respec
tively. 
Since the slope matrix is included in the Jacobian matrix, J(xn), the 
convergence of the interval Newton algorithm will be faster if the slope 
matrix is used. The related theory can be found in Neumaier [179], p. 
202. 
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(ii) Use of Lipschitz matrices. If one has to deal with functions φ that are 
not necessarily smooth then it might still be possible to apply the interval 
Newton algorithms if so-called Lipschitz matrices can be found for φ. 
These Lipschitz matrices then replace replace J{xn) in (3.5). The reader 
is referred to Neumaier [179], p. 175. Other methods for non-smooth 
systems can be found in Kearfott [129]. 

(iii) An interval Newton variant of Oliveira [189]. When creating the New
ton iteration step, Oliveira uses a second order Taylor development of φ. 
This results in a variant of (3.5), where J(x„) is replaced with expres
sions in J(xn), which is a point matrix, and interval extensions of the 
second derivative of φ over Xn. Improvements of the Newton algorithm 
performance could be expected if the dimension of φ is not too high and 
if the box Xn is sufficiently small. 

Fomia [55] goes one step further. If a φ only consists of polynomials, 
he uses higher order Taylor expansions of φ. This has the effect that 
the higher derivatives of the polynomial vanish if the degree of the poly
nomials is lower than the order of the Taylor expansion, and that the 
non-vanishing polynomial derivatives need to be evaluated on point ar
guments only. 

(iv) Boundary based interval Newton variants [249]. This variant does not 
use the midpoint xn or any other point xn of Xn as developing point 
of the Newton step. Instead facets of Xn are looked for that satisfy 
0 G Φ(Ρ). The knowledge of such facets give information on how to chose 
the formula for the particular Newton step appropriately. 

The next section discusses a very effective practical realization of the New
ton algorithm which will in the end lead to a list of boxes whose union will 
contain all the solutions of the equations. Such a list occurs by splitting pro
cesses which are part of this realization. 

As an example of why splitting may be beneficial consider the equation 
system (3.2) where it is clear that the list of boxes ([-2, -1 ] , [ -1 , 1])T, 
([-1, l],[-0.5, 0.5])T, ([1, 2],[-l, 1])T provides a better inclusion than the 
optimal single box ([-2, 2],[-l, 1])T. 

3.3 The Hansen-Sengupta Version 
The Hansen-Sengupta [95] version is a very promising variant where the linear 
system occurring in the Newton iteration step is solved by 

(A) a preconditioning step, 

(B) relaxation steps (Gauss-Seidel). 
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Since we discuss just one iteration of the Hansen-Sengupta variant in the 
sequel we suppress the indices η when writing down the formulas that occur in 
the n-th iteration. That is, we write 

J(X)(x -Y) = φ(χ) (3.7) 

instead of 
J(Xn)(Xn -Y) = φ(Χη) 

and, accordingly, we search for a superset Ζ of the solution set of (3.7), where 
X, J(X),x and φ(χ) are given. The solution set of (3.7) is also denoted by Y. 
If we want to refer to the former, original box X, we are more likely to avoid 
misunderstandings if we speak of the initial box Xo, reminding us that the box 
ΛΌ was defined as the original box X. 

(A) The preconditioning step 

It was argued in Hansen-Smith [97] that the system (3.7) was best solved 
by premultiplying it by an approximate inverse of mid (J(X)) where a non-
interval floating point arithmetic is satisfactory both for the inversion and the 
pre-multiplication. 

If the approximate inverse is Β then we obtain 

BJ{X)(x -Y) = Βφ{χ) 

or 
M(x -Y) = b (3.8) 

where Μ = BJ(X) and δ = Βφ(χ). In this manner the system has been 
modified to a system that is almost diagonally dominant provided the widths 
of the Jacobian entries are not too large. 

Such systems are also amenable to Gauss-Seidel type iterations because of 
the likely diagonal dominance. This will be discussed below. 

It is obvious that the solution set of (3.8) contains the solution set of (3.7) 
such that no solution is lost in the above transformation. The only thing we 
have to do now is to solve the linear interval equation (3.8). 

In cases where the inverse midpoint preconditioning as described above 
yields poor results one should try to determine optimum preconditioners by 
solving the easy linear programming problems given by Kearfott [125]. 

(B) The relaxation step (Interval Gauss-Seidel step) 

We know that all zeros of φ lying in X (where this X abbreviates the 
former Xn), are contained in the solution set of (3.8). The relaxation step tries 
to shrink X. It can, however, happen that when X is made smaller it is split 
into two or more disjoint boxes, containing all solutions in question. In order to 
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avoid an exponential increase of the number of subboxes the further steps are 
applied to the hull of the subboxes in such cases. A splitting into two subboxes 
is only done when the current iteration of the corresponding Newton method 
is finished. 

The relaxation procedure for linear interval equations was developed in 
Hansen-Sengupta [96]. It consists of the application of the well-known non-
interval Gauss-Seidel iteration procedure (see for example Conte-de Boor [27]) 
in an interval context (see also the discussion of related methods in Alefeld— 
Herzberger [6]). Single steps (iterations) of this relaxation procedure are here 
used to solve the preconditioned set of equations (3.8) and it is expected that 
the procedure will be efficient since the coefficient matrix Μ will in most cases 
contain the identity matrix I due to its construction as BJ(X), although this 
is not guaranteed since we only required that Β should be an approximate 
inverse of mid (J(X)). It should also be noted that the matrix Μ is kept 
constant throughout one relaxation step (i.e. Μ = BJ(X)) whereas the vector 
X is updated. 

In one relaxation step the equation M(x — Y) = b is solved for the i-th 
component Yi obtaining a superset of Yi by using the known inclusions Xj for 
Yj, J #*i 

m 

Zi = Xi + M„H £ Μφ, - Xj) - bi) (3.9) 
.7=1 

where Xj, etc., denotes the j-ih component of x, etc. This interval is immedi
ately used to intersect and update the i-th component Xi, 

Xi := Xi Π Zi (3.10) 

subsuming step 2.(iii) of the interval Newton algorithm. 
This calculation is performed for all i, 1 < t < m, first for the indices where 

0 £ Ma and then for the remaining indices where 0 6 M«. This strategy 
results from the observation that the updating of (3.10) with components Xi 
where 0 £ M« improves (makes smaller) all the components Zj via formula 
(3.9). This does however not hold for components Xi with 0 G M«. 

If the intersection (3.10) is empty for some i then it follows from the prop
erties cited in the last section that there is no solution in the current box X. 
This intersection has to be suppressed if the interval Newton iterations are used 
for the existence verification of solutions. 

When the intersection is not empty then the computation continues with 
the next component and the updated Χ[β. 
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If 0 e Mu and if 
m 

0 6 £ Μ 0 ( * , - Χ , ) - δ < 

then we set Zj = (—οο,οο). In this case the intersection (3.10) does not result 
in a narrowing of Xi; hence no useful information is obtained. 

If 
m 

0? Σ Mijixj-Xj)-^ 

and 0 € Mu then Z< consists of two non-overlapping semi-infinite intervals 
separated by an open set (gap) according to the extended interval arithmetic 
division given in (2.7). The intersection Zj Π Xi may now be empty or consist 
of one or two intervals. In the first two cases the computation proceeds as for 
the case 0 £ Mu. 

If the intersection results in two intervals then the box may be split normal 
to this coordinate direction. It might be impractical when the box is split 
with respect to several coordinate directions, thus resulting in a proliferation 
of subboxes as mentioned before. A splitting is therefore only done once during 
the iteration, i.e. vertical to the direction of the largest gap or two largest gaps 
at the end of the iteration. In practice one has to keep track of both a gap and 
the index of the coordinate where it occurs. 

The gaps are also not used right away; they are saved until the other tech
niques have been employed to narrow the current box. Also the gap and its 
index may be deleted if it is outside the current box. 

As a simple numerical example of the Gauss-Seidel process we subject (3.2) 
to one Gauss-Seidel step starting with the vector X = ([—4, 4], [—2, 2]) and 
χ = ([0.0], [0.0]). Since 0 £ Mu, i = 1,2 equation (3.9) is applied directly. After 
the intersection step (3.10) we obtain the new Xi = ([-2.5, 2.5], [-1.25, 1.25]) 
which is a substantial improvement. 

Let X be a box, φ, Β, and Μ as defined above. The following iteration aims 
to shrink X but not to loose any solution of the equation system Μ (χ — Υ) = b. 

A L G O R I T H M β (One single relaxation step (Interval Gauss-Seidel step)) 

Step 1. Fori = l ,2, . . . ,m 

i/0 £ Mu then 
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(a) set 
m 

Zi := Xi + M«\ £ Μ0·(χ; - Xj) - h) 

j = i 

and 
Xi-XiHZi. (3.11) 

(b) IfXi = 9 then terminate and report 

• no solution in X (input box). 

Step 2. Fori = l ,2, . . . ,m 

t /Oe Ma then 

(a) set 
m 

Zi := Xi + Mrr\ £ M^XJ - Xj) - b{) 

and 
Xi-.= Xir\Zi. (3.12) 

^ If Xi = 9) then terminate and report 

• no solution in X (input box). 

(c) If Xi has a gap then replace Xi by its hull while keeping track oft 
and gap. 

A further numerical example is given by 

M l , 2] [1,2] \ / [1.0, 1 .5 ] \ 

[1,2] [ -1 ,2 ] J * * Y)-{ [2.9, 3.0] ) • [ d U > 

We start the Gauss-Seidel process with the vector X = ([1, 2],[1, 2])T and 
χ = m(X). Since 0 £ Mn = [1, 2] we perform the first step of the procedure 
and obtain 

Zi = x i + ( M i 2 ( x 2 - X 2 ) - 6 i ) / M n 

= 1.5 + ([1, 2](1.5 - [1, 1.5])/[1, 2] = [-1, 1.5]. 

Performing the intersection step we get X\ := [1,1.5], a halving of the first 
coordinate interval. Now, 0 G M 2 2 so we compute 

Z2 = xz + [Μ 2 ι ( χχ - Χχ) - bi)IM22 

= 1.5 + ([1, 2](1.25 - [1, 1.5]) - [2.9, 3.0])/[-l, 2] =]0-3,3.9[ 
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where the notation ]a, b[ indicates that the result is to the left of and including 
a and to the right of and including b i.e. there is a gap (a, 6). The intersection 
of this result with X2 = [1, 2] now shows that X2 := 0 and hence X := 0 which 
shows that (3.13) has no solutions in X. 

If X has been shrunk significantly then it makes sense to repeat the step 
with the smaller X using the values of Μ and b from the last iteration (simplified 
relaxation step). This can be repeated several times until the shrinking is no 
longer significant. (We say that the shrinking is significant if the ratio of new 
box volume to old box volume is smaller than 0.9. This threshold results from 
computational experience and should be adjusted upwards with increasing m 
and increasing expense in recalculating J{X)-) After the termination of the 
relaxation step and the dependent simplified steps the largest one or two gaps 
are collected and they will be used to split the output box in two or four parts 
for further processing. 

Remark 1. In order to determine the hull of that part of the solution 
set of the system M(x -Y) = b which lies in X, the complete Gauss-Seidel 
algorithm (consisting of the Gauss-Seidel steps where after each step the values 
M, x, and 6 are calculated anew from the current X) can be applied to X. In 
order to get convergence to the hull one has to split the current box after each 
iteration when no shrinking or only insignificant shrinking could be obtained. 
Then the algorithm has to be applied to each of the boxes separately. Finally, 
all the solutions to the different branches have to be brought together to make 
up the whole solution set. The number of boxes can increase quite rapidly 
as can be seen from Figure 3.1 where sloped lines bounding the solution set 
have to be covered by axis-parallel rectangles. The number of boxes is therefore 
proportional to the desired accuracy in the solution. For convergence conditions 
see Neumaier [179]. The complete algorithm is not described here in further 
detail since we only use the algorithm as part of the interval Newton process 
to be described below. 

Remark 2. Instead of a relaxation iteration Gauss elimination can be used. 
This is nothing more than the well-known Gaussian elimination performed in 
an interval setting. Gaussian elimination is not as robust as the Gauss-Seidel 
steps. It is, however, more effective under certain conditions (for instance, if 
the Jacobian or the preconditioned Jacobian matrix is diagonally dominant, 
see Neumaier [179]). Practical experiences show that it is best to combine 
Gauss-Seidel steps with Gaussian elimination, cf. Hansen [92], Neumaier [179], 
Ratschek-Rokne [213]. 

Remark 3. Further means to improve the efficiency of the relaxation steps 
is not to take χ = mid (X), but points with function values near to zero as 
developing point. For this one applies a non-interval Newton or quasi-Newton 
method to mid (X) and stops at a point χ £ X with small norm ||< (̂x)|| 
or at the boundary of X if the trajectory followed by the non-interval Newton 
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iterations leave X. Details may be found in Hansen [91], Ratschek-Rokne [213]. 

We now describe the interval Newton algorithm in more detail. 
Inclusion functions J(Y) and Φ(Υ) for ./^(x) and φ(χ) are needed as well 

as an e > 0 or e > 0 for a terminating criterion. 

A L G O R I T H M 7 (Interval Newton Algorithm after Hansen-Sengupta) 

S t e p 1. Let X be given. 

S t e p 2 . Initialize list L = (X). 

S t e p 3 . Calculate Φ{Χ). IfO& Φ(Χ) then go to 15. 

S t e p 4 . Calculate J(X). 

S t e p 5 . Calculate B, an approximate inverse of mid (J(X)). 

S t e p 6. Set χ equal to the midpoint of X, that is χ = mid (X). 

S t e p 7 . Calculate Μ := BJ(X), and b := Βφ(χ). 

S t e p 8. Apply one Gauss-Seidel step to M(x — Y) = b to obtain Y. Set 
X :=Y. (Keep track of gaps and their indices.) If some Xi = 0 then go 
to 15. 

S t e p 9 . If X improved significantly in Step 8 set χ := mid (X) and perform 
the simplified relaxation procedure. If X = 0 then go to 15. 

S t e p 10 . If X improved significantly in Step 9 set χ := mid (X) and return 
to 9. 

S t e p 1 1 . If X improved significantly in Step 8 and if \\Φ(Χ)\\ > e go to 3. 

S t e p 1 2 . 1/ the gaps together with their coordinate directions were saved in 
Step 8 then 

- update the gaps (they could increase or even vanish by the continued 
shrinking process(S.lO) ) • Use the coordinate direction with the 
largest gap for splitting X using the gap obtaining boxes Vi and V2. 
This gap is no longer part ofVi or V2. (The remaining gaps are still 
included.) Go to 14-

S t e p 1 3 . If X did not improve significantly in Step 8 then 

- choose a coordinate direction ν parallel to which Υγ χ ... xYm has an 
edge of maximum length, i.e. ν 6 {t : w(Y) = w(Yi)}. Bisect Y 
vertical to direction ν getting boxes Vi, Vj such that Y = Vi U Vjj. 

S t e p 1 4 . Enter Vi and V2 onto the list. 
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Step 15. Remove X from the list. If the list is empty, terminate and report 

• no solutions. 

Step 16. Apply termination criteria. For example: (i) If \\ Φ(Χ) ||< e for all 
boxes X of the list then terminate. Or: (ii) If w(X) < I for all boxes X 
of the list then terminate since a continuation seems to be unsuccessful. 
Etc. 

Step 17. Set X to be the box of the list with the largest width. 

Step 18. Return to 3. 

3.4 The Existence Test 
After the termination of the computation of Alg. 7, for example by criterion (i) 
of Step 16 the list L contains only boxes whose points have absolute function 
values smaller than e. Further, all the zeros of φ(χ) that lie in the starting box 
lie also in the final boxes since no zero is ever lost. 

If one wants more specific information, one might apply the existence test 
(ci. Sec. 3.2) to the boxes Y of the final list. That is, apply one single in
terval Gauss-Seidel step to Y (with or without executing any preconditioning 
beforehand) but without executing the intersection operations (3.10), (3.12) 
and (3.11). (When dropping the preconditioning set Μ := J(X), b := φ(χ) in 
Step 7 of Alg. 7.) After its termination check for the inclusions Zi C Yi for 
i = l , m . If they all are valid, Y contains a zero of φ. 

Boxes, that fail the existence test, can still contain a zero, but a decision 
was not possible during the computation, that is, w. r. to the parameters and 
the accuracy. 

What is the reason that one makes a rough separation between the existence 
test from the interval Newton method? The reason is that there are many older 
and newer versions of interval Newton methods. They have two aims: The first 
aim is to eliminate parts of the domain of a function that have no zeros, and 
the second aim is to prove that a zero does exist in a certain domain. In the 
first case the method is mainly used in computations where the shrinking of 
the domain is most important. This is especially important when the domain is 
globally processed where the shrinking of the domain implies that the removed 
parts need not be processed. This makes the computation faster and cheaper. 

A typical example for this kind of procedure is the Hansen-Sengupta algo
rithm which was primarily designed for solving global optimization problems, 
cf. Hansen-Sengupta [96]. Their algorithm was applied to the derivative of 
the objective function with the intention that the parts removed during the 
shrinking process could not contain a local extremum (except on the boundary 
of X) and hence, cannot contain a global extremum. To apply the existence 
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test in such cases would be a wasting of time since it only would confirm zeros 
of the derivative which would be reasonable when one would search for local 
extrema, but does not help in most cases when one searches for a global ex
tremum. This is also the reason that only a few sweeps of the algorithm were 
recommended to shrink the domain in order not to concentrate the remaining 
subboxes around local minimizers which are finally not needed. On the other 
hand if the local extrema which are not global are already eliminated by other 
means, for example, Moore's [165] famous midpoint test, it makes again sense 
to apply the existence test since it can confirm the global extremum since it 
also a local one. 

To know about the existence of zeros is important especially for geometric 
computations: Whether two explicitly defined curves, say y = /(x) and y = 
g(x), intersect is equivalent to the question whether the function y = g(x)—f(x) 
has zeros. The question has to have a definite answer which is embodied in the 
meaning of the existence tests. As we will see, it is first important to shrink the 
domain with the interval Newton method and then to confirm the existence of 
the zeros in small subareas. 

One also can ask for the uniqueness of zeros which is an important issue in 
many mathematical and computational disciplines. We drop this interesting 
field since is not so relevant for this monograph. For good surveys of existence 
and uniqueness tests cf. Neumaier [179] and Kearfott [127]. 

Thus the idea of the existence test is first to apply the interval Newton 
algorithm with an appropriately chosen e > 0 (or e > 0 or both). After its 
termination by Step 16 of Alg. 7 a list of subboxes is rendered with widths 
that are sufficiently small (or smaller than e). These boxes are characterized by 
the fact that the computation up to the termination was not able to prove that 
these subboxes do not contain any zeros. This means that these boxes contain 
either points which are almost zeros or points which are, in fact zeros. Hence 
the existence test is an excellent tool for figuring out boxes which contain a 
zero. 

The chances of the test to indicate a zero increase the smaller the parameter 
e or I is and hence the smaller the widths of the final boxes are. Theoretically 
one could already apply the test to the whole domain without any shrinking 
by the interval Newton method, but then a positive answer will hardly be 
obtained. The reason is that the smaller the box width is the smaller is the 
excess-width and the better is the approximation of the range of the box by 
the inclusion function and thus the better the numerical results are. 

The following variant of the Hansen-Sengupta algorithm combines the in
terval Newton method, which provides an adequate shrinking of the domain, 
with the existence test for verifying that there are zeros in the domain as it 
is described in the listing of the basic properties in Sec. 3.2. In addition to 
the objective function φ(χ) and its domain X, inclusion functions J{Y) and 
Φ(Υ) for J<t,{x) and φ(χ) are needed as well as an € > 0 as upper bound for the 
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absolute function values in the boxes considered in the terminating criterion. 
If φ is very flat then one also should consider the termination via e additionally 
or alternatively. As a first guess for c we suggest numbers from w(X)/lO0 for 
smoother functions up to w(X)/\O00 for functions with more variations. It 
might be necessary to adapt these default values to the actual conditions. We 
also suggest to drop the preconditioning in the existence test since the dimen
sions for the purposes of computational geometry are at most 3 so that the 
chances of the test to render a positive result will not be improved too much 
by the preconditioning. 

A L G O R I T H M 8 (Interval Newton Algorithm with Existence Test) 
Perform the interval Newton method, Alg. 7. When the computation is 

terminated because 

(i) the processing list L is empty then STOP (there is no zero of φ(χ) in 
X), 

(ii) all boxes of the (nonempty) list L are of width smaller than e, then 
apply one sweep of Alg. 8 but without preconditioning and without exe
cuting the intersection operations such as (3.10), (3.12), and (3.11) for 
these boxes. If 

ZCY 

for some of these boxes Y where Ζ is the box resulted from the application 
of the above-mentioned sweep to Y then STOP (Z contains a zero and 
hence Y and X do). 

(Hi) If Ζ CY holds for no box Y of the list L, then STOP (no decision 
results from this computation whether a zero exists in X or not). 
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Chapter 4 

T h e E x a c t 
A l g o r i t h m 

S i g n o f S u m 
( E S S A ) 

4.1 Introduction 

In the introduction to the book we noted that many geometric algorithms are 
dependent on the sign of a finite sum. Examples of such algorithms are left-turn 
test, orientation questions, Boolean algorithms (point in circle vs. not in circle), 
etc. Implementing such algorithms in fixed length floating point arithmetic can 
lead to inaccurate or wrong geometric configurations due to falsification of the 
computation by rounding errors. Interval analysis techniques can filter some 
of the computations and provide guaranteed results in certain cases, however, 
some cases are left that have to be dealt with using exact techniques. 

For such cases ESSA [221] was developed. It is an algorithms which deter
mines the sign of a sum of real quantities in a guaranteed manner. 

The algorithm is especially designed for computations involving geometry 
where rounding error free algorithms are particularly desirable due to the strong 
influence of rounding errors on logical decisions as mentioned earlier. 

In order to meet the condition of being rounding-error-free, the algorithm 
is so constructed that it processes data that is already in a binary form. Con
version errors are therefore avoided and hence, as noted in 4.3, only machine 
numbers are considered and the algorithm will determine the sign exactly, that 
is the result is guaranteed to be correct. 

An extensive literature exists on the computation of the sum of a set of 
floating-point numbers and in some cases on the relationship of this computa
tion to the stability of numerical and geometric computations [45, 104, 200]. 
Most of this literature does not mention the restricted problem of the determi
nation of the sign of such a sum. 

79 
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A short abridge of the contents of this chapter is as follows. In the next 
section, we consider some of the literature of geometric computations that show 
the need of our algorithm concept. In Sec. 4.3, the algorithm is established. 
The most important properties of the algorithm are described in Sec. 4.4. 
Numerical results are shown in Sec. 4.5 where the algorithm was tested with 
both well- and ill-conditioned sums with 10000 randomly generated summands. 
In Sec. 4.6 we have a close look at a few of the direct applications of the 
algorithm. Finally, in Sec. 4.7, a program for the algorithm written in C++ 
code is included. 

4.2 The Need for Exact Geometric Computa
tions 

In this section we reflect further on the relationship between exact computa
tions and computations implemented on a computer, especially for the case 
of geometric applications, on the still missing balance and distinction between 
these two kinds of computations, and on the need for exact execution of some 
primitives occurring in geometric computations. 

Simple computational primitives form the basis for many geometric algo
rithms. As an example the Graham scan algorithm [198] for computing the 
convex hull of a finite point-set in the plane relies on the well-known left-turn 
test which is a primitive that decides whether a query point lies to the left, right 
or on a directed line defined by two other different points. The three-valued 
result of this primitive can be transformed into the result of the computation 
of the sign of a 3 χ 3 determinant, a seemingly simple computational task. 
When the formula for the determinant is implemented in finite precision arith
metic, however, roundoff errors may falsify the result so that primarily, a wrong 
sign of the determinant, and secondarily, a perturbed or a non-convex hull is 
computed. If this hull is used in further computations then configurational 
anomalies can occur. A rich variety of solutions have been proposed for the 
algorithmic part of the convex hull determination ranging from Graham scan 
(mentioned above) to gift wrapping and quickhull [198,190]. Algorithms based 
on these solutions would all return convex hulls (i.e. a set of points forming the 
vertices of a convex polygon and the adjacency information for the vertices) 
if they operated over the field of real numbers. This is not possible in general 
since real number implementations of algorithms would require irifinite repre
sentations of data, intermediate results and outputs. Realistic implementations 
must deal with finite representations such as the representations available on 
a computer. The problems that arise from implementing the algorithms on a 
computer using fixed-length floating point computations were, however, mostly 
only mentioned and then ignored. In trying to overcome such obstacles Forrest 
[56] suggested more generally for all kinds of geometric computations 

�� �� �� �� ��



The Need for Exact Geometric Computations 81 

One of the steps in developing a geometric computing environment 
is to identify geometric primitives and then to implement these cor
rectly. If primitives are indeed primitive, they ought to be simple 
and hence the identification of special cases and their correct treat
ment should be possible. Given correctly implemented primitives, 
there is a reasonable prospect of building an environment in which 
such primitives can be utilized in a proper manner to build more 
reliable geometric systems. 

A number of authors have also attempted to provide correctly implemented 
geometric computations. One approach is the epsUon geometry discussed in the 
thesis by Salesin [237]. He provides a general model for imprecise geometric 
computations which include fixed and floating point arithmetic as special cases. 
Algorithms based on this model take numerical data as input and provide 
combinatorial data as output that provide an exact solution to a perturbed 
version of the input. The decisions based on the computation of geometric 
primitives are derived with interval tools such that the decisions are either true, 
false or uncertain and it is guaranteed that all undecidable decisions are of the 
latter type. The uncertain result of a computation is undesirable and part of 
the research in [237] is to construct procedures such that the range of inputs 
resulting in the uncertain case is limited. Another tool used to implement 
primitives in this model is backward error analysis. 

Another approach is discussed in [123] where the primitive sign of determi
nant is discussed. A variety of other geometric primitives can be transformed 
to this primitive. Interval arithmetic is employed as an interval filter as far as 
possible to get a decision for the sign of the determinant. When this fails they 
resort to variable precision arithmetic. A determinant used as a primitive in 
the construction of a Delaunay triangulation illustrates the method. 

A numerically stable convex hull algorithm for a simple polygon as proposed 
in [115] is based on backward error analysis. Here the primitive is slope of line 
and the decision as to whether a sample point is a point of the convex hull or 
not is made by comparison of slopes. In [116] the authors provide an algorithm 
that when implemented in fixed length floating point arithmetic constructs a 
truly convex hull, that is, the algorithm returns a point set that are the vertices 
of a convex polygon even in the presence of roundoff error, where the underlying 
concept is again backward error analysis. 

Sugihara [259] assumes that the precision of the input data is a given number 
of bits, typically less than the mantissa length of a floating point number in 
the computational device used. He then shows that degeneracy (vertex degree 
> 3, i.e. more than 3 edges meeting at a vertex) can be avoided in a 2D 
Voronoi diagram computation implemented in quadruple precision if vertex 
perturbation is allowed. He also shows that quadruple precision does not lead 
to numerical error in the decisions derived from the numerical computations 
for a 2D Voronoi diagram. 
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Arbitrary precision arithmetic has been implemented by, for example, [103]. 
It is used by [70] to compute exact results for planar maps. It is easily shown, 
however, that the required precision increases rapidly and that the computa
tions become very expensive. In order to reduce the cost of the computations 
[159] advocates double-precision arithmetic. The algorithm in [159] calculates 
an arrangement of lines that is topologically correct except that neighboring 
vertices might be rounded to the same point. 

Many of the inconsistencies encountered in the implementation of geomet
ric algorithms can be traced back to degeneracies or special cases. Examples 
of such degeneracies are three lines meeting at a point, one point lying on a 
line defined by two other points, parallel lines or four points lying on a circle. 
Edelsbrunner and Miicke [41] and Yap [274] therefore perturb the data slightly 
so that the degeneracies are avoided. This simplifies the logical structure and 
the design of algorithms considerably since it removes the degeneracies that are 
difficult to manage and which often lead to uncertain decisions. The disadvan
tage with this approach is that the degeneracies might be an integral part of 
the geometric model. The perturbations might therefore change essential fea
tures of the model, such as its topology, in an unwanted manner. An example 
of such a situation is easily found in solid modelling where many objects have 
faces defined by more than three points, yet faces defined by more than three 
points constitute degenerate cases. 

Let us return to the computation of the convex hull of a finite set of points 
in the plane, mentioned earlier. This computation provides possibly the best 
example done up to the present for research into a numerical method for a 
particular geometric problem in the presence of numerical errors. 

Although some authors realized that numerical error influenced the result 
of a convex hull computation, it was Li and Milenkovic [147] who made a first 
attempt to avoid the dependency on those errors. They designed an 0(n log2 n) 
convex hull algorithm which computed an e-strongly convex o(e)-hull. This 
means that an approximate hull was constructed so that no point of the set 
was more than o(e) away from the required hull and that every vertex could be 
moved by a distance e without violating the convexity property. Certainly, the 
hull property for the original set was lost. The algorithm uses the notions of 
spines, vertebrae and extenders which are quite sophisticated means developed 
to exclude instability and wrong evaluation of the geometric situation caused 
by the rounding errors which arise from the left-turn test. The algorithm is an 
e-geometry type algorithm. 

In [59] a similar result is presented using the so-called e-arithmetic. This 
arithmetic is based on elementary axioms for floating-point arithmetic. Al
though the algorithms are numerically stable they also only compute an ap
proximate hull. 

In this context we again mention the construction of a truly convex hull, 
that is based on slope comparisons and backward error analysis, cf. [116]. 
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In [122] the approach is again different. The authors use a blend of al
gorithms, some based on interval analysis, to compute different parts of the 
convex hull, and they switch to exact computations with variable precision 
arithmetic when interval arithmetic fails. The result is an exact hull, that is, it 
is truly convex in the above sense, and it is exact, that is, it is the hull of the 
original and not the perturbed set. The computational cost is, however, quite 
high. 

Finally we would like to mention the idea that in order to determine the 
sign of the value of an expression such as a determinant it might be possible 
to determine the value of only a part expression. This idea seems to have 
originated in the paper [123] where it is stated that: 

In particular, many such primitive tests, including orientation of 
d + 1 points in Ed and point-hyperplane classification, can be for
mulated as the sign of the determinant of a matrix. Since comput
ing values of determinants is very expensive in arbitrary- precisions 
arithmetic, it is natural to ask whether is is possible to compute 
the sign without computing the value. 

Our algorithms strictly confirms and emphasizes this fine idea. 

4.3 The Algorithm 
In order to be precise we give the algorithm to be described a name and we 
call it ESSA which is an abbreviation for the Exact Sign of Sum Algorithm. 

We now present the details of ESSA which is of extremely simple logical 
and algorithmical structure. ESSA determines the sign of the sum of a finite 
set of binary floating point numbers of a fixed mantissa length, t. Although 
ESSA could be made valid for any finite sum we design ESSA for sums with 
a number of summands not exceeding 2 t _ 1 , which is large enough for almost 
all applications. If we were to drop this restriction then ESSA and its discus
sion would loose their transparency and become too sophisticated. Certainly, 
variable precision arithmetic could also be used to compute the exact sign of a 
sum, however, the complexity of variable precision arithmetic increases much 
faster then the complexity of ESSA described here. 

At this point we note that the algorithm resembles algorithms for the com
putation of the value of a sum based on the distillation principle (see for exam
ple [200]). The difference is the requirement that the sign is computed with no 
error and that the algorithm terminates without having to consider all terms 
in most of the cases. 

Even though no mantissa manipulation is required for writing the code, 
it is necessary to introduce the kind of representation we are working with. 
We assume that the machine numbers are binary floating point normalized 
numbers having single precision, that is, they have some fixed mantissa length 
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t > 0. Hence, besides 0, α φ 0 is a machine number in our context iff a is of 
the form 

a = 0.al...at x 2 E (4.1) 

where ai = 1 (normalization), a 2 , . . . , a t G {0,1}, a t . . . a t being the mantissa 
of a and 2? the exponent part (shortly, exponent) of α to the base 2. (There is 
no need for a binary representation of Ε in this paper. We also do not consider 
overflow, underflow or any restrictions of the size of E, which is the user's 
responsibility.) Depending on (4.1), α has a value 

α = £α<2"χ2Ε = Σα«2Ε"'· t=l «=i 

One should be cautious if α is already a power of 2, for example, a = 2 8. Here, 
the exponent of ο is not 8, but 9 due to the representation (4.1). 

Preprocessing. Let a collection of / > 0 machine numbers, i.e. normalized 
binary floating point numbers, 8 j φ 0, i = 1 , . . . , /, be given as summands. Note 
that zero as summand is excluded. 

As already mentioned we pose the side condition 

i < 2 , _ 1 , (4.2) 

which can be omitted if necessary. In that case ESSA will be less transparent 
and its computational cost will increase, see Remark 5 in Sec. 4.4. 

We sort the summands into positive and negative summands. Also, we 
work with the absolute values of the negative summands instead of their proper 
values. Both of the classes of summands that we work with are ordered by ">", 
that is, the larger-than-or-equal relation. 

Input for ESSA: 

1. The ordered list of positive summands, αχ > a 2 > . . . > am (> 0), where 
m > 0 

2. the ordered list of the absolute values of the negative summands, 
h > bi > ... > bn (> 0), where η > 0. 

Hence, the sum, the sign of which we need, is 

( m η 
5 = Σ8< = Σα»-Σ6»· <4·3) 

t=l »=1 «=1 

Clearly, I = m + n. By Ei we denote the exponential part of α<, by Fj the one 
of bj (i = l , . . . ,m; j = l , . . . ,n). 

�� �� �� �� ��



T i e Algorithm 85 

A L G O R I T H M 9 (Exact sign of sum algorithm E S S A . j 

S t e p 1. (Termination Criteria) 
(i) lfm = n = 0 then 5 = 0. S t o p . 
(ii) If m > η = 0 then S > 0. S t o p . 
(Hi) If η > τη = 0 then S < 0. S t o p . 
(iv) If αχ > n2 F l then S > 0. S t o p . 

7/6i > m2 E l fnen 5 < 0. S t o p . 
S t e p 2. (Auxiliary variables). 
Set ax = αγ = bl = bx := 0. 
S t e p 3. (Comparison and processing of the leading summands of the lists.) 

(i) CaseEi=Fi: 
If αϊ > 6i then set o t := αϊ — 6i 
else set bt := bi - o i . 

(H) Case Ex > Fi: 
Set u :=2 F >- 1 if 6i = 2i"1~1 otherwise set u:=2F>. 
Set ax := a\ —u,ax :=u — b\. 

(Hi) CaseFi>Ei: 
Set ν := 2El~l if ai = 2Bl~l otherwise set υ := 2El. 
Set 6j : = bi -v, bx := ν — οι. 

S t e p 4. (Rearrangement of the lists while keeping 5 constant). 
(i) Discard ai and bi from lists. 

(ii) Enter those of the values α'1,ο'ι' and b\,b[ that are not zero to the 
Oj - list resp. 6j - list such that the lists remain sorted. 

(Hi) Rename lists (as well as list lengths) as 
αϊ > 02 > . . . > o m ( > 0), bi > 62 > · · • > 6 „ ( > 0). 

(iv) Goto Step 1. 

D i s s e c t i o n o f t h e s t e p s 

Step 1. The termination criteria are obvious. Parts (iv) and (v) express 
just a dominance of the positive or negative summands of S, for instance, case 
(iv), 

m η 

5 = £ O J - ^ 6 j > oi - nh > n(2Fl - 61) > 0, 
«=1 t = l 

since Fi is the exponent of δι. 
Here, τη > 0 and η > 0 were already used; otherwise the computation would 

already have been stopped by (i), (ii) or (iii). 
Note that the products n2 F l and m2El that occur in the computation are 

of type integer and thus exactly executable. 
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The conditions in (iv), (v) are not only termination criteria, but are respon
sible for the effectiveness of ESSA. Together with the assumption / < 2 t _ 1 , they 
cause 

\Ei-Fi\<t-l (4.4) 
for the current values of 0.1 and 61, cf. the Lemma. This means that the 
mantissas of 01 and 61 overlap, when the larger of the two numbers is repre
sented normalized, and the other is potentially represented unnormalized, so 
that max(Ei,Fi) is its exponent part. 

Step 3. In case (i), it is obvious that the partial sum a \ —h\ resp. 61 —at can 
be executed exactly. Note that the exponent of αχ — bi is less than E\ = F\. 

Case (ii). Generally, 01 — 61 cannot be computed exactly. However, αϊ — 61 
can be approximated by ax with a remainder ox because of the equation 

αϊ — 61 = ai — u + u — b\ = a t -1- . (4.5) 

Both values, a \ as well as a [ , can be computed exactly because of (4.4). 

For example, if 61 Φ 2Fl _ 1 then u = 2Fl. Due to (4.4), u can be represented 
as 

« = 2 ^ =0.ii...o" t x 2 B l 

where 

Si = 1 if Ει - Fi = i 
= 0 otherwise. 

Hence, subtracting u from αι = 0.1a2...at χ 2 Ε ' can be done exactly in our 
setting. 

The second difference, % = u — 61, is best demonstrated by writing it out 
in the following manner, 

u = 1.0Ό...0 χ 2 F l 

- 6 1 = - 0 . 1 f t . . . A x 2 f l 

gives 
αϊ = 0.0/32...β\ x 2 * = 0.β'2 ...β[χ 2*-1. 

Here, β\ denotes the dual complement of 
Note that 

α,γ < a \ — b\ < Oi 

and that the exponent of a [ is less than Fi. 
Case (iii) is analogous to Case (ii). 
Step 4- This step replaces the leading summands of the lists, a \ and 61, by 

I d - 611 in case (i), 

αχ,αγ in case ( 1 1 ) , 

b'i, b'i in case (iii). 
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The new elements are put on the lists in the proper order. 
In case (i), one of the lists is shortened by 1 element. In case (ii), the Oj-list 

gets longer by 1, the Vlist shorter by 1. This part of the step aims to shrink 
the bj-list as much as possible in order to extend the dominance of the aj-list 
(i.e., Ει > Fi) and to confirm an expected positivity of S. (The results of 
numerical experiments with random numbers coincide with this hypothesis, cf. 
Sec. 4.5, Table 1.) The sum S remains constant because of 

/ II 

αϊ — bi = ax + ax. 

Case (iii) is analogous to Case (ii). 

4.4 Properties of ESSA 
In this section, we collect the basic properties of ESSA that enable us to work 
with it. Some of the properties required are given as remarks since their proofs 
are quite simple. 

Since formula (4.4) is essential for ESSA to work it will be proven. The 
assumptions are that αϊ < n2Fl, bi < m2E\ τη Φ Ο,η Φ 0 (otherwise the 
computation had already been terminated by Step 1). 

L E M M A 1 Ifl <2ι~ι then \EX - Fx \ < t - 1 for the current values in Step 
3 of ESSA. 

Proof by contradiction. Without restricting the generality, we assume 

αϊ > bi 

which implies Ει > Fi. In order to get a contradiction, we further assume 

Ει - Fi > t. (4.6) 

We want to show that n2Fl < ai which gives a contradiction. 
Let 

oi =0.1a2---at x 2E\ 

Then 
2 E , _ 1 < αι. 

Since I = m + n and τη φ 0, we have η <l. Hence, by (4.6) it follows that 

n2F' <12F' <2 t - 1 2 F > <2E^1 <au 

which provides the intended contradiction. • 

T H E O R E M 8 / / the input data of ESSA are machine numbers, the compu
tation is exact and delivers the sign of the sum S = J2iLi α« - Σ£=ι fy-
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Proof. The computation is exact since no rounding errors arise during the 
execution of the arithmetic operations in Step 3 as already explained in the 
last section. Further, the iterations change the arrangement of the two lists, 
but the value of the sum (as difference Σα, — E 6 j with the current values α<, bj) 
is kept constant, cf. the dissection of Step 3 in Sec. 4.3. The computation 
terminates if at least one of the lists is empty or one of the two lists dominates 
the other, cf. the dissection of Step 1 in Sec. 4.3. That ESSA does terminate 
will be made clear in Rem. 1 . • 

Remarks 

1 . ESSA terminates after a finite number of iterations. Clear: 

(i) In each iteration, the leading element of one of the two lists is 
replaced by a number with strictly smaller exponent or by 0 , the 
leading element of the other list is replaced by a strictly smaller 
element or by zero. 

(ii) If Emin = min(Em,Fn) is the smallest occurring exponent in 
the originally given sequences, that is, in the iteration 0 at the 
input level, then no non-zero element can arise during the whole 
computation with an exponent smaller than J S r a i n - t + 1 . The 
reason for this is that, if two numbers with the same exponent are 
added or subtracted, the exponents never decrease if the results 
are represented unnormalized. Hence, if the final results are then 
normalized, the result is 0 or a number whose exponent is not 
less than Em;n — t + 1 . 

(iii) Since one of the two leading exponents is reduced by 1 in each 
iteration, cf. (i), and since no exponent can ever be less than 
- E m i n - t + 1 , cf. (ii), ESSA must terminate. 

2 . Upper bound for the number of iterations. The maximum number of 
iterations does not exceed l2t. This number results from the number of 
exponent reductions by 1 of all the summands (Step 3, (ii) or (iii)) until 
they reach the lowest possible exponent, Emin - ί + 1 , such that finally a 
number of Step 3 (i) operations will be executed, which is to be added. 
This is a worst case arrangement. 

In order to prove this assertion one has to go into the details: 

A. First we design a worst case model. For this purpose we arrange the 
set {ai : i = 1 , . . . , m} U { 6 < : i = 1 , . . . , n} as a sequence (c„){,=1 ordered 
by the <-relation. Let Gv be the exponent of c„. Then we assume 

Gi-G2 < t - 1 , 

Gv-i-Gv < 2 t - 2 fori/= 3 , . . . , / . 
(4.7) 
(4.8) 
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These two assumptions make the discussion of the worst case simpler and 
they do not restrict the worst case: If (4.7) does not hold then one has 
Gi — Gi > t and further, \Ei — Fi | > t. This implies from Lemma 1 that 
one of the termination conditions hold such that no worst case situation 
is present. 

If (4.8) does not hold then we have 

~Ομ >2t-2 (4.9) 

for some μ > 3. Correspondingly, we subdivide the sequence (cv)l

v=l 

into two subsequences, a left subsequence, i.e. (c„)!JZ} and a right sub
sequence, i.e. (ου)ι

ν=μ. Since ESSA works from left to right, there will 
be some stage of the computation where the right subsequence is not yet 
involved, but where one of the following cases occurs: 

a) the left subsequence consists only of numbers from the aj-list or only 
of numbers from the Oj-list, 

b) the left subsequence consists only of two numbers and c\ — c2 = oi = 
δι holds for them such that the next execution of Step 3 will be done by 
case (i) resulting in values a[ = b[ = 0. Thus, the left subsequence is 
completely dissolved. 

During the processing of the left subsequence until the stage a) or b) is 
reached, the gap shown by (4.9) can become smaller, but is at least of 
length t, that is, we have at each stage of this processing 

Gieft - G r i g h t > t (4.10) 

for each qeft of the left subsequence and each ĉ ght of the right subse
quence. This is understood if the reasoning of part (ii) of Remark 1 is 
applied to cM_i (instead of Emin). If now the processing discussed termi
nates with case a), then the assertion of Lemma 1 is not satisfied for the 
current values of αϊ and bi, since one of them would belong to the left sub
sequence and the other to the right subsequence such that \Ei — Fi \ > t 
is implied by (4.10). Therefore one of the termination conditions of Step 
1 are satisfied as was the case in the discussion of (4.7) and this causes 
the computation to stop. Hence, such a model cannot be a worst case 
model. If now the above-mentioned processing terminates with stage b), 
where the left subsequence has zero as a partial sum such that this sub
sequence vanishes then the next iterate will start to work with the right 
subsequence. Note that in this case the size of the gap G^-ι — GM (with 
current values μ, (7μ_ι and GM) plays no role at all. Hence the number of 
iterations remain unchanged if we assume that (4.8) holds as well. This 
means that we are justified in stating that the restrictions (4.7), (4.8) are 
consistent with he worst case scenario for ESSA. 

�� �� �� �� ��



The Exact Sign of Sum Algorithm (ESSA) 

B. Secondly, using this form of the sequence with properties (4.7), (4.8) 
it is easy to count the number of iterations, which are needed in order to 
move all the summands to the right, until their exponent is - E m i n - t + i -
The number of iterations is the larger the more the connected sequence 
is spread out, that is, 

G1-G2 = * — 1, 
G „ _ i - G „ = 2 t - 2 fori/= 3, . . . , / . 

Hence, the last number in the sequence, cj, having .Emm as exponent, 
needs at most 

Oi + l(t - 1) iterations 

in order to reach exponent £ ? m i n - t + i > the one before, cj_i, at most 

It + 2(t - 1) iterations, 

in order to reach exponent Em\D-t+i, the one before, c/_2, at most 

2t + 3(i - 1) iterations, 

etc. Finally, c 2 needs at most 

(/ - 2)t + (/ - 1)(ί - 1) iterations 

and ci at most 

(1 - 2)t + l(t - 1) iterations 

to reach exponent Em\n-t+i-
We now have a collection of at most / processed summands with expo
nent Em\n _ t + i . Since they arose from the initial sequence where the last 
occurring exponent was Em\n, they all have the form 

±0.10...0 χ 2 E m ' ° - , + 1 . 

Now only Step 3 (i) operations are applicable where each addition results 
in zero until m = 0 or η = 0 ensues. This needs at most 1/2 iterations. 
Hence the overall sum of iterations in this worst case model is 

t[l + 2 + • • • + (I - 2)] + (t - 1)[1 + 2 + ··· + ( / - 1)] 
+*(! - 2) + (* - — 1) +1/2 
= Z2(t - 1/2) - t 
<l2t. 

• 
For a complexity analysis one has additionally to count the initial sorting 
with 0(ilog 2i) arithmetic operations, further the number of operations 
at each iteration, which are two, and finally the updating of the lists at 
each iteration needing 0(log21) comparisons. Hence, if one had not to 
care about the initial restriction / < 2 t _ 1 , one would relate ESSA to the 
0(l2 log2 /) complexity class. 

�� �� �� �� ��



Properties of ESSA 91 

3. The average numerical costs and speed of ESSA is, as is also the case with 
comparable methods, much better than the arrangement of the worst 
case which probably never will occur in reasonable practical applications. 
Looking at the numerical results in Sec. 4.5 one could conjecture that the 
number ought to be 7 / rather than tl2 iterations. In fact, in the case of 
the purely randomly generated sums in Table 1 one can observe a value 
7 < 0.15. 

4. Alternatives to ESSA: ESSA is already surprisingly simple. It can even 
be made still simpler, if in Step 3 (ii) always 

u := 2F> 

and in step 3 (iii) always 
ν := 2Ei 

is set. Practically, there is almost no difference to the course of the 
original ESSA, but the variant shows a few ambushes towards complexity 
considerations like those in Remark 2. 

A second alternative is to set 

o 1 : = o 1 - 2 f ' > - 1 , b'1:=bl-2F*-1 

in Step 3 (ii) and 

b[ : = 61 - 2 B ' - \ a\ := αϊ - 2 B l ~ 1 

in Step 3 (iii). This variant has the feature, that the lengths of the α<-
list and 6j-list remain in general constant in the execution of Step 3 (ii), 
(in), together with Step 4. In contrast to this, the original ESSA shows 
the feature that if one list is already more or less dominant then this 
dominance will be strengthened and the other list shrunk in order to 
force an early termination and decision. 
A further possibility is offered if the user is not adverse to splitting the 
mantissa in his code. The splitting has to be done so that a split part of 
Oi is subtracted from 61, or conversely, resulting in only one subtraction 
(instead of two in each execution of Step 3, case (ii) or (iii)). The analysis 
of the convergence of this modification might, however, be difficult. 

5. Dropping the restriction (4-2). This restriction was needed for the proof 
of formula (4.4), cf. the Lemma, which again was the premise that Step 
3 could be performed exactly. If, however, / tends to 0 0 (which is more 
of mathematical interest than of practical use), then (4.4) is no longer 
valid. Hence, one has to create (4.4) artificially, for example by creating 
slack summands that do not change the overall sum, S. For example, if 
αϊ and 61 < αϊ do not satisfy Ei - F\ < t - 1 then ά = b = 2 E l _ t + 1 are 
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appropriate slack summands where ά is put into the Oj-list, and b is put 
as leading element into the bj-list, and formula (4.4) is now valid for d 
and δ as a leading couple. 

6. The preprocessing as well as the updating of the lists depends on an 
ordering by the >-relation. One could also design ESSA so that it uses the 
>-relation. Then the proper steps of ESSA would be much more effective, 
but the preprocessing of the list would cause trouble, at least in the sense 
that the theory would be more difficult. The reason is that, if some part 
of the list is already ordered and if two elements are identical, then they 
have to be added or subtracted first so that the order requirement can be 
satisfied. This may again result in a list with two new identical elements 
so that the list has to be preprocessed again. It is not possible to establish 
a limit on this recursive behavior without further investigation. 

7. The numerical results obtained in the experiments with randomly gen
erated summands described in Table 1 of the next section show that on 
the average only about 5% of the summands are processed before a deci
sion is made. This suggests that it might be beneficial to design another 
algorithm that simply processes summands "on the fly." That is, the 
largest positive summand and the negative summand with the largest 
modulus, αϊ and δι are selected, processed, and put back on the two 
unsorted arrays and so on, recursively. Alternatively, the largest (with 
respect to the modulus) 10% of the positive and negative summands are 
picked out and processed, putting items back in order only if they are 
larger than the smallest sorted summands. Since both suggestions would 
imply a bubble-sort in the worst case, the worst-case complexity would be 
0(n2); however, the average case complexity might be lower. The above-
mentioned percentages, i. e. 5% and 10% depend on the sample material 
and can vary considerably. These ideas are being investigated. 

4.5 Numerical Results 
We tested ESSA with several series of randomly generated sums. Here we 
pick out two short series of representative examples. For both series we used 
the heap sort algorithm (cf., for example, [199]) for the ordering of the list of 
positive and negative summands in the preprocessing phase and also in an ab
breviated form for the updating of the lists in Step 4 of ESSA. We also executed 
the test series with the bubble sort method (cf., for example, [199]), however, 
we rejected the results since the average execution time needed was about 100 
times larger than the execution times using only heap sort. (This reflects the 
0(nlog2n) to 0(n2) order relationship between heap sort and bubble sort). 
The examples were calculated on a SUN Sparc 20 workstation with the C code 
given in Sec. 4.7. The length of the mantissa was t = 24. 
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For the test series, we chose sets of 10000 summands each that were machine 
numbers in the range ± [2 - 1 2 7 , 2 1 2 7]. This resulted in well-conditioned sums, 
and we show our samples from this series of tests in Table 1. In order to create 
a series of ill-conditioned samples we randomly generated a sequence (c^L 1 / 
from the above range. Then, for each c*, we denned 9 summands, one was 
8c* and the remaining 8 were each — c*. This resulted in 9999 summands. As 
a last summand we added 2 - e o or - 2 _ e 0 . Hence the value of the exact sum 
of the 10000 summands is ±2~ e o . In Table 2 the results are shown for the 
ill-conditioned case in the same format as for the first series of results. 

Each line in the tables describes the statistics of the application of ESSA 
to a sequence of summands. 

m = number of positive summands, 
η = number of negative summands, 
Step 3 consists of 3 columns each counting the 

number of executions of the three cases 
in Step 3 of ESSA during the computation, 

ii = number of iterations, 
mt = number of remaining positive summands at termina

tion, 
n t = number of remaining negative summands at termina

tion, 
time = computation time in microseconds (includes 

the time for the preprocessing ordering as well 
as the computation of S' as described below), 

sgn = exact sign of the sum, 
S' = result of performing the summation in double 

precision arithmetic starting with the largest and end
ing with the smallest summand. 

4.6 Merging with Interval Methods, Applica
tions 

As mentioned in Sec. 4.2, there are several important applications of ESSA 
to typical processes in geometric computations. We discuss a few of them in 
more detail, and we also provide some suggestions as to when it is reasonable 
to combine ESSA with interval methods. 

Interval methods render an inclusion of a value instead of the required value 
itself if implemented correctly. This means that, in the case of the sign of a 
sum S, an inclusion 

S1 with 5 € S1 

where S1 is an interval is computed. Then S1 is interpreted as follows: 
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If S1 > 0 then 5 > 0, 
if S1 < 0 then 5 < 0, 
if 5 7 = [0,0] then 5 = 0, 
if 0 6 S1, no decision can been derived from 

this computation so far. 

Since interval methods control all kinds of numerical errors, the first three 
cases are guaranteed. In order to get a decision in the fourth case one has to 
refine or even to change the method that has been applied so far. 

Next we want to pursue the question, when it is worthwhile to use ESSA 
and to combine it with interval methods: 

If one has to determine the sign of a sum, principally 3 types of approaches 
are available: 

a) usual summation, various kinds of improvements (multiple precision, re
stricted fixed point accumulation) , 

b) interval arithmetic, methods with guaranteed error bounds, machine-exact 
addition, 

c) ESSA. 

Let us consider these three types when they are applied to a well-posed 
problem: 

Type a) will always work, but one has never a guarantee that the outcome 
is correct. 

Type b) will also work well, and one has the guarantee of a correct outcome. 
Type c) works exactly, and because of the well-posing of the problem, one 

of the two lists will clearly be dominant such that a termination criterion will 
apply soon. 

Le us turn to an ill-posed problem: 
Type a) is no longer reliable. 
Type b) will deliver an answer whether the result is reliable or not, but the 

probability of unreliable answer will increase with the degree of ill-posedness. 
Type c) will still deliver the exact result, even though the decision for the 

sign might require a number on iterations. 
Summing up: ESSA is the best choice, as long as one really needs the exact 

result. 
Nevertheless, there are some situations where a combined use of interval 

analysis with ESSA is reasonable: 
This is frequently the case if an arithmetic expression must first be prepared 

or replaced by one which is mathematically equivalent in order that ESSA can 
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be applied. Let us consider as a simple example the left-turn test, cf. Appl. 
1. The computational part of this test consists in determining the sign of the 
determinant 

Nobody with computational experience would multiply through the deter
minant obtaining the expression 

which results in 6 products and 5 additions. ESSA requires the expression to 
be a sum of elements, however, and the only way of achieving this is to use 
(4.11). Procedures of type a) or b) would probably use an expression like 

xi(y2 -yz) - X2(yi - i/3) + X3(yi -2/2) 

requiring 3 products and 5 additions and being more stable than the former 
expression. Another expansion is 

which requires only 2 products and 5 additions. However, ESSA is not able to 
evaluate the latter two expressions because it can not handle the differences 
xi - x 3 , x 2 - x 3 , j/2 _ J/3) J/i - ! / 3 ) 2/i — ! / 2 so that exactness is maintained. The 
differences in the computational performance of these simple expressions are 
certainly not significant. 

The difference will increase considerably when we pass to other applications, 
where determinants of higher dimension are involved or where the items of the 
determinants are again arithmetic expressions (cf. Appl. 2, 3, 4) such that the 
determinant has to be multiplied through completely in order to generate an 
expression that ESSA can handle. 

A similar situation arises if multiple precision is necessary in order to get 
the sign guaranteed and one does not want the programming hassle with the 
multiple precision but splits it into a sum of lower precision numbers. Then 
one also has to multiply through the expression until it is represented as a sum 
of the lower precision numbers. For details see Appl. 2. 

These examples show that it is not always wise to use ESSA for each occur
ring sign determination. There are situations where we recommend merging 
ESSA with machine interval arithmetic as follows: 

1. Determine the required sign with a stable low complexity expression using 
single precision machine interval arithmetic. 
This will, in general, be sufficient for a decisive sign determination. In 
the rare remaining cases, there is no way out and one has 

1 xi yi 
D = 1 x 2 j/2 

1 X3 V3 

XlI/2 + VlX3 + X2V3 - X3J/2 - X22/1 - Xli/3 (4.11) 

( χ ι - X3)(yi - ye) - ( χ 2 - X3)(y2 - ye) (4.12) 
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2. to go through the higher complexity calculation using ESSA. 

Let us consider now a few typical applications of ESSA. 

Application 1 (Left-turn test) 
Let p i , P 2 , P 3 be 3 points in the plane so that p< = (xi,yi), i = 1,2,3. If 

p{p2 is the line through px and p?, then pz is to the left, on or to the right of 
Pi|>2 (looking from p t to pi) iff 

is positive, zero or negative. Expanding the determinant we get a sum 

If p< = (x<,j/i)) * = 1,2,3 is represented in single precision arithmetic, then the 
products appearing in (4.14) can be computed exactly using double precision 
arithmetic. Thus, one has two ways to proceed. 

1. Apply a double precision version of ESSA to the sum (4.14). (If one only 
wants to use single precision then one can do this by doubling the number 
of summands.) One always gets the right sign. 

2. Apply first a single precision machine interval arithmetic version to the 
expression (4.12) or an equivalent expression. If no guaranteed sign of D 
is delivered, execute the calculation as in 1. with ESSA. 

The left-turn test is one of the most important applications of ESSA. It 
is used for example, in the Graham scan algorithm [198] for determining the 
convex hull of a plane point set, cf. Sec. 4.2. The complexity order of Graham's 
algorithm is 0(nlog2n) if η is the number of points and exact arithmetic 
underlies the computation. If the point set is read into the computer, an initial 
input data error called conversion error is unavoidable. But no further errors 
need to be accepted; one just has to replace each point of the input data set 
by the smallest machine representable set that contains that point. Clearly, 
the set is stored by means of its corners, and can be a rectangle, a straight line 
segment, or the point itself. Now we determine the convex hull of this enlarged 
(exactly represented) point set with the left-turn test. If ESSA is used for the 
left-turn test, we get the exact convex hull of the enlarged point set which is 
the smallest machine representable convex set that contains the convex set that 
would be generated by the original input data set. 

The importance of the construction of the convex hull for a point set is best 
demonstrated by various replacement procedures that have now been developed 
to overcome the lack of a reasonable exact left-turn test. For example, Knuth 

1 xi Vi 
D = 1 x-i j/2 

1 X3 V3 
(4.13) 

D = XiJ /2 + X2V3 + X3VI ~VlX2- ί/2*3 ~ 2/3*1 · (4.14) 
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[137] defined axioms that relate points in the Euclidean plane to each other via 
the sign of the determinant (4.13). Based on these axioms he defines a convex 
hull and error-free algorithm for computing convex hulls provided the sign of 
the determinant can be computed exactly. The determinant (4.13) is therefore 
expanded as in (4.12). If the input data is rounded to a fixed point range of b 
bits then it is shown that 26+1 bit arithmetic suffices for exact computation 
of the determinant. 

The order of the algorithm remains C?(nlog2n) since the computational 
cost of the interval or exact computation is constant. The above determinant 
also indicates the orientation of the three points. If D < 0 then P1P2P3 form a 
counterclockwise cycle and if D > 0, P1P2P3 form a clockwise cycle with D = 0 
indicating collinearity. 

Application 2 (Coplanarity test in 3D). 
In three dimensions it is well known that a point p \ is on a plane defined 

by three non-collinear points P I , P 2 , P 3 where Pi = (Xi,yi,Zi),i = 1 , . . . ,4, iff 

Expanding the determinant we obtain a sum of products of the form +"χ^ζ*. 
If these products are computed in triple precision, then ESSA can be used to 
obtain exact results for whether the point is on the plane or not. I.e., if s is 
the mantissa length in use, for example, single precision mantissa, the man
tissa length used in ESSA has to be t = 3s in order that exact result can be 
expected. If one does not want to write codes in triple precision numbers then 
one can write these as a sum of two double precision numbers (or even as a 
sum of three single precision numbers) by just splitting the longer numbers and 
hence one does not work beyond the basic tools of C or C++. 

In the triple precision case, t = 3s, ESSA has to deal with 24 summands, in 
the double precision case, t = 2s, with 48 summands, and in the single precision 
case, t = s, with 72 summands. 

It is highly recommended when executing the coplanarity test, to first com
pute D or the sign of D in single precision interval arithmetic. ESSA should 
only be used if the result is not decisive. 

With this approach the test can be employed as a primitive in the gift 
wrapping method [198] thus becoming a rounding error free algorithm for the 
convex hull of exactly representable numbers in 3D. Similarly, as in Appl. 1, if 
the originally given point set does not only consist of machine numbers, the gift 
wrapping method renders the smallest convex hull with machine representable 
vertices that encloses the convex hull of the original data. 

The gift wrapping method with this primitive retains the 0(n log2 n) worst 
case complexity since the computational costs of the interval or exact compu-

D = 

1 
1 
1 
1 

Xl 
X2 
X3 
xt 

V3 
y* 

Zl 
Z2 
Z3 
Zi 

= 0. 
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tations are constant since they are independent of n, the number of points in 
the given set. 

Application 3 (Order of 3 lines in plane) 
Let three lines in the plane be defined by 

OjX + hy + C{ = 0, i = 1,2,3. 

The determinant 
αϊ bi Cl 

D = 0.2 h C2 
a 3 h c3 

determines the following relationships between the lines: 

1. if D < 0 then the lines are oriented clockwise, 

2. if D = 0 then the three lines either intersect in a point or at least two of 
the lines are parallel, 

3. if D > 0 then the lines are oriented counterclockwise. 

(Three lines ii ,l2,l3 in the plane are said to be oriented clockwise (coun-
terclockwise) if 

(i) h and l2 intersect in a point p^, 
h and I3 intersect in a point p2, 
l2 and / 3 intersect in a point pi, 

(ii) pi,p2,P3 are unequal, 

(iii) running through the triangle with vertices Pi,P2,P3 in this or
der is done clockwise (counterclockwise)). 

The complete procedure for computing the sign of D is analogous to the 
procedure in the previous application. The procedure can be seen to form the 
core primitive of algorithms to compute line arrangements in the plane [190]. 
Again, ESSA combined with interval arithmetic can be applied successfully to 
receive a guaranteed result, provided the input data are machine numbers. 

Application 4 (In-circle-test) 
Let pi = (xi,yt),i = 1,2,...4 be four points in the plane and assume 

Pi)P2,P3 (not collinear) define a circle C. Then the relationship of P4 to C is 
determined by the sign of the determinant 

D = 

Xl 2/1 1 
X2 V2 x\+yl 1 
X3 2/3 1 
x* 2/4 x\ + y\ 1 
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Assume that pi,P2,P3 in this order lie clockwise on the circle. (This can be 
checked with the left-turn test, cf. Appl. 1.) Then 

if D > 0 then pA is inside C, 
if D = 0 then p\ is on C, 
and if D < 0 then p 4 is outside C. 

When the determinant is multiplied through then products of the form 

XiVj(xl + vl) = XiVjxl + XiViVk 

result. Each product of the form XiVjx\ would require quadruple precision 
for getting exact results with ESSA if the points Pi are of single precision. 
However, those expressions could also be accomplished by 4 double precision 
quantities without too much mantissa manipulations, hence remaining thus in 
a comfortable environment of the language C. This is done as follows: We start 
with xuyj,Xk in single precision, compute the products XiVj and x\ in double 
precision, but split each of them immediately in the sum of two single precision 
numbers, 

XiVj = (xiVj)L + (xiVj)R, xl = {X\)L + {X\)R-

Finally, we execute the four products 

(Χϊνί)Λχϊ)μ, v,H = L,R 

in double precision. Their exact sum is just χ $ ί χ \ . Hence the determinant is 
the sum of 192 double precision quantities, and the computation of the sign of 
D can be done exactly by ESSA. 

In [137] the determinant is computed using as sophisticated analysis of 
expansion in minors obtaining an exact result assuming that the input data 
was rounded into a certain fixed point range. The same problem is considered 
in [13], where the exact sign of a 2 χ 2 determinant is computed. 

The in-circle test is accepted as a primitive for the so-called incremental 
method for the construction of a Voronoi diagram [123]. In [259] numerical 
error is reduced by computing the primitive to quadruple precision. 

As in the former applications, we recommend the combination of single 
precision machine interval arithmetic with ESSA in order to get exact results. 
This makes, however, sense only then if the input parameters pt are already 
machine numbers, which is, for example, the case if the pj's stem from other 
calculations. This also holds for Appl. 3, but not for Appl. 1 and 2, where 
the exact sign of the determinants at least guarantee the convexity of the hull 
computed from the smallest possible boxes including the input parameters after 
their conversion to machine numbers. 
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4.7 ESSA and Preprocessing Implementation in 
C 

The following C code due to G. Mackenbrock implements Alg. 9. The sort 
algorithm is from [199]. It can be replaced by any other suitable sort algorithm. 

/* 
Funct ion :sgnsum 
D e s c r i p t i o n : sgnsum c a l c u l a t e s t h e e x a c t s i g n of 

t h e sum of t h e S [ i ] . 
Input: S . . an array of summands of t y p e f l o a t ; 

n S . . l e n g t h of S. 
Output: t h e s i g n of t h e sum. 
Local v a r i a b l e s : n . . l e n g t h of t h e l i s t b; 

m.. l e n g t h of t h e l i s t ; 
E . . exponent of a [ l ] ; 
F . . exponent of b [ l ] ; 
s g . . - 1 -> sum n e g a t i v e 

0 -> sum 0 
+1 -> sum p o s i t i v e 

t h e remaining v a r i a b l e s are a u x i l i a r y v a r i a b l e s . 
* / 

i n t sgnsum(f loat *S , i n t 1) 
{ 

i n t n , m , E , F , i , s g ; 
f l o a t * a , * b , a s , a s s , b s , b s s , u u , u , v ; 

/* 
I n i t i a l i z a t i o n of t h e l i s t s a and b . 

*/ 
i f ( ( a = ( f l o a t * ) c a l l o c ( l + 3 , s i z e o f ( f l o a t ) ) ) = N U L L ) 
{ 

p r i n t f ( " N o mem. Program t e r m i n a t e d . \ n " ) ; 
e x i t ( l ) ; 

} 
i f ( (b= ( f l o a t * ) c a l l o c (1+3, s i z e o f ( f l o a t ) ))=NULL ) 
•C 

p r i n t f ( " N o mem. Program t e r m i n a t e d . \ n " ) ; 
e x i t ( l ) ; 

} 
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/* 
Splitting of S into positive and negative summands. 

*/ 
n=m=0; 
for (i=l;i<=l;i++) 

if (S[i]>0) a[++m]=S[i]; 
else if (S[i]<0) b[++n]=fabs(S[i]); 

/ • 
Sorting of the l i s t s a and b in descending order. 

*/ 
if ( m>l tt sg==-2 ) sort(m,a); 
if ( n>l tt sg==-2 ) sort(n.b); 

/* 
Main loop (the proper algorithm ESSA). 

*/ 
LoopStart: 

/* 
Step 1: (Termination Criteria) 

, / 
if ( n==0 tt m==0 ) { sg=0; goto LoopEnd; } 
if ( n==0 ) { sg=l; goto LoopEnd; } 
if ( m==0 ) { sg=-l; goto LoopEnd; } 
frexp(b[l],*F); 
if ( n==0 II a[l]>=ldexp(n,F) tt m>0 ) { sg=l; goto LoopEnd;} 
frexp(a[l],ftE); 
if ( m==0 II b[l]>=ldexp(m,E) tt n>0 ) { sg=-l; goto LoopEnd;} 

/ • 
Step 2: (Auxiliary variables) 

*/ 
as=ass=bs=bss=0; 

/* 
Step 3: (Comparision and processing of the leading 

summands of the l i s ts) 
. / 

/* 
Ε contains the exponent of a[l] and F the exponent of b[l] in 
base 2. 

*/ 
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/ # 
Step 3, c a s e ( i ) : 

* / 
i f (E==F) 
{ 

i f ( a [ l ] > = b [ l ] ) a s = a [ l ] - b [ l ] ; 
e l s e bs= b [ l ] - a [ l ] ; 

} 

/ * 
Step 3, c a s e ( i i ) : 

* / 
e l s e i f (E>F) 
{ 

uu= l d e x p ( l . F - l ) ; 
i f (b [ l ]==uu) u=uu; 
e l s e u=uu*2; 
a s = a [ l ] - u ; 
a s s = u - b [ l ] ; 

} 

/* 
Step 3, case ( i i i ) : 

. / 
e l s e i f (F>E) 
{ 

uu= ldexp(1 ,E-1 ) ; 
i f ( a [ l ]==uu) v=uu; 
e l s e v=uu*2; 
bs= b [ l ] - v ; 
bss= v - a [ l ] ; 

} 

/* 
Step 4 : (Rearrangement of t h e l i s t s , keep ing S c o n s t a n t . ) 

* / 

i f (as==0 kk ass==0) 
{ 

a [ l ] = a [ m ] ; 
m—; 
BuildHeapFromTop(m,a); 

} 
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i f (as==0 kk a s s ! = 0 ) 
{ 

a [ l ] = a s a ; 
BuildHeapFromTop(m,a); 

} 
i f (a s !=0 kk aas==0) 
{ 

a [ l ] = a s ; 
BuildHeapFromTop(m,a); 

} 
i f ( a s !=0 kk aas !=0 ) 
ί 

a [ l ] = a s ; 
BuildHeapFromTop(m,a); 
a[++m]=a8s; 
BuildHeapFromBelov(m,a); 

} 

i f (bs==0 kk bss==0) 
ί 

b [ l ] = b [ n ] ; 
n ~ ; 
BuildHeapFromTop(n,b); 

} 
i f (bs==0 ** b s s ! = 0 ) 
{ 

b [ l ] = b s s ; 
BuildHeapFromTop(n,b); 

} 
i f (bs!=0 kk bss==0) 
ί 

b [ l ] = b s ; 
BuildHeapFromTop(n,b); 

} 
i f (bs!=0 kk b s s ! = 0 ) 
{ 

b [ l ] = b s ; 
BuildHeapFromTop(n,b); 
b [ + + n ] = b B 8 ; 
BuildHeapFromBelow(n,b); 

} 
g o t o LoopStart; 

LoopEnd: 
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f r e e ( b ) ; 
f r e e ( a ) ; 

r e turn s g ; 
} 
/* 
Funct ion s o r t : 
D e s c r i p t i o n : Heapsort from ' 'Numerica l Rec ipes i n C " by P r e s s , 

F lannery , Teukolsky and V e t t e r l i n g , Cambridge U n i v e r s i t y 
P r e s s , page 247 . 

Input: r a . . f l o a t i n g p o i n t numbers; 
n . . l e n g t h of r a . 

Output: ra s o r t e d i n descend ing order . 
„ / 

v o i d s o r t ( i n t n, f l o a t *ra) 
{ 

i n t l , j , i r , i ; 
f l o a t r r a ; 

l = ( n » 1 )+1; 
i r = n ; 
f o r ( ; ; ) 
{ 

i f ( 1 > D 
r r a = r a [ — 1 ] ; 

e l s e 
i 

r r a = r a [ i r ] ; 
r a [ i r ] = r a [ l ] ; 
i f ( — i r — 1 ) 
ί 

r a [ l ] = r r a ; 
r e t u r n ; 

} 
} / * (1<=1) * / 
i - l ; 
j - l « l ; 
wh i l e ( j < = i r ) 
{ 

i f ( j < i r && r a [ j ] > r a [ j + l ] ) ++j ; 
i f ( r r a > r a [ j ] ) 
{ 

r a [ i ] = r a [ j ] ; 
j + = ( i = j ) ; 
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} 
e l s e 

j = i r + l ; 
} 
r a [ i ] = r r a ; 

} / * f o r ( ; ; ) * / 
} 
/. 
Funct ion BuildHeapFromTop: 
D e s c r i p t i o n : The heap property f o r ra i s r e e s t a b l i s h e d under 

t h e assumption t h a t t h e property i s on ly v i o l a t e d a t t h e 
roo t ( a [ l ] ) of t h e heap. 

Input: r a , n . 
Output: ra 

*/ 
v o i d BuildHeapFromTop(int n , f l o a t *ra) 
ί 

i n t i = l , m ; 
f l o a t t o p = r a [ l ] ; 

w h i l e (2*i<=n) 
{ 

m= 2 * i ; 
i f ( ra[m]<ra[m+l] ) i f (m<n) m++; 
i f ( top<ra[m]) { r a [ i ] = r a [ m ] ; i=m; } 
e l s e break; 

} 
r a [ i ] = t o p ; 

> 
/* 
Funct ion BuildHeapFromBelow: 
D e s c r i p t i o n : The heap property f o r ra i s r e e s t a b l i s h e d under 

t h e assumption t h a t t h e proper ty i s on ly v i o l a t e d at t h e 
p l a c e η i n t h e heap. 

Input: r a , n . 
Output: r a . 

*/ 

v o i d BuildHeapFromBelow(int n , f l o a t *ra) 
{ 

i n t i=n,m; 
f l o a t l a s t = r a [ n ] ; 

w h i l e ( i / 2 > 0 ) 
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i 
m= i /2 ; 
if ( ra[m]<last ) { ra[i]=ra[m]; i=m;} 
else break; 

} 
ra[ i ]= l a s t ; 

} 
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Chapter 5 

I n t e r s e c t i o n T e s t s 

In this chapter a class of intersection problems are considered where the use of 
interval arithmetic can facilitate the geometrical and algorithmic understand
ing and hence the logical design and computational effort required. This is, 
surprisingly, not only the case, if one of the objects can be represented by 
intervals directly, but also if certain parts of the algorithm need an exact de
termination of the range of a function and if this can be obtained partially or 
completely with interval tools. 

5.1 Introduction 
An important class of primitives for geometric computations are intersection 
operations. Many geometric computations simulate real world actions in two 
and three dimensions and it is clear that, for example, in solid modelling two 
objects in three dimensions cannot occupy the same space at the same time. 
Determining whether this is the case or not involve, in part, intersection tests. 

This is certainly completely trivial for most people. If the two objects, 
however, are not directly visible, for instance, if the objects are presented only 
by their data, such as their vertices (tetrahedron, cube, etc.), by midpoint and 
radius (ball), or other parameters, an immediate answer to whether the objects 
do intersect or not, might not be available. This means that the relationship 
between the two objects has to be determined. If their relationship is such that 
they do occupy the same space at the same time, it follows that the simulation 
cannot describe a real world configuration. A robotics manipulator cannot lift 
an object from one table and place it on another table if there are objects in the 
path of the movement. In computer graphics one object may obscure another 
object seen from some viewpoint. In order to confirm that the obscured object 
need not be displayed one must have that the projection of the first object is 
included in the second object and that the second object is farther away from 
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the viewpoint than the first object. As an industrial example the plates to be 
welded into the hull of a ship can only be cut from pieces of sheet steel if they 
do not intersect. In geographical information systems, which are becoming 
increasingly important, roads can be drawn to be constructed at less cost if 
they do not intersect expensive objects such as buildings. Planar integrated 
circuits contain hundreds of thousands of elements. These elements must be 
shown to not mutually intersect and their data paths must be routed in such 
a manner that no intersections occur. 

The problems encountered in devising procedures for intersection compu
tations are hinted at in [255]: 

Singular configurations are frequently ignored in these treatments 
although they must be addressed in practical applications. (In a 
singular configuration, two solids intersect in such a way that small 
perturbations in location change the topology of the boundary of 
their intersection). 

There are essentially two types of intersection algorithms: 

1. The first type of intersection algorithm processes two objects, and returns 
Boolean answers for intersection and no intersection. An extension of this 
is the information that one object is included in the other object. 

2. The second type of intersection algorithm returns the actual intersection, 
i.e. a point, a plane figure or a solid. 

Both types of intersection algorithms have been studied extensively in a 
variety of areas of geometric computations. In solid modelling Zeid [280] states 
on page 360: 

In various geometric problems involving solid models, we are often 
faced with the following question: given a particular solid, which 
point, line segment of a portion of another solid intersects with such 
a solid. These are all geometric intersection problems. 

He then proceeds to discuss both the general intersection problem and specific 
cases of intersection problems. Specifically he considers ray/box intersection on 
p. 563 and mentions surface/surface intersections of quadric solids on p. 404. 
The book includes a total of 15 references to various intersection problems 
showing the importance of the intersection algorithms for solid modelling. In 
Preparata-Shamos [198] we find the geometric intersection problem studied 
from a point of view of computational geometry. In this context the intersection 
algorithms are studied with respect to order i.e. the algorithms are studied 
with respect to computational cost as the number of points in a polygon or 
the number of objects etc. increase. Intersection algorithms are also of great 
importance in computer graphics, in particular in the hidden line and hidden 
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surface problem where only visible lines and surfaces need be considered. It is 
furthermore of interest for ray tracing where intersections of rays with surfaces 
have to be computed. Particular techniques have been developed in this area, 
such as z-buffering see for example Foley et al. [54]. 

There is also grass-roots interest in the intersection problems as exemplified 
by the following posting in a newsgroup on the Internet: 

I am looking for good algorithms to perform the following (boolean) 
tests: 

1. (convex) polygon/circle intersection, 
2. box/cone intersection. 

Can anybody offer any advice as to where to find these routines 
(references to papers particularly preferred) - no joy in the graphics 
gems1. 

Another question to a newsgroup (March 9, 1999) was: 

I need to determine the existence of an intersection between a cube 
and a sphere. I have found a solution that solves the problem, but 
I would like to apply the most efficient proposal. Which is the most 
efficient algorithm that solves this problem? 

The objects that are treated in the geometric computations may often be 
thought of as sets in two or three dimensions. If these sets have some regularity 
properties, then it is sometimes possible to treat them within the field of interval 
analysis. A box with sides parallel to the coordinate axes in three dimensions 
can be represented by a three-dimensional interval vector. Such boxes often 
arise in geometric computations from bounding objects by faces perpendicular 
to the coordinate axes [10]. Similarly, a rectangle in two dimensions with sides 
parallel to the coordinate axes can be represented by a two-dimensional interval 
vector. This often leads to the natural use of interval analysis for intersection 
problems, in particular, for the first type of intersection problems mentioned 
above. 

In this chapter we therefore introduce elementary interval techniques to 
intersection computations. 

The advantage of interval analysis implementations of some of these com
putations are: 

1. They tend to produce simple, clear algorithms that are relatively easy 
to implement provided a robust implementation of interval arithmetic is 
available. 

'The writer of the posting wanted to express that he found no suitable algorithms in 
Graphics Gems, a series of 5 volumes concerned with graphics algorithms (see for example 
[101]). 
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2. They provide guaranteed results for a number of intersection computa
tions. 

In some cases these algorithms are more computationally expensive than the 
algorithms that can be developed using a more detailed case-by-case analysis. 
We also present the more efficient algorithm for those problems in spite of the 
fact that the easy overview is lost. This is analogous to the simple definition 
of interval multiplication given in Eq. (2.4) as compared to the more complex 
definition of interval multiplication given for example in [169]. 

As an introduction to this kind of algorithm we discuss intersection tests 
for axis-parallel rectangles. 

A = ([lb(Ax),nb(Ax)],{lb(Ay),nb(Ay)]) \ 2 

B = ([lb(Bx),ub(Bx)],[lb(Bv),ub(By)}) j e i " 

Then A, Β represent two axis-parallel rectangles in the plane. Now compute 

C = A-B (5.1) 

in interval arithmetic. Then we have the following results: 

1. If 0 G C then the rectangles A and Β intersect. 

2. If 0 0 C then the rectangles A and Β are disjoint. 

Note that 0 G C means that zero is a member of each interval coordinate 
and that 0 & C means that zero is not a member of at least one coordinate 
interval. The reason that the test is valid is that zero can only be in C if there 
is a point χ G Α Π Β, i.e. A and Β intersect. If there is no such point then zero 
is not in the intersection and A and Β are disjoint. 

As a simple example consider A = ([2,4], [1,2]) and Β = ([1,3], [0,2]) as 
shown in Figure 5.1. The interval subtraction results in C = ([—1,3], [-1,2]). 
Since zero is a member of each interval coordinate the rectangles intersect. 

Clearly the above results 1. and 2. could also have been achieved via 
comparisons and tests of the boundaries of the rectangles. This latter method 
is called the direct method as opposed to the interval method. A comparison 
gives for exact arithmetics: 

Direct method Interval method 
if m&x(\b(Ax),\b(Bx)) < min{ub(Ax),ub(Bx)) 
and 
if max(lb(Aj,),lb(.B„)) < min(ub(A„),ub(£,,)) 
then intersection 
otherwise no intersection 

if 0 G A - Β 
then intersection 
otherwise no intersection 

If the two methods are implemented on a computer, the direct method is 
error free as long as the vertices are machine numbers. If the input vertices 
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( 3 , 2 ) ( 4 , 2 ) 

(1,0) 

Figure 5.1: Intersection of two axis-parallel rectangles 

are not machine numbers there is a small possibility of getting a wrong result 
because of conversion errors. 

When interval arithmetic is implemented on a computer as machine interval 
arithmetic with the common outward rounding and a result 

Cout = A — Β 

is obtained, the conclusion 

0 £ C o u t =ϊ A , B disjoint (5.2) 

will always be correct, even if the vertices are not machine numbers. It is, 
however, possible that A and Β are disjoint but that the computation shows 
the result 

0 e C o u t 

because of the outward rounding. Such a constellation happens infrequently 
and can only occur if the vertices of the rectangles are machine numbers and 
if the distance of the two rectangles has the smallest possible positive value. 
(This value depends on the related components and the meaning is that if the 
rectangle vertices are perturbed by an arbitrarily small amount towards each 
other so that the vertices remain machine representable, the rectangles will no 
longer be disjoint. This situation could be discovered easily if desired.) 

If such an extreme constellation is not given, the conclusion 

0 € C o u t =>• A and Β intersect 

is valid. 
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Alternatively, the rectangle difference can additionally be executed using 
inward rounding (available in almost all interval packages) such that a rectangle 

Cin = A - Β 

is obtained. This allows the conclusion 

0 G Ci„ => A and Β intersect. (5.3) 

The advantage of the combined application of inward and outward round
ing is that the simple logical structure of the intersection test is kept. The 
arithmetical result of the difference is then an almost identical nested pair of 
rectangles which are appropriate for the test phases (5.2) and (5.3) and which 
always render a correct result. 

ESSA is an appropriate tool for those constellations which neither satisfy 
(5.2) nor (5.3) since the exact test condition 0 G C or 0 £ C is equivalent 
to determining the signs of the differences of the components of the related 
vertices. All these 3 cases together give a complete and consistent test provided 
the vertices of the rectangles are machine numbers. 

If the appropriate endpoints of the edges are subtracted using outward 
rounding instead of computing the inward rounding in the computation of the 
difference of the rectangles then pairs of intervals result which is equivalent to 
inward rounding of the intervals. 

More about inward rounding can be found in Sec. 5.3. 
In the remainder of this chapter we discuss further, more sophisticated 

intersection problems. 

5.2 Line Segment Intersections 
We consider: how to computationally test reliably if two line segments (short
ened in the sequel as segments) intersect in the plane. The test should also 
distinguish between intersections where an endpoint of one segment lies on the 
second segment and where the intersection point is between the endpoints of 
the segments for both segments. This test is frequently a part of algorithms in 
geometric modelling, computer graphics, GIS and computational geometry, to 
name a few areas. 

The test is often implemented on a computer using single or double precision 
floating point arithmetic. One implementation is to compute the intersection 
point of the lines which the segments belong to then checking if the intersection 
point lies on both segments. All of the implementations using fixed precision 
floating point arithmetic may fail due to the numerical errors causing multiple, 
missed or displaced intersections. 

The paper by Douglas [35] discussed an early implementation of a line 
intersection testing routine. His description is typical of what happens when 
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trying to implement even simple routines reliably on a computer. The problem 
was optimistically stated as: 

Simple in concept, but tricky. I want a general purpose subroutine 
in FORTRAN which will tell if two line segments in the plane cross 
each other,... 

He then discovered that when it came to dealing with parallel segments, close 
to parallel segments, segments that overlap, multiple segments meeting at a 
point etc. inconsistencies could occur and he realized that 

All of these inconsistencies eventually drag the programmer down 
from his high level math (i.e. algebra), through computer language 
(i.e. FORTRAN), into the realm of the machine methods actually 
used to perform arithmetic operations and their restrictions. 

He eventually had a routine were the original problem had been split into 36 
cases. The program worked most of the time. 

A general method for avoiding the numerical errors and degeneracies caused 
by the rounding errors in finite precision floating point arithmetic is to use exact 
computations. When the intersection is determined exactly the above problems 
cannot occur [62, 63, 80, 123]. The approach works under the reasonable as
sumption that the data items under consideration are originally represented as 
fixed-precision floating-point numbers. Then, in each step of the algorithm, the 
exact values of all the components are calculated, which leads to the correct 
result [62, 63]. 

Most of the approaches that deal with the problem of testing for segment 
intersection exactly, compute the point of the segment intersection in simulated 
real arithmetic [35, 63, 106, 119, 159]. Such a simulation can for example be 
done in rational arithmetic and up to a point, in multiple precision arithmetic. 
Since these arithmetics are computationally expensive a two step approach is 
often employed where interval arithmetic is first applied as a filter (see Sec. 
1.8) followed by the more expensive simulated real arithmetic when interval 
arithmetic fails to give a guaranteed result [119, 134]. 

In the remainder of this section we follow the approach of [67] where the 
algorithm that tests for the intersection of two line segments exactly, uses fixed 
precision floating point arithmetic but without actually computing the inter
section point. The algorithm considers the point of intersection between two 
segments as the solution of a system of linear equations. First, an interval filter 
is applied to determine whether the segments intersect. When an inconclusive 
answer is obtained, ESSA is applied in together with the equations for the 
intersection point to determine whether the segments intersect without com
puting the intersection point. In comparison with the routine described in [35] 
the programmer is elevated from the low level of machine methods to at least 
the level of C code, and number of cases required in the approach are reduced 
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Figure 5.2: Intersecting segments 

to the 10 more manageable cases given by the algorithm in the sequel which 
when implemented as a computer program results in a program that always 
provides the correct answer. 

We now give a more precise definition of the line segment intersection test. 
Given are two line segments AiA 2 and B\B2 in R2 with endpoints defined by 
vectors Αι = {αιχ,αιυ), A2 = (a2x,a2v) and Bi = (δι χ,δι ν), B2 = ( & 2 X , & 2 V ) -

We want to determine reliably whether the two line segments intersect or not. 
The coordinates of endpoints of the segments along the χ and y axes are 

assumed to be represented as machine numbers with fixed precision, i.e. the 
endpoints of the segments are aligned to the grid defined by the representable 
floating point numbers (see Figure 5.2). 

Let the equation of the line segment between A\ and A2 be X = t\A\ + (1 — 
t\)A2, t\ € [0,1]. Analogously for the segment B\B2. Then the two segments 
intersect if and only if the equation 

M i + (1 - h)A2 = t2Bi + (1 - t2)B2 (5.4) 

is solvable for ti,t2 € [0,1]. 
This can be written as the following system in the unknowns t i ,*2: 

ai xti + a 2 x ( l - ti) = & 1 X * 2 + » 2 x ( l -
ai„ti + a2y(l - ti) = 6i„f2 + &2„(1 - r2), 
0 < ti < 1, 
0 < t2 < 1. 

Let U be the determinant of the coefficient matrix of the 2 equations which 
can be obtained after a simple rearrangement of the equations above. Then 
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U = O i x & 2 j / - O l i ^ l y - 0,2χθ2ν + 0.2xb\y - 0 2 i O l y + 02xO,2v + b\xa\y — b\x02y 

If U φ 0, the two equations are solvable, and we get by the well-known 
Cramer's rule that 

Di -b2xbiy - Cl2xb2y + « 2 g f r l y + & 2 g Q 2 y + ^ l a ^ y - b\x0.2v . . 

ti = -jj-- Jj ,(5-5) 

D2 o.\xb2y - aixa.2V - aixbiy - & 2 x O i y + b2XQ2V + a2xaiy . 
<2 = Jj- = Jj -(5-6) 

Furthermore U = 0 if and only if the two equations of the system are linearly 
dependent, that is, the two segments A1A2 and B1B2 are parallel. 

The original intersection problem is now transformed to the validated in
vestigation whether solutions t\ and t2 of the two equations exist at all and 
whether both ti and t 2 belong to the interval [0,1]. This will be the background 
of the intersection test and the following algorithm. 

The algorithm begins with the determination of the sign of the determinant 
U, which can be done exactly if ESSA is used. First the case is considered 
when the determinant U is not equal to 0. Then it is determined whether ti is 
larger than 0. To do this it suffices to compute the sign of t\ exactly. This can 
also be done by ESSA. To compare ti against 1 one must compute the sign of 
the difference (Di - U) exactly. This can be done with ESSA too. Then the 
analogous action is applied to £2· 

The various constellations which can occur are grouped in Fig. 5.3. Case 
A shows the two cases of no intersection, i.e. where the generated lines inter
sect outside the segments (Case A, left figure) and where they intersect inside 
at least one segment (Case A, right figure). In Case Β the situations where 
an endpoint of one segment is on the other segment and where two segment 
endpoints coincide are included. In Case C the two lines intersect with the 
intersection point being strictly between the endpoints of both line segments. 

These cases will be referred to in the algorithm as well. The parameter Flag 
in the algorithm is incorporated in order to demonstrate the connections to the 
cases in Fig. 5.3. 

Consider now the degenerate case when the two segments are parallel (i.e. 
U = 0). To determine whether the segments intersect we check whether one 
endpoint, Bi of one segment B 1 B 2 belongs to the straight line passing through 
the other segment AjA 2 . This can be done by applying the CCW (Counter 
Clock Wise) orientation test and computing the sign of the underlying deter
minant exactly by using ESSA as shown in Sec. 4.6. Let 

CCW(Al,A2,Bl) = 
1 o i i aiy 

1 a2x α2υ 

1 bix biy 

(5.7) 
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C a s e A C a s e Β C a s e C 

Figure 5.3: The three cases of linesegment intersection 

Then this test says if CCW(A\,A2,B\) = 0 then all three endpoints (and 
hence all four) lie on the same line. In this case the coordinates of the endpoints 
are checked to make a final conclusion about whether the two segments intersect 
or not. 

The algorithm proceeds in the following manner: 

A L G O R I T H M 1 0 (Line segment intersection test) 

Step 1 . Set Flag = 0. 

Step 2. Compute the sign of the denominator U using ESSA. 

Step 3 . If U φ 0 then 

1. Fori = 1,2 
(a) Compute the sign of the numerator Dt using ESSA. 
(b) If sgn(Di) = 0 then Di/U = 0. 
(c) Ifsgn(Di) = -sgn(U) then Di/U < 0. STOP (No intersection, 

Case A.) 
(d) Otherwise, Di/U > 0. Compare Di/U to 1: 

i. Compute the sign of the expression (Di — U) using ESSA. 
ii. Ifsign(Di - U) < 0 then Di/U < 1. Flag := Flag + 5. 

tit. If sign(Di -U)=0 then Di/U = 1. Flag := Flag + 3. 
iv. Ifsign(Di - U) > 0 then DJU > 1. STOP (No intersec

tion, Case A.) 
2. If Flag = 10 then STOP (Intersection, Case C) otherwise 

STOP (Intersection, Case B.) 

Step 4. If U = 0 then 

1. ΙίΟΟ]ν(Αι,Α2,Βι)φΟ then 
STOP (No intersection) . 
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2. Otherwise, CCW(Ai,A2,Bi) = 0 

(a) If Αχ, A2, Bi and 
B2 lie on the same vertical line, i.e. 
a\x = a2x = b\x then compare the y 
coordinates of the points: 

If a\y < h\y < a2y or a\y < biy < a2y then 
STOP (Intersection). 
Otherwise STOP (No intersection) 

(b) Otherwise, A\, A2, B\ and B2 do not 
lie on the same vertical line. Compare their χ coordinates: 

If o i i < hi < a2x or a\x < k i x < a2x then 
STOP (Intersection). 
Otherwise STOP (No intersection) 

We note that each of the sign comparisons can be performed exactly in 
a fixed precision floating point machine arithmetic if the components of the 
segment endpoints are machine numbers. Nevertheless, it is recommended to 
apply an interval filter before the comparisons to reduce the average computa
tional cost. The values of D\,D2 and U should be evaluated in nested form in 
case of the interval arithmetic computation. 

In order to demonstrate the features of the algorithm and the importance 
of validated tests, we show the results of numerical experiments. 

Two close to degenerate case configurations of the segments were selected 
for the tests. In the first configuration the segments were almost parallel to 
each other (Figure 5.4(a)), and in the second they were almost perpendicular 
(see Figure 5.4(b)). 

The coordinates of the endpoints were generated by a procedure that ran
domly selected them from the small areas that are shaded in the figure where 
the size of the shaded areas were selected according to a perturbation parameter, 
an integer power of 2 in the range 0 to 26, where 2° results in the maximum 
perturbation - the segments are practically random and where 2 _ 2 e implies 
practically no perturbation, i.e. the coordinates of the segment endpoints dif
fer only in the least significant bit of the mantissa representation. 

Three different algorithms were implemented and run for each of the above 
configurations. The number of test runs for each algorithm and each pertur
bation was 5000. First, the ESSA-based method was applied to compute the 
intersection test exactly. We do not show the results because they all were, 
in fact, exact. Then the direct computation algorithm was implemented for 
computing the intersection directly from the system given where only floating 
point arithmetic was used. 

The number of incorrectly reported intersections was recorded for varied 
perturbation values for the direct method. Similarly, the direct method was 
executed on an interval platform (interval method). In this case the number of 

�� �� �� �� ��



120 Intersection Tests 

Figure 5.4: Close to degenerate configuration of segments 

inconclusive results were recorded. In these cases ESSA was called in order to 
finally obtain a correct result. 

Both the number of incorrect results and inconclusive results recorded for 
5000 test runs for each perturbation value of the parallel segment configura
tion are presented in Table 5.1 starting with the perturbation 2~n since the 
perturbations 2° to 2 ~ n resulted in no incorrect or inconclusive results. 

The test results show that when the perturbation parameter is small the 
number of incorrect and inconclusive results is close to 1%. However, when 
the perturbation parameter increases above 18 the number of inconclusive and 
incorrect results grows exponentially, reaching the 100% mark for the pertur
bation parameter 24. This can be explained by the fact that with high pertur
bation parameters the segments are not parallel in almost 100% of the cases, 
but the direct algorithm reports that they are. 

The second series of experiments were conducted for the perpendicular seg
ment configuration. The test results are presented in Table 5.2. The percentage 
of results that are wrong for each of the two configurations are shown in Figs. 
5.4 and 5.5 labeled "Direct Wrong". On the same figures the number of incon
clusive interval evaluations are shown as "Interval Inconclusive". 

The exponential grows in the number of inconclusive and incorrect results 
are noticeable for the lowest values of the perturbation parameter. The main 
difference in the results is that the number of incorrectly reported segment 
intersections reaches 50% for perturbation 2 _ 2 e . This is justified by the fact 
that the program that initially generated the perpendicular segments generated 
intersecting segments in 50% of the cases, but the direct intersection algorithm 
reports that segments intersect in all cases, thus it is wrong in a half of the 
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Power Perturbation Number of incorrect Number of inconclusive 
of 2 results results 

(direct method) (interval method) 
-11 0.000488281 0 0 
-12 0.000244141 1 0 
-13 0.000122070 2 0 
-14 6.10352E-05 1 0 
-15 3.05176E-05 2 0 
-16 1.52588E-05 5 0 
-17 7.62939E-06 17 0 
-18 3.81470E-06 32 1 
-19 1.90735E-06 57 2 
-20 9.53674E-07 130 12 
-21 4.76837E-07 271 48 
-22 2.38419E-07 499 133 
-23 1.19209E-07 916 416 
-24 5.96046E-08 1547 2011 
-25 2.98023E-08 4349 5000 
-26 1.49012E-08 5000 5000 

Table 5.1: Test results for parallel segment configuration 
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Figure 5.5: Dependence of wrong and inconclusive results on the perturbation 
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Perpendicular segments 
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Figure 5.6: Dependence of wrong and inconclusive results on the perturbation 

Power Perturbation Number of incorrect Number of inconclusive 
of 2 results results 

(direct method) (interval method) 
-11 0.000488281 0 0 
-12 0.000244141 1 0 
-13 0.000122070 1 0 
-14 6.10352E-05 2 0 
-15 3.05176E-05 2 0 
-16 1.52588E-05 8 0 
-17 7.62939E-06 13 0 
-18 3.81470E-06 26 3 
-19 1.90735E-06 56 8 
-20 9.53674E-07 107 35 
-21 4.76837E-07 241 126 
-22 2.38419E-07 400 402 
-23 1.19209E-07 764 1065 
-24 5.96046E-08 1202 3596 
-25 2.98023E-08 1698 5000 
-26 1.49012E-08 2600 5000 

Table 5.2: Test results for perpendicular segment configuration 
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reported answers. 

5.3 Box-Plane Intersection Testing 
Considering the interactions and correlations between logic, accuracy, robust
ness, reliability and costs we discuss a very simple problem, in order to give 
an example for the specific class of computational geometry problems where 
selfvalidation is required and for the specific way of reasoning used to arrive 
at reliable solutions. That problem is to provide a reliable and reasonable 
Boolean-valued (and not triple-valued!) algorithm to decide whether an axes-
parallel box and a plane intersect or not. We show that it is in fact possible 
to avoid each kind of uncertainty and error provided the box corners and the 
coefficients of the plane equation are already machine numbers2. Then the 
answer will be given for any geometrical constellation and will be completely 
reliable and never uncertain. 

We provide three algorithms. Two of them are fairly obvious whereas the 
third one is not. We show that each of them has its advantages and each of 
them its disadvantages with respect to numerical costs, mathematical trans
parency and overhead. It is, in fact, surprising to see that the easiest way of 
implementing the test which everybody would likely use as a first trial algo
rithm is far from being the best among the three. Indeed, as one can see from 
our discussion below, one cannot say that any one of the three algorithms is 
the absolute best one. 

We want to test whether an axes-parallel 3D box represented by X — 
(Χι,Χι,Χζ), where Xi, i = 1,2,3 are intervals, intersects a plane defined 
by the equation 

f(x) = αιχι + o 2X2 + 03X3 + 0.4 = 0 

where the parameters, at, i = 1,2,3,4 are given. It is assumed that the input 
data, that is, the coefficients of the plane equation and the vertices of the 
box, is already machine representable and that the test guarantees to provide 
the correct result for all possible configurations. The test is therefore only 
executed with the usual proviso that any actual real life numbers will first have 
been converted to machine numbers. If the input to the data for the test is, for 
example, the result of previous computations then the representation is already 
exact. 

The arithmetic and logic that stand behind such a test are extremely simple, 
i. e. 

plane and box X intersect iff there exist x,y e X such that f(x) < 0 < f(y) 
or, equivalently, 

2 A note on box and plane intersections where the plane is defined by various means is 
given in [215]. 
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plane and box X do not intersect, iff either f(x) < 0 for any χ £ X or 
f(x) > 0 for any χ G X holds. 

Various numerical implementations of this definition are possible: One could 
use all the points χ of X in the second form of the definition (as shown in 
approach A below), or any special representatives of the box such as vertices or 
diagonals (as shown in approaches Β and C, below). Independent of the choice 
of implementation one has to fight with and control the rounding errors. We 
select three representative implementations for demonstration and discussion. 
We make use of very few basic principle of interval arithmetic from Ch. 2. 

A. Direct Interval Computation with Outward and Inward 
Rounding 
As before the range of / over X is denoted by f(X). Furthermore let 

F(X) = αιΧι + a2X2 + a3X3 + a 4 

be the natural interval extension of f(x) to X. Generally, F(X) cannot be rep
resented on the computer since there are only finitely many machine numbers 
available. In order not to loose the logical connection between F(X) and the 
plane equation, F(X) is evaluated twice, once with outward rounding, as is 
commonly the case in interval computations, and once with inward rounding, 
which is also possible in almost all interval software packages (see also [132]). 
Thus we obtain two approximations of F(X), that is, F0Ut(X) and Fi„w(X), 
respectively. Note that Fi„w(X) can be the empty set. In any case, 

Finw(X)QF(X)CF0Ut(X). 

Theorem 3 says that the natural interval extension of a multivariate function 
gives the range if each of the variables occurs at most once and of power one. 
One recognizes that this theorem is applicable to / , and we get 

f(X) = F(X). 

Hence, we have machine representable outer and inner approximations of 
the range, f(X). That is, 

Finw(X) C f(X) C Fout(X). 

This inclusion chain renders the following validated result: 
(i) If 0 G Finw(X), the box and the plane intersect, 
(ii) if 0 φ F0Ut(X), box and plane do not intersect. 
(iii) In the remaining cases, which can be summarized as 

0€Fout(X)\Finw(X) 
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the computation up to this stage was not effective or precise enough to allow 
a decision. 

Generally, the two intervals Fout(X) and Finw(X) will have almost the same 
size so that case (iii) will only occur very infrequently. Nevertheless, one also 
has to provide a way to get a reliable test result in this case. We will return to 
this issue later in point D. 

B. Direct Interval Computation of the Vertices of the Box 
The numerical procedure will in this case follow the fact that box and plane 
do not intersect iff the eight vertices of the box lie in only one of the two open 
half spaces defined by the plane. Let 

Vl,...,V8 

be the eight vertices of the box X. Then box and plane intersect iff two vertices 
Vi and Vj exist that satisfy 

/(«,) < 0 < /(uj). 

Let F(vi) be the machine interval arithmetic computation of f(vi) with 
regular outward rounding for t = 1, ...,8. Then one gets the following result: 

(i)If 
F(vi) < 0 < F(Vj) 

is satisfied for some indices i, j € {1, ···, 8} then the box and the plane intersect. 

(ii) If F(vi) < 0 for any i = 1, ...,8 or 
if F(vi) > 0 for any i = 1 , 8 
then the box and the plane do not intersect. 

(iii) In the remaining cases, the computation up to this stage was not effec
tive enough to allow a decision. 

As in implementation A, one needs a way to cover the constellations related 
to this case (iii). This will be settled in point D. 

C. Testing Only a Representative Main Diagonal 
The numerical procedure in this implementation is based on the very surprising 
and almost unknown fact that the box intersects the plane iff the plane intersects 
that main diagonal of the box that has the smallest unoriented angle to the 
normal of the plane. 

In order to use this fact, the box vertices are labeled as in Fig. 5.7. Let 
then the main diagonals D i , £ > 4 of the box be denned in such a manner that 
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Figure 5.7: Box-plane intersection 
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D\ connects v\ with vj, 
Di connects vi with wg, 
X>3 connects v% with u5, 
D4 connects uj with v§. 
Since we have to deal with orientation, these diagonals are represented as 

vectors which are also denoted by D\, . . . , D A : 
DI =v7 - Vi, 

D 2 = V g - v2, 

D3 = v h - v3, 
Di = ve - v4. 
As one can see, the numerical values of the coordinates of the vectors are 

not essential for the characterization of the diagonals, but only the sign of the 
coordinates, cf. Fig. 5.7. Thus the diagonals are uniquely defined by the sign 
distribution of their coordinates, 

Dx ~ (+ + +), 
D2 ~ (- + +), 
D 3 ~ ( - - +), 
Di ~ (+ - +)· 
If degeneracies are admitted, that is, the box is no longer solid, the charac

terization is still valid, if -I- stands for a nonnegative real. Then some diagonals 
will coincide. They are still uniquely defined by the signs, but be aware, their 
numbering is not. 

Let now η — (m n2 TI3) be a vector and n3 > 0. Let further Do be a main 
diagonal which has the sign distribution (sgn(ni) sgn(n2) +) where sgn(0) is 
assigned + as in the degenerate case. Then Do is that main diagonal which 
has the smallest unoriented angle among Di, ...,D\ to n. 

Crucial for our test is the following 

Proposition. The box diagonal with the smallest unoriented angle to the 
plane normal intersects the plane iff the box intersects the plane. 

Proof, (i) It is obvious that box and plane intersect if one of the diagonals 
intersect the plane since the diagonals are part of the box. 

(ii) Now assume that the box and plane intersect and further assume that 
no box edge is parallel to the plane. Then there exist vertices v' and v" so that 
v' is farthest from the plane on one side and v" is farthest from the plane on 
the other side. 

Next we prove that v' and v" are the endpoints of a main diagonal: 
Suppose v' and v" are on the same edge. Then there exist at least one v'" 

on an edge joining v' (or on an edge joining v") that is farther away from the 
plane than v' (or v"). Hence v' and v" cannot be on the same edge. 

Similarly, they cannot be on the same face. Hence v' and v" must form the 
endpoints of a box diagonal. 
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It is now easy to see that the diagonal formed by v' and v" has the smallest 
unoriented angle with the plane normal: 

The projection of this diagonal onto the plane normal must be the largest 
projection of all the diagonals since the endpoints of the diagonal are furthest 
away from the plane on either side. Since all of the diagonals have the same 
length the diagonal with the largest projection must form the smallest angle by 
the definition of the cosine of the angle. Since υ' and v" are on different sides of 
the plane (degeneracies included) the connecting diagonal intersects the box. 

If one box edge is parallel to the plane, cf. the technical assumption at 
the begin of (ii), one proceeds analogously to construct an appropriate main 
diagonal, but it is no longer uniquely defined. • 

We return to our concrete geometric situation. The plane was given by the 
equation 

f(x) = ayXi + o 2X2 4- 03X3 + a 4 = 0. 

Let for a moment 03 > 0. Then, by the normal form of the plane, the 
normal vector of the plane is, up to the length, defined by 

(αχ α 2 α 3 ) . 

Hence the main diagonal which is required for the test is determined as 
follows: 

Let the coefficients of the plane equation, oi, . . . , 0 4 , be given (again without 
any restrictions). Then we obtain the following procedure: 
1. Determine a main diagonal Do which has the sign distribution 

(sgn(cn) sgn(a2) +) if sgn(a3) > 0, 

or the sign distribution 

(-son(ai) - sgn(a2) +) if sgn(a3) < 0. 

2. Let Vi and Vj be the endpoints of DQ. Evaluate F(vi) and F(VJ) as in B. 
Then one gets the following result: 

(i)If 
F(vi)<0<F(VJ) 

or 
F(Vj) < 0 < F ( V I ) 

is satisfied, the plane and Do, hence the plane and the box intersect. 
(ii) If F{vi),F(VJ) > 0 or if F(vi),F(vj) < 0 

the plane and Do, hence the plane and the box do not intersect. 
(iii) In the remaining cases, the computation up to this stage was not ef

fective or precise enough to enforce a decision. This will be settled in point 
D. 
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D. Procedure for the Remaining Undecidable Cases 

In each of the three implementations there remained a percentage of constel
lations which could not be decided. In order to complete the tests one has to 
apply an exactly working algorithm for comparisons of sums, or which is the 
same, for determining the sign of a sum since all the undetermined cases can be 
brought to this form. An algorithm which meets these requirements is ESSA. 
Therefore, each of the implementations A, B, or C together with ESSA is able 
to give a complete and reliable answer to the question whether the box and the 
plane intersect. 

5.3.1 Which of the 3 Approaches is the Best? 

After having described three implementation samples, one question is still open, 
that is the question which of them is best and can be recommended. This is not 
easy to say and depends mainly on the expectations of the user. 

Implementation A is the simplest one and it is very easy to handle. It could 
be a favorite implementation on the average since, statistically, it will have the 
most favorable computation time. However, if the undetermined case (iii) in A 
is addressed, i. e. 

0 i Finw(X), 0 € F0Ut(X) 

then the former computational information is completely worthless and cannot 
be used for a supplementary final correct computation. The reason is that if 
(iii) occurs, "most" of the corners are on the one side of the plane and the 
remaining "few" are so near the plane that the application of A cannot figure 
out definitively on which side of the plane they are. So the corners have to 
be checked again with ESSA. The spectrum ranges from 1 till all 8 corners, so 
that worst case analysts will never use implementation A. 

The code for implementation Β is as simple as the code for A. The average 
costs, however, are higher than at A, since one has between 2 and 8 corner 
evaluations already in the definitive case without ESSA. But if the undeter
mined case (iii) in Β happens, one already knows the critical corners and one 
only has to process these with ESSA. This shows that the worst case analysis 
is already better than the one for A. 

The code for the implementation C is already more difficult than the pre
vious code, and the mathematical background is charming but not too easy to 
understand. The average computational costs, however, are lower than in case 
Β and comparable with the costs in case A. The worst case analysis for C is 
better than for case A and case B. 
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T r i a n g l e i n R e c t a n g l e i n O v e r l a p D i s j o i n t 
r e c t a n g l e t r i a n g l e 

Figure 5.8: The four possible rectangle-triangle configurations 

5.4 Rectangle-Triangle Intersection Testing 
One of the primitive operations that occur in many geometric computations is 
to establish the relationship between a rectangle which can be assumed to be 
axis-parallel and an arbitrary triangle both lying in the same plane. Typically 
this operation might occur as part of a subdivision process or as part of the 
interrogation of a map. 

In order to discuss the possible cases we first define the term overlap for 
two sets, or geometric objects A and B: 

A overlaps Β iff Α Π Β φ 0 and neither AC. Β nor Β C A. 

That is, A is not contained in Β, Β is not contained in A but A and Β intersect. 
The aim of this section, based on [219], is to develop two procedures for 

recognizing the possible rectangle-triangle relationships: 

1. containment of the triangle in the rectangle, 

2. containment of the rectangle in the triangle, 

3. the triangle and the rectangle overlap, 

4. the triangle and the rectangle do not intersect. 

These four cases are illustrated in Figure 5.8. 
In the first test we apply Skelboe's principle to determine the set of barycen-

tric coordinates of all points of the rectangle in concise form. Hence we get 
something like interval barycentric coordinates being defined in Subsec. 5.4.1. 
These were already used in [215] to develop a plane-box intersection test. 

Hence the main feature of the first test is 

the use of interval barycentric coordinates which are the collection 
of the barycentric coordinates of all points in the rectangle. This 
computation is almost as simple as the computation of barycentric 
coordinates of points. 
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The second test is a non-interval test. It is based on a direct checking of the 
relationships between the edges of the rectangle and the triangle. This might 
appear to be fairly complicated, however, it turns out to be reasonably simple: 
By introducing the idea of rectangle edges that are "visible' from a triangle 
vertex and then using the slopes of the triangle edges it is only necessary 
to test the relationship of one triangle vertex with one or two of the visible 
rectangle edges when the triangle and the rectangle are tested for intersection. 
The numerical cost is a bit higher if they are checked for overlapping. 

All together, both versions of this approach need only a few arithmetic and 
logical operations. The drawback is that this (second) test is logically rather 
involved so that a computer implementation has to incorporate many branches 
that need to be distinguished. 

5.4.1 Interval Barycentric Coordinates 
The non-degenerate triangle we want to relate with the rectangle is denned by 
three vertices r , s , t e R2 and it is denoted by Τ in the sequel. 

It is well known that the barycentric coordinates of a point q € R2 w.r.t. Τ 
can be computed as 

_ area(g,3,t) _ area(r,g,t) _ area(r,a,g) 
7 1 W " area(r, s, t)' 7 2 W ~ area(r, a, t)' 7 3 W ~ area(r, s, t) 

where 

χ 1 area(r, s, f) = -
Γι Sl ii 
Γ2 52 h 
1 1 1 

(see [252, 46]). Although this definition is complete, we note that area(g, s,t) 
is the area of the oriented triangle with vertices g, s, i. Orientation means that 
the boundary curve of this triangle passes g, s, t in this order. 

Among the various properties of barycentric coordinates we mainly need 
the following two: 

7i(«) + 72 (g) + 73(σ) = 1 for q e R2, (5.8) 

q is a point of the triangle iff 0 < 7*(g) < 1 for i = 1,2,3. (5.9) 

We now note that for each i the barycentric coordinates for points g with 
respect to Τ partitions the plane into three regions by two parallel lines, one 
passing through a side of Τ and the other passing through the opposite vertex. 
This partitioning results in: 

1. a region where q is restricted by 7i(g) < 0, 

2. a region where q is restricted by 7*(g) e [0,1], 
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Figure 5.9: Partitioning by one of the barycentric coordinates 

3. and a region where q is restricted by 7i(q) > 1. 

An example of this partition with i = 3 is shown in Figure 5.9. The intersection 
of the three regions where q is restricted by 7J(O) G [0,1], i = 1,2,3 defines the 
triangle, i.e. {q : 7,(9) G [0, = 1,2,3} = T. 

Consider now the axis-parallel rectangle D = D\ χ D2. Using the notation 
for ranges, •7i(£>) = {7t(g) : q G D}, i = 1,2,3 it follows that 

Z ? C T i f f 0 < a 7 j ( Z ? ) < l , i = l,2,3. (5.10) 

It turns out that by the principle of Skelboe the natural interval extension 
7 J (D) , i = 1,2,3 compute the range provided the determinants involved are 
expanded so that the interval variables only occur once and to the first power. 
This means that 

_ area(D,8,i) _ area(r,D,t) . ( n \ - area(r,a,£>) 
Ί Λ ' ~ area(r,e,r) ' 7 2 1 ' ~ area(r,e,r) ' 7 3 K ' ~ area(r,s,i) 

computes the exact range provided the determinants are expanded in the fol
lowing manner (i = 1 is chosen as an example): 

area(I>, β, t) 
7i (D) = 

Dx 81 h 
D2 s 2 t2 

1 1 1 area(r,s,i) 2area(r, s,t) 

(Pi - h)(s2 - t2) - (D2 - t2){Sl - h) 
2area(r, a, t) 

(5.11) 

We note that each interval variable only occurs once in this expansion which 
means that Skelboe's principle holds. The interval evaluation (5.11) therefore 
computes the range and we can replace (5.10) by 

Z?CTiff0<7<(i)) < 1 , t = 1,2,3. (5.12) 
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D 

Figure 5.10: A counterexample to intuition 

provided all the 7<(I>), i = 1,2,3 are evaluated in the same manner as (5-11). 
Because of (5.8), criterion (5.12) is equivalent to 

D C Τ iff 0 < 7<(£>), i = l,2,3. (5.13) 

One notes that relationship (5.12) is already appropriate as a criterion for 
the case Τ C D and it will thus be incorporated in the complete test in the 
next subsection. Another criterion which is immediately obvious due to the 
definition of interval barycentric coordinates, is based on the partition of the 
plane into regions, cf. Fig. 5.9 and it says that the rectangle and the triangle 
do not intersect, if the rectangle is contained in one of the halfplanes defined 
by 

7<(α) < 0 or ji(q) > 1 for some i = 1,2,3. 

That is, 

if 7<(£>) < 0 or 7i(D) > 1 for some i = 1,2,3 then D Π Τ = 0. (5.14) 

The converse of this conclusion is, however, not true. Hence (5.14) will be 
completed in the next section when more geometric insight is obtained. 

5.4.2 The Geometry of Test 1 
In the previous subsection we noted that the interval evaluation of the barycen
tric coordinates enabled us to make a definite decision for intersection or dis-
jointedness for some of the triangle-rectangle configurations. The remaining 
cases which have not been covered by the simple constellations (5.12) and 
(5.14) need some further contemplation and the incorporation of geometric as
pects. One even has to be careful not to succumb to any "obvious" geometric 
insights. For example, one could easily be attempted to conclude that D and 
Τ intersect if ji(D) D [0,1] for i = 1,2,3. However, there are examples that 
show that this conclusion is wrong, cf. Fig. 5.10. The rectangle in the figure 
only has to touch the two dotted lines to satisfy those assumptions. 
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Figure 5.11: The bounding rectangle possibilities 

In order to proceed we introduce the axis-parallel bounding rectangle Η — 
H(T) of T, that is, the isothetic rectangle hull of Τ (being the smallest axis-
parallel rectangle that contains T) as shown in Fig. 5.11. 

In the first part of the figure the bounding rectangle is generated by the 
three vertices of Τ and in the second part only by two (i.e. one of the vertices 
can be moved a bit in a certain direction without changing H). 

From the definition of Η another partial test follows immediately: 

If D Π Η = 0 then D and Τ are disjoint. (5.15) 

This means that any rectangle D lying outside Η forms an empty intersection 
with the triangle T. We only have to concern ourselves with the rectangles D 
that intersect H. 

For this reason we introduce the intersection 

D„ = DnH 

and we use it for the further development of the complete test. One notes 
that the triangle Τ has almost the same relationship to D H as to D. That is, 
D intersects [is contained in, contains, is disjoint with] Τ if and only if DJJ 
intersects [is contained in, contains, is disjoint with] T. One only has to be 
cautious with overlapping which can change to a degenerate situation when 
DJJ is just a straight line or a point. 

Hence, (5.12), (5.14) and (5.15) remain valid if in the right-hand side of 
(5.12) as well as in the assumptions of (5.14) and (5.15), D is replaced with 
DH-

The advantage of dealing with DH instead of D is twofold: 

(i) One can execute the investigation of the various cases within Η which 
reduces the number of cases 

(ii) one can get an earlier decision during the algorithmic execution of the 
test. 

As an example for (ii) assume that 71(D) < 0 does not hold when executing 
(5.14). In spite of this 71 {DH) < 0 may hold so that we have the immediate 

�� �� �� �� ��



Rectangle- Triangle Intersection Testing 135 

result that Τ Π DH = 0 which means that Τ Π D = 0 thus terminating the 
query. 

T e s t 1 for the relationship between the axis-parallel rectangle D and the 
nondegenerate triangle T. 

Let Η be the axis-parallel rectangle hull of T, let DH = D C \ H and ^ ( D H ) 
be the interval barycentric coordinates of DH w.r.t. T. Then 

A I . If DH = 0 then D and Τ are disjoint. 

A2. If Η = DH then Τ is contained in D . 

A3. If 7i(Dff) < 0 or j i { D H ) > 1 for some i = 1,2,3 then D and Τ are 
disjoint. 

A4. If 0 < 7i(Hji) < 1 for t = 1,2,3 then 

(i) D is contained in Γ, if D = DH 
(ii) D and Γ overlap if D φ D H -

A5. In the remaining cases, D and Τ overlap. 

A test is called complete if it considers all constellations which can occur 
as subject of the test. A test is called correct of consistent if no wrong result 
is rendered. One notes that Test 1 is complete (due to the passage "In the 
remaining cases..." in step A5). It remains to prove that the test is correct, 
which will be done in the remainder of this section. Since the correctness of AI 
to A4 is obvious and connected with (5.12), (5.14), (5.15) and the transitions 
from Η to D H , only the proof of A5 is required. 

A few of the conclusions of the test are obviously reversible: 

A 2 \ If Γ is contained in D then Η = D H -

A4'. If 0 < 7i(DH) < 1 for i = 1,2,3 then 

(i) if D is contained in Τ then D = DH 

(ii) if D and Τ overlap then D φ D H -

It suffices to prove A5 in a weaker version, namely 

A5'. In the remaining cases, D and Τ intersect. 
The reason is that for the remaining cases no inclusion relation can occur: 
Τ C D would imply Η = DH by A2' which is already subsumed by the test 
step A2, and D C Τ would imply 0 < ^ ( D ) < 1 and 0 < 7 < ( D H ) < 1 for 
i = 1,2,3 then we would get D = DH by A4' which is already subsumed by 
test step A4(i). 
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We first cite two lemmas which certainly could be proven by drawing sample 
figures. Our preference is, however, for analytic proofs. 

L E M M A 2 If-)i{DH) > 0, 7 j ( D H ) > 0 and 0 € y K ( D H ) where {i,j,k} = 
{ 1 , 2 , 3 } then Τ and D H intersect. 

Proof. Since 0 6 7*(i?ff) there exist an χ 6 DH with 7* (a;) > 0. The 
remaining assumptions imply 7i(x) > 0 and 7j(x) > 0. Since Σ 3 „ = ι 7«,(x) = 1 
holds after (5 .8 ) , we get 

0 < 7„(x) < 1 for ν = 1 , 2 , 3 . 

This means that χ € Γ by (5 .9 ) . Hence χ G D H Π Τ and D H Π Τ φ 0. • 

L E M M A 3 //, for ν = 1,2,3, 

0 6 > ( B / f ) or 0<7„(£>H) 

and if DH and Τ do not intersect, there exist at least two different indices i,j 
with 

0€7i(DH) and0€7j(DH). 

Proof. In order to get a contradiction we assume that at most one of the lines 
7„(x) = 0 meets DH-

If exactly one of the lines meets D H , Lemma 2 says that DH and Τ intersect. 
This is a contradiction. 

If none of the lines meets DH then, by assumption, 0 < 7„(DJJ) holds for 
side condition (5 .8) of the barycentric coordinates, Σ)ΐ!=ι 7"(x) = 1 f° r 

χ G R2, and the fact that JV(DH) = ^ΊΛ^Η) for ν = 1 , 2 , 3 we get 7„ < 1 for 
ν = 1 , 2 , 3 . This means that 7„(DJJ) C [0 ,1] for ν = 1 , 2 , 3 and it follows that 
DH and Τ do not intersect. • 

T H E O R E M 9 Test step A 5 is correct. 

Proof. We mentioned already that it is sufficient to prove the correctness of 
A 5 ' instead of A 5 . 

We assume that D and Τ obey "a remaining case" as expressed with A 5 \ 
which means that D and Τ do not meet the assumptions of A 1 to A 4 . Focusing 
on A 3 and A 4 and using (5 .13 ) says that there does not exist an index i = 1 , 2 , 3 
with 

~fi(DH) <0 or ji(DH) > 1 , (5 .16 ) 

but that there exist an index k = 1 , 2 , 3 such that 

0 < l k { D H ) 
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does not hold. These two conditions together imply that 

0 G -yk(DH) for some k = 1,2,3. (5.17) 

We now have to distinguish two cases. 

1. is generated by all three vertices of Τ (lefthand side of Fig. 5.11). In 
this case, the vertices of Τ lie on the boundary of H, and those parts of the 
lines ji(x) = 0 that lie in Η are parts of the edges of T, i.e. 

By (5.17), there exists χ G DH C Η with jk(x) = 0. By (5.18), χ G Τ is 
implied, and Dh and Τ intersect, accordingly D and Τ intersect, which was to 
be proven. 

2. Η is generated by two of the vertices of Τ (cf. right side of Fig. 5.11). 
That means the third vertex can be dropped or slightly moved in a certain 
direction without changing H. In order to get a contradiction, it is assumed 
that Dh and Τ (and accordingly D and T) do not intersect. This assumption 
together with (5.16) and (5.17) implies that the assumptions of Lemma 3 hold. 
Therefore, an index l φ k with 0 G ji(Dh) exists. Without restricting the 
generality, we set k = 1, I = 2 such that 

holds. There exist points p,q G Dh with 7 1 (p) = 7 2 ( 9 ) = 0. By assumption, 
p,q £T. Hence ρ G Dh C Η lies on the line 7 1 (x) = 0 and q G Dh Q Η on 
the line 72 (x) = 0. This is only then possible if the vertex ί of Γ being the 
cutting point of the two lines 71 (x) = 0, 7 2 ( 2 ) = 0 is an interior point of H, 

Therefore, r and s are the vertices of Γ that generate H, they connect 
opposite corners of H, and the line segment from r to s is a diagonal of H. 
Without restricting the generality we assume that r is the left lower corner 
of H, that 8 is the right upper corner of H, and that t lies above the related 
diagonal, as shown in Fig. 5.12. It follows from this configuration that the 
lines 7 1 (x) = 0 and 7 2 ( 1 ) = 0 increase monotonically, that is, ρ is left of and 
below i, and t is left of and below q. This gives, expressed analytically, 

One notes that the axis-parallel rectangle hull of ρ and q, denoted by 
H{p,q) = {x G R2 : Pi < Xi < gj,i = 1,2} and that each axis-parallel rectangle 
Β contains H(p,q) where p,q G B. Hence, t G H(p,q). Since ρ,σ G Dh where 
Dh is an axis-parallel rectangle, it follows that H(p,q) C Dh- This yields 
t G Dh Π Τ obtaining a contradiction by DH η Τ φ 0. • 

if χ G Η and 7<(x) = 0 then χ G Τ for i = 1,2,3. (5.18) 

0G7i(£>ff) , 0 G 7 2 ( £ H ) , 

0G7 3(-Dff), or 0 < 7 3 ( D f f ) 

PI < *i < Qi and P2 <h < q2-
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,.Ί2(χ)=0 

r 

Figure 5.12: The geometry of the proof 

5.4.3 An Algorithm for Test 1 
The collection of steps Al - A5 is certainly correct and forms a complete test 
and can immediately be chosen as the set of steps for an algorithm and for a 
numerical execution. 

It is, however, reasonable to add a few simple comparisons and to change 
the order of the steps slightly in order to set the cheaper computational steps 
firstly and to compute the (more expensive) interval barycentric coordinates 
secondly. We accept hereby a small percentage of overlapping of conclusions 
hoping that the early steps will lead to a decision so that the algorithm can be 
terminated. 

Let again r, s, t G R2 be the affinely independent vertices of the triangle 
Τ with coordinate representation r = (ri,r2), etc. Let D = D\ χ D2 be the 
rectangle with D\ = [ci, di] and Z?2 = [C2, tfc]. The four corners of the rectangle 
are (ci,C2), (di,C2), (di,d2) and (ci,d2) in counterclockwise order. 

Further let 

Oj = min{ri,8i,ti},i = l,2, 

bi = max{ri,Si,ti},i = 1,2. 

The rectangle hull Η = H(T) is then given by Η = [aj, 6ι] χ [α2,62], and the 
four corners of Η are (01,02), (61,02), (61,62), and (01,62) in counterclockwise 

�� �� �� �� ��



Rectangle-Triangle intersection Testing 139 

order. Hence Η can be seen as generated by α = (αϊ,02) and 6 = (61,62) as 
well, Η = H{a,b). 

With these preparations the algorithmic version of the test is established. 

A L G O R I T H M 11 (For testing the relationship between the axis-parallel rect
angle D and the nondegenerate triangle T.) 

Step 1. If 61 < C i or 6 2 < C2 or di < αϊ or d2 < a2 (that is, D and Η are 
disjoint) then D and Τ are disjoint. 

Step 2. If Ci < ai and bi < di for i = 1,2 (that is, Η C D) then Τ is contained 
in D. 

Step 3 . Compute DH — DV\H. 
(If ki = max{aj,cj, Zj = min{6j,dj} for = 1,2 then DH = [ki,h] x 
[k2,h]) 

Step 4 . If r G D, s ί D or t & D or if s G D, t & D or r & D or if t € D, 
r & D or 8 & D (that is, one vertex of Τ lies in D and one outside D) 
then 

(i) D is contained in Τ if D = D H , 
(ii) D and Τ overlap if D φ DH-

Step 5. Compute the interval barycentric coordinates ji(Dn) = Π7»(Ι?#), i = 
1,2,3 as explained in Subsec. 5.4-1-

Step 6. Ifii{DH) < 0 or ji{DH) > 1 for some i = 1,2,3 then D and Τ are 
disjoint. 

Step 7 . IfO < 7 J ( £ > H ) < 1 for i = 1,2,3 then 

(i) D is contained in Τ if D = D H , 

(ii) D and Τ overlap %ίΰφΰΗ-

Step 8. In all remaining cases, D and Τ overlap. 

The advantage of this algorithm is that it is transparent and the disadvan
tage is that one can develop algorithms requiring fewer operations. In a worst 
case analysis we counted 13 subtractions, 7 of them with intervals, 6 products 
with intervals, 3 divisions with intervals, and 36 real comparisons. Equality 
checking was not counted. The average number of operations will always be 
lower, however. 

The experienced programmer will certainly not program Steps 1 to 3 one 
after the other as shown above. One can reduce the computation time if these 
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steps are combined and reformulated by a tree structure where the branching 
depends on the relations of the assumptions of the Steps 1-3. 

If the computations for the algorithm are executed on a computer, there is 
a very small percentage that the results will be falsified by rounding errors. A 
good means for controlling and overcoming such problems is machine interval 
arithmetic, cf. Sec. 2.4. This does not add substantially to the cost of the 
algorithm since interval calculations already form the basis for the algorithm. 

One could imagine that it is a simple matter to lift the considerations of 
this section by dimension 1 in order to obtain a test or an algorithm for the 
relationship of a box and a tetrahedron. This is, however, not the case for 
topological reason: The difference area H \ T consists in general, of two or three 
connected components. In dimension 3 the difference area H \ T (where Τ is a 
tetrahedron and Η = H(f) the axis-parallel hull of f) will only consist of one 
component which involves at least one interior hollow leading to a number of 
different cases caused by a variety of sites which cannot occur in two dimensions. 
Hence, a test for the relationship between a box and a tetrahedron will appear 
in a separate section. 

5 . 4 . 4 Numerical Examples Using Test 1 
As an example we consider the situation in Figure 5.12 where a triangle Τ 
defined by the vertices r = (0,1), β = (4,1) and t = (6,6) and three rectangles 
D , D ' and D " are shown. 

1. Clearly the vertices of Τ are not in D . The bounding rectangle Η = 
[0,6] χ [1,6] is therefore computed. Since DH = Η Π D φ 0 we therefore 
compute 71 ( D H ) = [0.5,1.15], - y 2 ( D H ) = [-0.95,0.5] and 73(D H ) = 
[0.2,0.8]. Since Steps 6 and 7 do not hold we have that the rectangle D 
overlaps the triangle Τ (found in Step 8). 

2. The vertices of Τ are not in £>'. The bounding rectangle Η = [0,6] χ [1,6] 
is therefore computed. Since D ' H = D ' Π Η φ 0 we therefore compute 
71 (£>'„) = [0.1,0.45], < y 2 { D H ) = [0.15,0.7] and y 3 ( D ' H ) = [0.2,0.4]. Since 
l i { D ' H ) <Ξ [0'!]' * = 2,3 holds and D ' = H ' H it implies that the box D ' 
is completely contained in the triangle (found in Step 7). 

3. For the rectangle D " = [5,6] x [1,2] we have that the vertices of Τ are 
not in D " . We again compute the bounding rectangle Η = [0,6] χ [1,6]. 
Since D ' H = D " η Η φ 0 we compute 71 { D H ) = [-0.5, -0.15], 72 ( # H ) = 
[0.95,1.5] and 7 3 (D^) = [0.0,0.2]. Since ~fi{DH) < 0 it follows that 
rectangle D " is disjoint from Τ (found in Step 6). 
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Figure 5.13: Rectangle triangle intersection examples 
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5.4.5 An Alternative Test 
Test 1 has a very simple logical and geometric structure. Even so, the correct
ness of the test is not at all evident. Another feature of the test is that almost 
no logical or computational effort is invested in order to distinguish between 
the cases of overlapping and intersection of Τ and D. (Hence no distinction 
was made.) The price for this convenience is paid in numerical effort. We 
therefore provide an alternative test to Test 1 which has diametrically opposed 
properties: The logical structure is much more complex, but the correctness 
of the test is evident and does not require a proof. The number of arithmetic 
and logical operations is also lower in the worst case analysis. Some logical 
and computational differences also arise if overlapping and intersection is dis
tinguished. 

We use the notation of the previous sections, i.e., we use the rectangle hull 
Η = Η (Τ) of the triangle Τ and the intersection D H = D Π Η between the 
rectangle D and the hull H. 

Then the second algorithm for testing the relationship between the axis-
parallel rectangle D and the nondegenerate triangle Γ is as follows (where the 
steps of the algorithm and the accompanying explanations are merged in order 
to improve the understanding of the algorithm): 

A L G O R I T H M 12 (Second rectangle- triangle test) 
First Steps 1 ίο 4 of Alg. 11 are executed. If they have not led to a decision 

then the remaining situation is that 

a) D and Η are not disjoint (DH φΟ), 

β) Τ is not contained in D, 

7 ) all vertices of Τ lie outside D and thus outside D H -

In order to reduce the number of cases as far as possible the following Steps 
5 and 6 are used to normalize the geometric constellation. 

Step 5 . Find a vertex of Τ which is also a corner of H. (There exist at least 
one such vertex.) Let this vertex be the left lower corner of H. (This can 
be achieved by mirroring the objects in one or both of the coordinate axes, 
i.e. xi t-t —xi or X2 ·-> — xi or both.) Denote this vertex by r, cf. Fig. 
5.14-

Step β. Denote the remaining vertices of Τ by s and t so that (cf. Fig 5.15) 

(i) s lies on the right edge of Η and 
(ii) t lies above the line segment from r to s. 
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r 

Figure 5.14: The requirement of Step 5 

r s r r 

Figure 5.15: The requirement of Step 6 

If conditions (i) and (ii) cannot be achieved, mirror the objects of the test 
on the main diagonal of the plane (that is, swap coordinates i i and X2). 

In order to test Τ and DH for intersection it is only necessary to investigate 
the two edges of DH which are "visible" from the vertex r. Only the endpoints 
need to be checked. If, however, one wants to know whether D is contained in 
Τ or not, then one has to consider all the edges, respectively all the corners. 

We denote the corners of by 

k = (kl,k2), k' = (luk2), fc" = (fci , / 2 ) , k"' = (k2,l2), 

cf. Step 3 of Alg. 11. The corners fc, fc', fc" and the edges from fc to fc' and 
from fc to fc" are interpreted as visible from r if the relationships between r and 
the corners are as shown in Fig. 5.16. 

The intersection test is now based on observing only whether the visible 
corners lie on one side or on different sides of the triangle edges. This is best 
done by utilizing slopes. Let x,y € R2 then the (directed) slope of the line 
segment from χ toy is denoted by 

sl(x,y) = (y2 - X2)/(yi - *i)-

We admit values ± 0 0 by setting 

sl(x,y) = (sgn(y2 - x2)) = 00 if an = yi, X2 Φ J/2-
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k" 

I 1 
k k' 

Figure 5.16: k, k' and k" are visible from r 

t 

Figure 5.17: The two cases for location of t in Step 7 

If χ = y then we introduce a special convention. In this case sl(x, y) is assigned 
that slope value with which sl(x,y) is compared. For example, if χ = y and 

sl(x,y) > sl(r,s) 

is to be evaluated sl(x, y) is set to sl(r, s). (In such situations r = s will not 
occur.) The background for this convention is that it works well and that it is 
helpful in avoiding cases that arise from degenerate situations (i.e. the cases 
where DH shrinks to a line segment or to a point). 

We distinguish two cases, i.e. t lies on the upper edge of Η or it does not, 
cf. Fig. 5.17. The latter case implies that s is the right upper corner of H. 

The reason for taking this difference into consideration is that it allows us 
to develop steps that are taylored to the geometry. Furthermore, it allows 
us to commence the branching of the algorithm in such a manner that the 
computational costs are kept low. 

S t e p 7 . J / i 2 = 62 (that is, t lies on the upper edge of H) then go to Step 7A 
otherwise go to Step 7B. 

The following test steps are now the real test steps. They are all based on 
the relationships between the slopes of a triangle edge and line segments. For 

�� �� �� �� ��



Rectangle-Triangle intersection Testing 145 

example, if sl(r, fc') > sl(r, t) then the point k' is above the triangle edge from 
r to t, and hence it follows that DH and Τ cannot intersect, cf. Fig. 5.18a). 

Step 7A. If fei < ti (that is, k is to the left of t) go to (i) else go to (ii). 

(i) If sl(r,k') > sl(r,t) or sl(r,s) > sl(r,k") then D Π Τ = 0 otherwise 
D H T ^ H i (Fig. 5.18a)). End. 

(ii) If > « 2 (that is, k is above s) then 

if sl(t,k) > sl{t,s) then £>DT = 0 else D C \ T £ 0 

else 

if s/(r, β) > s/(r, ib") then £ > n r = 0 e l s e £ > n T ^ 0 (Fig. 
5.18b)). End. 

Step 7B. If jfc2 > *2 (that is, k is above t) then go to (i) otherwise go to (ii). 

(i) If ii < ti (that is, fc' is to the left of t) then 

if fc' φ t then D Π Τ = 0 else D Π Γ ^ 0 

else 

if [*J(r,i) > s/(r,fc") or sl(t,k') > i/(t,s)] then D Π Τ = 0 
else ΰηΤφί) (Fig. 5.19a)). End. 

(ii) If [si(r,fc') > s/(r,t) or sl(r,s) > al(r,k")} then D D T = 0 else 
D n T ^ e (Fig. 5.19b)). End. 

Remarks. 
1. The overall number of arithmetic operations and comparisons is rather 

low. We count at most 8 subtractions, 4 divisions and a few comparisons. 

�� �� �� �� ��



146 Intersection Tests 

a) b) 

Figure 5.19: fc above t and fc below ί 

2. The completeness of Alg. 12 is clear from the completeness of the cases 
that occur, and the correctness can be verified from the geometric configuration, 
i.e. the figures, directly. 

In contrast to Alg. 11, Alg. 12 does not determine what type of intersection 
(i.e. overlapping or D C T) it is. Only the case Τ C D is covered by Step 2. 
Supplementary tests are required in order to get a decision for either overlap
ping of D and Τ or for the decision D C T . Hence if it has already been shown 
in Step 7 that D Π Τ φ 0 then 

D C Τ iff, 
in case of Step 7A(i): 

sl(r,k") < sl{r,t),sl(t,k"') < sl(t,s) and s/(r,s) < sl(r,k'), 
in case of Step 7A(ii): 

sl(t,k"') < sl(t,s) and sl(r,s) < sl{r,k'), 
in case of Step 7B(i): 

k' = k" (in case h > h), 
sl(t,k") < sl(t,8) and sl(r,s) < sl(r,k') (in case h > h), 

in case of Step 7B(ii): 
sl(r,k") < sl(r,t) and s/(r,a) < sl(r,k') (in case fci < t i ) , 
sl(t,k") < sl{t,s) and sl(r,s) < s/(r,fc') (in case fci > ti). 

The additional cost for checking whether a triangle and a rectangle overlap 
or whether the rectangle is contained in the triangle after the intersection has 
been established is at most 2 slope computations and 2 comparisons. This 
means that the total number of operations is at most 12 subtractions, 6 divisions 
and a couple of comparisons are required. 

In the same manner as in Alg. 11 machine interval arithmetic can be used 
to control the problems that might occur when the algorithm is implemented 
using floating point arithmetic. This would make this algorithm more expensive 
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since all the real calculations would have to be replaced by machine interval 
arithmetic calculations. 

5.5 Box-Tetrahedron Intersection Testing 
Many applications in computer graphics and solid modelling require the de
termination of whether two objects intersect or not or if one object is strictly 
contained in another (see, for example, [64, 156,153]). Typical situations where 
this occurs are in determining whether a tool will touch an object, whether two 
objects in a scene do not intersect such that the scene is realistic or whether a 
robot can maneuver through a maze. 

The procedure, following [220], is a generalization of the work in the previ
ous section. 

It turned out that Greene's [81] approach and the one used in [215] for 2D 
used almost the same geometric idea. Hence in generalizing [215] to 3D it is 
sufficient to refer to Greene [81] for details regarding the geometric background. 
The tests and the algorithms developed here and those used by Greene remain 
significantly different, in particular with respect to the requirement that the 
computations should result in a guaranteed answer. 

The geometric key for the test is just the well-known fact that a box Β and 
a tetrahedron Τ do not intersect iff there exists a plane separating Β and Τ 
which is parallel to 

(i) a face of Β or 
(ii) a face of Τ or 
(iii) an edge of Β and an edge of T, 

cf. Greene [81], p. 78. It follows that Β and Τ intersect iff 

a) the three axis-parallel projections of Β and Τ intersect and 
β) for any closed halfspace Η which contains Τ where a face of Τ 
lies in the boundary of Η it holds that Β and Η intersect. 

In contrast to Greene who uses this criterion directly and applies it to detect 
polyhedra and box intersections, we introduce interval barycentric coordinates 
and operate with a reduced box. The box is seen as a three dimensional in
terval and is treated as one object. The interval barycentric coordinates give 
additional information due to their geometric properties without increasing 
the computational costs. The box Β is furthermore reduced to that part, Bn, 
which lies in the box hull, Η = Η (Τ), of Τ where Η (Τ) is the smallest axis-
parallel box that contains T, see also Figure 5.20. The advantage of dealing 
with B H instead of Β is, that the intersection properties remain unchanged 
and it is a larger chance that the test resp. the algorithm will lead to an earlier 
decision. 
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A crucial part of the procedure is based on the use of interval arithmetic to 
evaluate a set of interval barycentric coordinates. The use of these coordinates 
allows us to decide a number of cases without further computations as well as 
to control the errors in the computations. 

The central part of the procedure is based on Skelboe's principle from sec
tion 2.9 which is applied here to functions /(χ), χ = ( x i , X 2 , X 3 ) of 3 real 
variables. 

The value of the principle is that the complete box B, that is, the set of all 
the points of it, can be interpreted as exactly one interval arithmetic expres
sion when described by barycentric coordinates. This implies that only one 
comparison is required in order to determine, provided some plane is given, 
whether the box lies on the positive or negative side of the plane or whether 
plane and box intersect. Nevertheless, some theoretic background is needed to 
make the construction of the interval arithmetic expression mentioned under
standable, although the construction itself is simple. This, together with the 
introduction of three-dimensional interval barycentric coordinates, is done in 
the next section. 

Interval tools also make it easy to distinguish between overlapping of two 
objects and one containing the other. It is, certainly, not difficult at all to 
detect whether Τ lies in B, but conversely, a couple of comparisons is needed 
to decide whether Β and Τ overlap or whether Β is contained in T. 

The aim of this section is to develop and verify a procedure for establishing 
the possible box-tetrahedron relationships determining the conditions for: 

1. containment of the tetrahedron in the box, 

2. containment of the box in the tetrahedron, 

3. when the tetrahedron and the box overlap, 

4. when the tetrahedron and the box do not intersect. 

In order to be complete we note that there are a variety of other techniques 
that can be applied to the problem discussed here. As an example we note 
that the results of Chazelle-Dobbin [26] can be specialized to our problem. 
In their paper, the detection of the intersection between convex polyhedra is 
studied and results asymptotic in the number of polyhedron vertices are pre
sented. The intersection testing problem is reduced in dimension introducing 
the idea of drums (slices through vertices parallel to a coordinate plane) and 
recursion between chains in two dimensions. Bimodal search is used to improve 
the efficiency of subproblems. Clearly, slicing a general tetrahedron parallel to 
a coordinate plane through vertices creates three drums on the average with 
up to eight vertices each. The intersections of these drums with the box then 
have to be computed. Just the generation of extra vertices makes this method 
uncompetitive with our method since our method is specifically designed for 
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the case of small numbers of vertices. Another possible algorithm would be the 
computation of the maximum and minimum value of each barycentric coordi
nate occurring at box vertices [247] so that interval barycentric coordinates are 
not required. These approaches would again violate the requirement that the 
computations should result in a guaranteed answer. 

5 . 5 . 1 Three-Dimensional Interval Barycentric Coordinates 
If a non-degenerated tetrahedron Τ C R3 is given, the barycentric coordinates 
w.r. to Τ are often used to describe the location of a point q G R3 w.r. to 
T. If the point q is replaced with a box Β being a 3-dimensional interval, we 
speak of 3-dimensional interval barycentric coordinates. They are an excellent 
and simple means to describe the location of Β w.r. to Τ and are therefore 
appropriate as basic expressions for an intersection test. 

We consider four points a, δ, c, d G R3 forming the vertices of a non-degenerate 
tetrahedron denoted by T. The barycentric coordinates of a point ρ G R3 with 
respect to the tetrahedron are computed as 

7 1 (p) 

7 2 (P) 

7 3 (P) 

7 4 (p) 

vol(p, b, c, d 
vol/a, b, c, d\ 
volfa, p,c, 
volfa, b, c, d 
vol(a,b,p,<t 
volfa, 6, c, a 
volfa, b,c,p' 
vol(a, 6, c, 

(5.19) 

where 

vol(r,s,t,u) = I 

Γ ΐ r 2 r 3 
1 

S i «2 «3 1 
h h *3 1 

« 2 " 3 1 

for r, s, i,u G R3, cf. for instance, Hanson [98]. Although this definition is 
complete we note that vol(r, s, t, u) is the volume of the oriented tetrahedron 
with vertices r,s,t,u (in this order). It can be degenerate. 

Barycentric coordinates have a number of interesting properties. Here we 
need the following two: 

» G T i f f 0 < 7 i ( p ) < 1, i = l , . . . , 4 , (5.20) 

£ > ( p ) = l , f o r p G f l 3 . (5.21) 
•=i 

Hence, for example, the points ρ lying on the plane spanned by the vertices 
a, b, c, or, which is the same, spanned by that face of Τ which has a, 6, c as 

�� �� �� �� ��



Box-Tetrahedron intersection Testing 151 

vertices, are characterized by 74 (p) = 0. In a similar manner, the points ρ 
lying in that closed halfspace of the plane just mentioned in which Τ lies, are 
characterized by 7 4 (p) > 0. 

In the same manner as in [215] we now consider a box Β = Βι χ B2 x #3 , 
also denoted by Β = (Βι,Β2,Β3),Β{ G I,i = 1,2,3. Then 

Β C Γ iff 0 < 7<(p) < l,i = 1 , . . . ,4 for all ρ G £ . (5.22) 

The statement "for all" p£ Β simply means that all points in the range of 7<(p) 
over Β , defined as O^(B) = {ji(p)\p G B}, must have the property (5.22). In 
other words, the box Β is included in Τ iff all barycentric coordinates are in 
the range [0,1] i.e. we need to evaluate Ο^(Β), i = 1 , . . . ,4 and then to test 
the inclusion in [0,1]. 

The exact evaluation of the range of a function is in general a difficult and 
time consuming task (see for example [212]). The present case has, however, 
some special properties which we now exploit. 

For simplicity we only consider the case for i = 1 since the other cases are 
similar and we generalize the techniques used in [215]. Letting i = 1 we have 
that 

vol(a, 0, c, a) 
by (2.17) using interval arithmetic for the natural interval extension of 71 over 
B. Since the denominator is only a scalar, we only need to consider the nu
merator of (5.23) for the purpose of obtaining the extent of the range and we 
get 

Βι B2 B3 1 
6l &2 63 1 
ci c2 c3 1 
di d2 d3 1 

{(Bt - d i ) ( ( & 2 - d2)(c3 - d3) - (63 - d3)(c2 - d2)) 
= -(Bi - efe)((6i - di)(c3 - d3) - (63 - d3)(ci - *)) >(5.24) 

+(B3 - d 3)((6i - di)(ca - d2) - ( b t - tfe)(ci - di))} /6 

and the principle previously mentioned applies since each interval variable oc
curs only once. This means that for this particular expression we have 

vol(£,D,c,d) = i 

•vol(B, 6, c,d) = vo\(B,b,c,d). 

With the determinants evaluated in this manner and using the point value of 
vol(o, b, c, d) it follows that 7<(B), i = 1 , . . . , 4 can be used in the procedure to 
make a definite decision as to the tetrahedron-box relationship for the following 
ad-hoc cases: 

1. Inclusion of the box in the tetrahedron. This occurs when Ji(B) C [0,1] 
for i = 1 , . . . , 4 or already when 7<(B) > 0 [ resp. < 1 ] for i = 1 , . . . , 4 
by (5.21). 
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2. The box is contained in one of the regions defined by 7<(σ) < 0 or ji(q) > 1 
for some i, i = 1 , . . . , 4. That is, if fi{B) < 0 or ji(B) > 1 for some i, 
i = 1 , . . . ,4 then clearly Β Π Τ = 0. 

Certainly, not every box-tetrahedron relationship is covered by these two 
sample cases. 

5.5.2 The Algorithm 
It was already mentioned earlier that we use Greene's observation as the ge
ometric background for the procedure. This observation says that the box Β 
and the tetrahedron Τ intersect iff Β and Τ intersect in all three projections 
parallel to the main axes and that Β does not lie entirely outside any planes 
spanned by a face of T. 

We do not, however, pursue Greene's procedure which first searches for 
the box corners that are farthest (regarding a positive as well as a negative 
direction) from the planes spanned by the faces of T. The procedure then 
observes those corners to determine on which side of the related planes they 
are in order to force a decision about box-plane intersection. If no decision 
has been reached so far, the projections of Β and Τ are checked for their 
intersections. This last step cannot be avoided in our procedure either, and 
we again use 2D-barycentric coordinates, whereas Greene uses his algorithm 
focused on 2D. The reasons for the choice of 2D-barycentric coordinates also 
in 2D are the same as for choosing the 3D-barycentric coordinates for the 3D 
problem treated in this section. 

In this subsection, we first formulate the geometric idea with interval barycen
tric coordinates such that a test based on this would already be complete and 
correct. We then add a couple of further test conditions that need almost no 
additional computations. These additional test conditions lead in general to 
earlier decisions than if they were not incorporated. 

Test 1 for checking intersection between Β and T. 

1. If 7i(B) < 0 for some i = 1 , . . . , 4, then Β and Τ are disjoint. 

2. If Pj{B) and Pj(T) are disjoint for some j = 1,2,3, then Β and Τ are 
disjoint (pi,»2>P3 are the 3 axis-parallel projections). 

3. In the remaining cases, Β and Τ intersect. 

Note that Pj(B) is a rectangle and pj(T) consists of one or the union of 
two nondegenerate triangles. Detecting their intersection property can be per
formed with the test given in [7] or in Greene [81]. 

It is quite simple to distinguish between the intersection cases for overlap
ping and complete containment: 
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Let Η be the axis-parallel box hull of T, that is, the smallest axis-parallel 
box that contains T. 

T e s t 2 for checking overlapping and containment of Β and T. 

1. T C B i f f i / = B~nB (i.e., Η C B ) . 

2. B C T i f f O < 7 j ( B ) f o r t = l , . . . ,4. 

3. In all the other cases of intersection (Test 1) Β and Τ overlap. 

Proof. The correctness of 1. and 3. is obvious. In 2., if Β C T, no point 
ρ oi Β lies outside T, i.e. no point ρ of Β satisfies 7i(p) < 0 for any i. Since 
7i(B) = {7«(p) : ρ G B}, we get 0 < 7i(B). The converse direction uses the 
same argument. • 

In order to establish the algorithm, we add a few additional steps to the 
two tests, even though they are already complete. The reason is that, on the 
average, an earlier decision is forced via the additional test steps and yet the 
added numerical effort is almost negligible. In particular, it makes sense to first 
check how many vertices of Τ lie in B. This can be executed just by coordinate 
comparisons. Then one needs to apply the test only for the case that no vertex 
of Τ lies in B. We then restrict the test to that part of Β which lies in the 
box hull, H , of Τ rather than to the whole box B. There are two reasons for 
doing this. The first reason is that this part, denoted by B H = Β Π H , has 
the same intersection relationship with Τ as with B, except for one degenerate 
case where Β and Τ touch each other on an edge but no vertex of Τ lies in 
B. (This will be considered in Step 5 of the Algorithm.) The second reason is 
that by dropping the parts outside H , earlier test-steps can bring a decision. 
For example, it may be that 71 (BH) < 0 such that disjointness of Β and Τ is 
proven, but 7<(B) < 0 need not be the case such that it would be necessary to 
compute the projections, etc., cf. Test 1. Finally, it makes sense to add test 
questions to see if 

H(B) > 1 

for some i = 1 , . . . ,4 is valid which also raises the effectivity of the procedure. 
For points ρ G iZ3, checking the comparison 7$(p) > 1 would be completely 
superfluous after having checked the conditions 7<(p) < 0 for i = 1 , . . . ,4 (cf. 
Step 1 of Test 1). This is due to property (4) which implies that 7<(p) > 1 for 
some i = 1 , . . . , 4 assumes 7j(p) < 0 for some j = 1 , . . . , 4, and converse. How
ever, this situation cannot be transferred to interval barycentric coordinates. 
Hence, 7<(B) > 1 for some i = 1 , . . . , 4 just says that ji(p) > 1 for all ρ G Β 
holds. This means, by (4), that for each ρ G Β an index j exists such that 
7j (p) < 0. Since the numbers j can vary, one cannot conclude that 7j (p) < 0 
for all ρ G Β (with constant j) such there is no relationship with 7j(B) < 0 
(cf. Step 1 of Test 1). 
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A L G O R I T H M 13 (For testing overlapping, containment and disjoint rela
tionship between Β and T.) 

S t e p 1. Check the number of vertices of Τ lying in B: 
if 4 thenTCB, 
if 2, or 3 then Τ and Β overlap. 

S t e p 2 . Compute H, the axis-parallel box hull of T, 
compute Β Η — Η Π Β . 

S t e p 3. If Β Η = 0 then Β and Τ are disjoint. 

S t e p 4. Fori = 1, . . . ,4, 
(i) compute the interval barycentric coordinates 7 J ( B H ) , 

(ii) »/7i(B//) < 0 or "H{BH) > 1 then Β and Τ are disjoint. 

S t e p 5. Ifii{BH) > 0 for i = 1 , . . . ,4 then 
Β C T , if Β Η = B, otherwise Β and Τ overlap. 

S t e p 6. For j = 1,2,3: 
if Pj(T) andPJ{BH) are disjoint then Τ and Β are disjoint. 

S t e p 7 . If no decision was made in the previous steps then Β and Τ overlap. 

Step 6 of the algorithm 13can be executed by the procedure given in the pre
vious section which also is based on 2D interval barycentric coordinates. 

R e m a r k s . 

1. The algorithm can certainly be used to check for "intersection" or "dis-
jointedness" only. In this case, the results Τ C Β , Β C Τ and "overlap
ping" are to be interpreted as "B and Τ intersect". 

2. The algorithm is complete and correct. When it is implemented on a 
machine, however, correctness can be weakened due to rounding errors. 
This can be mitigated if machine interval arithmetic is implemented with 
"outward rounding" (see [5] or [8]). Then the numerical execution re
mains correct so far that if the algorithm delivers a definite decision it is 
guaranteed. 

3. C o m p u t a t i o n a l c o s t s . We briefly compare the computational costs of 
Greene's [81] and algorithm 13. The algorithm of Chazelle-Dobbin [26] 
and related procedures are incomparable because they aim to behave 
asymptotically best w.r. to polyhedra and the number of their vertices. 
Hence the advantages of these methods do not apply to our case. 

The numerical effort of Greene's and our approach is almost the same if 
worst cases are considered. To determine the planes spanned by the faces 
is comparable with the computation of the interval barycentric coordi
nates. Working with barycentric coordinates has the small advantage of 
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getting the orientation without additional effort. The number of inequal
ities is a bit higher in our case due to the enrichment of the algorithm by 
further steps. 

The advantage of our algorithm is the incorporation of the additional 
steps (being superfluous from the standpoint of logic), which lead to an 
earlier decision. For instance, one only has to apply the main body of 
algorithm 13 if no vertices of Τ lie in B . 

4. If one wants to detect intersection of a box Β with a polyhedron P, one 
can use almost the same algorithm. The geometric background is again 
the observation that Β and Ρ do not intersect iff there exists a separating 
plane that is (i) parallel to a polyhedron face, or (ii) parallel to a box face, 
or (iii) parallel to a polyhedron edge and a box edge (Greene [81]). Again, 
this is equivalent to the following criterion: Β and Ρ intersect iff a) Β 
does not lie entirely outside the plane of any face of P, and b) the (axis 
parallel) projections of Ρ and Β intersect (Greene [81]). The projections 
of Ρ and Β give a (solid) polygon ρ and a rectangle D. Dropping one 
dimension, the criterion reduces to the following one: D and ρ intersect 
iff a) D does not lie entirely outside the lines spanned by any edge of p, 
and b) D intersects the rectangle hull of ρ (Greene [81], p. 77). Hence it 
is obvious that tests 1, 2 and also algorithm 13 can easily be adapted to 
a box-polyhedron intersection test, where again the relationship between 
Ρ and Β or ρ and D can be described by interval barycentric coordinates. 
In order to determine the interval barycentric coordinates which need to 
be related to a tetrahedron (or a triangle in the 2D case) by definition, a 
subdivision of Ρ into tetrahedrons is not advised since, in general, always 
one face of such a tetrahedron would be needed to check the inequality 
7i(B) < 0. Hence, any vertex of Ρ not lying on the plane spanned by 
the face in question will do it. If, however, one additionally wants to 
incorporate the knowledge of 7i(B) > 1 properly one has to search for a 
vertex of Ρ which is farthest from the face in question. 

5.5.3 Examples 
As an example consider the tetrahedron Τ defined by the four points ο = 
(1,1,4), 6 = (1,1,1), c = (4,1,1) and d = (1,4,1). The axis-parallel box hull 
is Η = ([1,4],[1,4], [1,4]). 

Example 1. Consider the box Β = ([1.3,1.6], [1.3,1.6], [1.3,1.6]). Since 
Step 1 of algorithm 13 does not apply and since B H = Β φ 0 we calculate the 
interval barycentric coordinates as 7i(B/f) = [0.01,0.2], ^ ( B H ) = [0.4,0.7], 
j 3 ( B H ) = [0.01,0.2] and ηΑ{ΒΗ) = [0.01,0.2]. Since B H > 0, t = 1 , . . . ,4 it 
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Box ( [ - 1 , 0 ] , [ - 1 , 0 ] , [ - 1 , 0 ] ) 

Figure 5.21: Box-tetrahedron test 

follows that Β C T. 

Example 2. Consider the box Β = ([2,3], [2,3], [0,2]). Since Step 1 does 
not apply we calculate BH = Β Π Η = ([2,3], [2,3], [1,2]). Now, Ύι(ΒΗ) = 
[0,1/3], y2(B„) = [-2/3,1/3], Ί3(Β„) = [1/3,2/3] and -y4(B„) = [1/3,2/3]. 
Hence, neither Step 4 nor Step 5 of algorithm 13 lead to a decision. The same 
holds for Step 6. Hence we are left with Step 7 which means that Β and Τ 
overlap. 

Example 3. Consider the box Β = ([-1,0], [-1,0], [-1,0]). Since BH = 0 
it follows immediately that Τ and Β do not intersect. This example is shown 
in Figure 5.21. 

�� �� �� �� ��



Ellipse-Box Intersection Testing 157 

5.6 Ellipse-Rectangle Intersection Testing 
We now present an efficient algorithm, also described in [224] for testing whether 
a solid rectangle and a solid ellipse intersect. The algorithm requires at most 
two evaluations of the quadratic polynomial that defines the ellipse and a few 
simple arithmetic expression executions. Convexity and monotonicity proper
ties of this polynomial are the main tools for the design of the algorithm. 

Testing for intersection between a rectangle and an ellipse can for example 
occur in computer graphics in windowing operations [54], in solid modeling 
with boolean operations [280] and in databases while executing neighborhood 
queries [143]. Implicitly the test is required for these applications in 3D. We 
know of no efficient test for an ellipse - rectangle intersection although such a 
test is found as a primitive in Class TGEllipse [264]. It works with an axes-
aligned rectangle and an arbitrary ellipse. In the case of a non-axes-aligned 
rectangle, rectangle and ellipse have to be rotated to make the rectangle axis-
aligned. 

Let the rectangle Ή, to be tested be defined by its four corners, 

(XL, VL), (XR, VL), (XR, VR) and (xL, yR) 

with XL < XR and yi <yR- Thus TZ is a Cartesian product, 

K = X xY (5.25) 

where X = [xL, xR] and Y = [yL, VR]-
An ellipse curve can be described as the zero set of a second degree poly

nomial, 

f{x, y) = ax2 + bxy + cy2 + dx + ey + f (5.26) 
= (ax + by + d)x + (cy + e)y + f (5.27) 

with 
462 < ac, (5.28) 

see for example [52] and we assume that 

α > 0 (5.29) 

without loss of generality. 
The solid ellipse corresponds to the point set Ε = {(x,y) : f(x,y) < 0}. 

Hence, a point (x, y) of the plane lies in the ellipse (including its edge) iff 
f(x, y) < 0. Throughout this section, we will say ellipse instead of filled 
ellipse. 

Further discussions of ellipses in a graphics setting are found in [229], pp. 
236-242, [105] and in [146] or [54] where conversion from a representation using 
major, minor axes, orientation and origin to an implicit form is discussed. 
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Conditions (5.28) imply that / is convex and hence, that / is convex over 
each straight line in the plane. Convexity properties are connected with mono
tonicity properties of / , and we will make intense use of them. 

In contrast to our method, the geometrically most straightforward method 
for deciding whether Ε and TZ do intersect is probably the direct geometric 
method, which might begin checking whether one of the 4 edges of TZ cuts the 
boundary of E, etc. Despite the simple logical structure of this test it is quite 
expensive since it requires the solution of four quadratic equations in the worst 
case as well as the execution of several comparisons and arithmetic expressions. 
The correct implementation of a quadratic equation solver is surprisingly com
plex, cf. [58] and more accessible in [199]. 

No quadratic equation need to be solved in our method. 

5.6.1 Analytical Tools Needed 
In this subsection, we collect the prerequisites that are needed in order to 
develop our test without too many interruptions. 

A. The Midpoint of the Ellipse 
Let mE = (x*, y*), the midpoint of Ε be defined as the unique minimizer of 
/ , cf.[36]. Then mE is the solution of the equation V/(x, y) = (0, 0) where 

t _ be - led , _ bd - 2ae 
X ~ 4ac-P' V ~ Aac-b2' 

Because of the convexity of / and the minimum property of the midpoint, / is 
monotonically increasing on each ray leaving mE. This fact plays a key role in 
the logical structure of the algorithm. 

B. Monotonicity 
The knowledge of the monotonicity properties of / on the edges of TZ is also 
an essential part of the intersection test. 

Let I be the lower or upper edge of TZ, that is, I = (X, yo) with y 0 = yi, or 
Vo = VR, cf. Fig. 5.22. Then / is monotonically increasing [resp. decreasing] 
on Τ iff V x / ( x , yo) > 0 [resp. < 0] for any χ G X holds, where Vzf denotes 
the partial derivative of / with respect to x. This infinite set of inequalities will 
be written concisely as Vxf{X, yo) = 2α X + byo + d>0 [resp. < 0]. We use 
interval arithmetic to compute these expressions. Similarly, / is monotonically 
increasing [resp. decreasing] on an edge (xo, Y), where xo = XL or xo = XR iff 
V„ / (x 0 ) Y) = 2cY + 6x0 + e > 0 [resp. < 0]. 

In order to conveniently express increasing or decreasing function values if 
one moves from one corner of the rectangle to an adjacent corner, the following 
notation will be useful: 
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< * , y > (xR,y) 

Figure 5.22: Rectangle 

Let (xo, yo) be one of the four corners of 71. We set 

yo) 

Y) 

if xo 
if xo 

if yo 
if yo 

VL, 

VR-

XL, 

XR, 

For example, the condition Vx > 0 indicates that if the point (x, y) moves 
on the edge (X, yo) from the endpoint (xo, yo) to the other endpoint on this 
edge, the function values increase monotonically . 

C. Inexpensive Computation of Discriminants 
In a few cases of the test it is necessary to know whether an axis parallel 
straight line meets the ellipse or not. This can be decided by considering the 
sign of the discriminant of / over this line. We will keep the computation of 
the discriminant inexpensive by expressing it in terms that are already known 
at the stage of the test where the discriminant is needed. 

We note that a quadratic equation in one variable, 

αχ 2 + βχ + 7 = 0 

is solvable in 71 iff its discriminant, D = β2 — 4ory, is nonnegative. 
Hence, the system of equations, 

(5.30) 

which is equivalent to the equation in x, 

fix, y0) = αχ2 + (by0 + d)x + (cy2, + ey0 + f) = 0, 
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has a solution in Tl (that is, the line y = j/o meets E) iff 

DiVo) = (byo + df - Aa{cyl + ey0 + /) > 0 (5.31) 

where D(yo) is the discriminant of /(x, yo) = 0. Reformulating (5.31) results 
in 

D(y0) = (2axL + by0 + d)2 - 4a[ax2

L + bxLy0 + cyo + dxL + ey0 + f] 
= [ V X / ( X L , yo)]2 - 4a / (x L , y 0) 
= [inSyxf(X, y 0 ) ] 2 -4a / (x L , y 0) 
= [inf Vx(x 0 , yo)]2 - 4a/(x 0, yo) if xo = XL-

Similarly, we obtain 

D{yo) = (2axR + by0 + d)2 - 4a[ax2

R + bxRy0 + cy% + dxR -I- ey0 + /] 
= [supVx/iX, y 0)] 2 - 4α / (χ Λ , y 0) 
= [inf Vx(x 0 , y 0)] 2 - 4a/(x 0, y 0) if xo = XR-

Putting these two reformulations together, we can express the solvability of 
(5.30) as follows: 

(5.30) has no solution in Ti iff 
D(y0) = [inf V x (x 0 ) yo)]2 - 4a/(x 0, yo) < 0. ( 5 3 2 ) 

If we interchange the variables χ and y, and apply the previous considerations 
to the system 

f { * > V ) = 0 ) (5.33) 
x = xo J 

we get analogously that 

(5.33) has no solution in Λ iff 
D(x 0) = [inf Vy(x 0 , yo)]2 - 4c/(x 0, y 0) < 0. ( } 

Testing the conditions (5.32) and (5.34) in the algorithm will be inexpensive 
since the values Vx , Vy, and /(xo, J/o) as well as 4o (or 4c) would already have 
been evaluated at that stage of the computations. In fact, only 4 or 5 arithmetic 
operations are required additionally in order to evaluate the discriminants. 

5.6.2 The Algorithm 
In this subsection, an algorithm is established that tests whether a given solid 
ellipse Ε in general position and a given solid axis-parallel rectangle do or 
do not intersect. The input data is Ε represented by the coefficients of the 
function / , and Tl represented by the 4 necessary coordinates X L , XR, VL, VR-
It is assumed that TZ is non-degenerate. 

If Ε and Tl intersect then the algorithm does not tell whether Tl is contained 
in Ε or vice versa. Appropriate tests are provided in the next section if such 
additional information is requested. They can be merged with the algorithm 
at the indicated points. 
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A L G O R I T H M 14 (Ellipse-rectangle intersection test.) 

S t e p 1. Compute the midpoint mE = (x*, y*) of E. 

S t e p 2 . IfmEGTl then 

pin Ε Φ 0 (Options: ECU Test, TIC Ε Test). STOP]. 

S t e p 3 . Let (xu, yo) be a corner of 71 which is nearest to mE and (x/, yj) be 
one which is farthest away from mE. 

S t e p 4 . Compute /(x u , yo)-
V /(so, yo) < 0 then 

pin Ε φ 0 f Option: 71 C Ε Test). STOP]. 

S t e p 5 . Cases: 

C a s e A : ι ' Ε X 

(i) Compute Vx = Vx(A", y 0), 
(»»') «/ Vx > 0 then /ft η £ = 0, STOP/, 

«7 Vx < 0 then 
a) compute / (x/ , yo), 

β) the result is 71Π Ε = 0 iff f(xf, y 0) > 0, STOP, 
else 

a) compute D(yo), 
β) the result is 71Π Ε = 0 iff D(y0) < 0, S7OP. 

C a s e Β .· y* 6 Y 

(i) Compute Vy = Vy(xo, yo)-
(ii) «/ Vy > 0 inen [Tin Ε = 9, STOP], 

if Vy < 0 inen 
a) compute /(x 0 , y/), 

tne resuit is Tin Ε = 0 iff f(x0, Vf) > 0, STOP, 
e/se 

a) compute D(x0), 
β) the result is ΤΙ Π Ε = 0 iff D(x0) < 0, STOP. 

C a s e C : χ* £ X, y* £ Y 

(i) Compute Vx = Vx(x 0 , y 0), 
i / V x < 0 then 

a) compute /(x/, yo), 
the result is Tin Ε = $ iff /(x/, yo) > 0, STOP, 

if inf Vx < 0 t/ien 
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a) compute D(yo), 
β) the result is Tl Π Ε = 0 iff D(y0) < 0, STOP, 

(ii) Compute Vy = Vy(x 0 , yo), 
if Vy > 0 then [JinΕ = 9, STOP], 
if Vy < 0 then 

a ) compute f(x0, y/), 
β) the result is Tl Π Ε = 0 iff f(x0, yf) > 0, STOP, 

else 
a) compute D(xo), 

β) the result is Tl Π Ε = 0 iff D{x0) < 0, STOP. 

THEOREM 10 The algorithm is correct and complete. 

Proof 
Completeness. The algorithm is complete when each ellipse-rectangle con

stellation which is admitted by the general assumptions will be processed cor
rectly by the algorithm. That the algorithm meets this definition, follows 
directly from its logical structure, which can be reformulated as a nested se
quence of if-then-else statements and cases in the following form (computations 
of expressions can be suppressed): 

If Al then Resl else 
If A2 then Res2 else 

Case 1 or Case 2 otCase 3 

Since the three cases cover each geometric constellation which has been left so 
far, each selection of input data will be processed by one of the statements Al, 
A2, Case 1, Case 2, or Case 3. 

Correctness. An algorithm is correct if it assigns the right result (boolean, 
in our case) to any possible input data. In order to prove the correctness 
of the algorithm we have to go through all its branches and to input them 
geometrically. The discussion of the options will be postponed to the next 
section. 

Step 2: Intersection is obvious, cf. Fig. 5.23a. 

Step 4: f(xo,Vo) < 0 means (xo,Vo) C Ε and intersection follows, cf. Fig. 5.23b. 

Step 5: Because of the previous steps, we have the following 
assumptions in the sequel, 

mE & Tl and (xo, yo) £ E. 

Case A(ii) says χ* ζ. X and V * > 0, that is, the function / is monotonically 
increasing if / passes from xo to x/ on the edge (Χο,Ι/ο)· Since /(xo,!/o) > 0, 
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a) b) 

Figure 5.23: The initial easy cases of intersection3 

we get f(X,yo) > 0 for all χ G X, so that the whole edge is outside E. Further, 
each point (ar, y) €71 lies on a ray which leaves mE and passes through the edge 
(X, yo) before it reaches (x, y). Since the function values increase monotonically 
on the ray, f(x,y) > 0) follows. That is, Ε is outside 71. No intersection, cf. 
Fig. 5.24a. 

Case A(iii) The conditions Vx < 0 says that / is monotonically increasing 
if / moves on the edge (X,yo) from x/ to x 0 . Hence, if f(xf,y0) > 0 then 
f(x, y0) > 0 for all χ G X, and this edge is outside E. For the same reason as 
in Cose A(ii), the whole ellipse is outside E, cf. Fig. 5.24b. 

If /(xp,yo) < 0, then (x/,j/o) is an ellipse point, and Ε Π 71 φ 0, cf. Fig. 
5.24c. 

The eise-clause is addressed if neither Vx > 0 nor V x < 0 holds. In 
this case, / is not monotone on the edge (X,yo) and one has to check the 
discriminant condition directly for an intersection with this edge, which implies 
the intersection result for Ε and 71 because of x* G X, cf. Fig. 5.24e and 5.24c. 

Case Β is symmetric to Case A (swap χ with y). 

Case C(i) Besides x* G X, this case is analogous to Case A(iii). 

Case C(ii) Besides y* G Y, this case is analogous to Case B(iii). 
• 

5.6.3 Optional Inclusion Tests 
It was already mentioned that the aim of Algorithm 14 is to decide whether 
Ε nTl Φ 0 or Ε Γ\71 = 0 holds. In case of Ε Π 71 Φ 0, it is sometimes 
also of interest to know whether 71 C Ε or Ε C 71 or if neither of the two 
inclusions hold. In this section we therefore suggest auxiliary tests which are 

3 T h e midpoint of the ellipse is denoted by * and (χο,ϋο) by · . 
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Figure 5 .24: The remaining cases when mE & ΊΖ and ( χ η , j/o) £ Ε 
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to be inserted into Algorithm 14 at the positions marked. 
The optional ECU test only has to be executed in Step 2 since mE 6 TZ 

is a necessary assumption for the validity of the inclusion Ε C 71. Hence, if the 
ECU test is not invoked during the execution of Algorithm 14, Ε C 71 does 
not hold. 

Optional E C U Test 
(valid only as part of Step 2 in Alg. 14) 

S t e p 1 ' . Determine (χη, yo) as in Step 3. 

S t e p 2 \ Compute f(xo, Vo)-
If f(xo, Vo) < 0 then [E £ 71, STOP]. 

S t e p 3 ' . Compute V x = Vx(xn, yo)-
If inf Vx < 0 < sup Vx then 

(t) compute D(y0), 
(ii) if D(y0) > 0 then [E <£ 71, STOP]. 

S t e p 4'. Compute Vy = Vy(x 0 , yo)-
If inf Vy < 0 < sup Vy then 

(i) compute D(xo), 

(ii) the result is Ε C 71 iff D(x0) > 0, 

else 

EC 71. 

The optional TIC Ε test is less tied to the position in Algorithm 14 where 
it is invoked. The reason is that there is almost no other possibility except 
to compute the four function values at the corners of TZ. It is not possible 
to decide the TZ C Ε test only with gradient or discriminant considerations 
because one can construct examples with identical gradient and discriminant 
information but with different TZCE behavior. Again, as is the case with the 
EC7Z test, the inclusion TZCE does not hold if the TZCE test is not invoked 
in Step 2 or Step 4 during the execution of Algorithm 14. 

Optional TZ C Ε Test 
S t e p 1 . Compute the function values f(xL, VL), f ( x L , y«), } ( X R , VL), f ( x R , VR), 

which are not yet known (for example, f(xo, Vo) will be known already). 
It follows that TZ C Ε iff none of these values are positive. 
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D(y0)>o 

D(y0)>o 

c) d) 

Figure 5.25: Cases for the Ε C 71 test 

THEOREM 11 Algorithm 14 enlarged by the inclusion tests is correct and 
complete. 

Proof. Completeness. The logical structure of Algorithm 14 is changed 
only marginally by adding the inclusion test. I.e., each admitted geometric 
rectangle-ellipse constellation will be recognized by the enlarged algorithm, 
and the completeness is kept. 

Correctness. The correctness of the 71 C Ε test is obvious. Regarding the 
ECU test, it is first clear that mE G Tl is a necessary condition for ECU. 
Hence the test is attached to Step 2 only, that is, a confirmation that Ε C Tl 
holds arises from Step 2 only. If there is no such confirmation, Ε C Tl is not 
valid. 

The correctness of the steps of the test rely on simple geometric considera
tions': 

Step 2'. Condition f(xo,Uo) < 0 says that (xo,yo) lies in E, so that there 
are adjacent points of Ε that lie outside 71, cf. Fig. 5.25a. 

Step 3'. Because of the missing monotonicity of / on the edge (X,yo), one 
has to check the discriminant condition for an intersection of Ε with the edge. 

�� �� �� �� ��



Ellipse-Box Intersection Testing 167 

In case of a proper inclusion, that is, D(ifo) > 0, and a part of (X,yo) will be 
outside E, cf. Fig. 5.25b, and Ε % Tl. 

Step 4' treats the remaining case, D(yo) < 0. Even though there is no 
proper intersection of Ε with the edge (X, yo) and intersection of Ε with the 
edge (χο,Υ) can well happen. If no monotonicity of / on the edge (χο,Υ) is 
given, Ε intersects Tl properly iff D(XQ) > 0, cf. Fig. 5.25c and 5.25d. 

If monotonicity of / on the edge (χο,Υ) is given, the ellipse cannot pass 
this edge, and hence, since (xo,J/o) is nearest to mE and (xo,J/o) £ Ε through 
no other edge. 

• 

5.6.4 Complexity and Rounding Errors 
The operational-logical structure of the algorithm 14 is a tree with several 
branches and subbranches, where the height of the tree is very low. The com
putational execution of the test is therefore very inexpensive. Summing up the 
algorithm needs: 

1. the computation of mE, requiring 14 arithmetic operations, 

2. 0, 1 or 2 function evaluations, requiring 10 arithmetic operations each 
(using the form (5.27)), 

3. 0, 1 or 2 partial interval derivatives (if 2 are needed, only 1 function 
evaluation and no discriminants are needed), requiring 3 arithmetic and 
2 interval arithmetic operations each (which is equivalent to 7 arithmetic 
operations each), 

4. 0 or 1 discriminant evaluations (if 1 is needed only 1 function evaluation 
is needed), requiring 4 to 5 arithmetic operations each 

and a few additional comparisons and sign checks. 
The decision for intersection or not is therefore obtained after 2 inexpensive 

evaluations (mE, f) and 2 very inexpensive evaluations (V, D ) or after 3 
inexpensive evaluations and one very inexpensive evaluation. 

If the optional inclusion tests are incorporated into algorithm 14 then the 
costs will not increase since the algorithm stops with the 2nd or 4th step if 
the inclusion tests are called up. Thus, if the optional tests are not invoked 
because the computation does not go through their branch, the cost analysis 
of the algorithm is still valid. 

Hence, we sum up the overall costs if the optional tests are invoked (we 
again drop comparisons): 

1. Computation of mE (for Algorithm 14), 
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Figure 5.26: Intersection testing of curve and rectangle 

2. 1, 2, 3 or 4 function evaluations (one for the Ε C Ti test, at most 3 for 
the Ti C Ε test), 

3. 0, 1 or 2 partial interval derivative evaluations (for the Ε C Ti test), 

4. 0, 1 or 2 discriminant evaluations (for the Ε C TI test). 

5.7 Intersection Between Rectangle and Explic
itly Denned Curve 

In this section some computational aspects of dealing with real curves are 
discussed. Objects bounded by curves occur frequently in computer graphics 
and solid modeling. When a windowing operation is performed then one wants 
to know whether such objects appear completely in the window, or partially, 
or perhaps not at all. This leads to a development of algorithms for testing 
whether a curve and a rectangle representing the frame of a window intersects. 
Similarly interference testing between objects whose boundaries are defined by 
curves and curved surfaces leads to curve-curve and surface-surface intersection 
testing. 

We consider explicitly defined plane curves and whether they intersect an 
axes-parallel rectangle. The curves are either of the type (x, /(x)) or they are 
more generally defined via a parametrization, that is, of the type (x(t),y(t)). 

First let the rectangle ΤΙ = Χ χ Y and the curve y = /(at), χ e Xo be 
given. Here, X = [11,3:2], Y = [Vi,y2], and Xo are intervals. We assume that 
X and Xo overlap, otherwise the rectangle and curve do not intersect. Only the 
area common to X and Xo is meaningful for the test and we therefore replace 
Χ Π Xo by X as the working area. With this new notation, we have 

71 = X xY &ndy = /(χ), χ € X, 
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cf. Fig. 5.26. 
We further need an inclusion function F of / for the validated computation 

where 

w(F{Z)) - w(Df(Z)) -40 as w(Z) -> 0. (5.35) 

for subintervals Ζ of X. A real number e > 0 is needed as termination param
eter. 

We provide two different intersection tests for this type of curve. The first 
test needs no derivative information and is thus applicable to curves which are 
not necessarily continuously differentiable, for example, to curves which are 
only piecewise smooth. The principle underlying the algorithm is subdivision 
combined with function value comparisons in the subintervals. It is easy to 
write the code but the computation might be time consuming. 

In this connection the condition (5.35) has to be explained. It says that the 
excess-width of the inclusions F(Z) tends to zero as the width of the underlying 
interval Ζ does, that is, the approximation of the range of / over Ζ by the 
inclusion F(Z) improves as the width of Ζ becomes smaller. Without this 
property the iterated subdivision which is pursued throughout the algorithm 
and which makes the subintervals smaller and smaller would be useless. This 
explanation is also valid for the second test. 

The second test we provide is considerably faster and requires that the curve 
is smooth. This test is largely based on the interval Newton method. 

In the first test, X is systematically subdivided into subintervals Ζ = 
[zi.ife], and the intervals F(Z) and F(z) where ζ £ Ζ for some ζ are eval
uated. All intervals Ζ satisfying F(Z) C R \ Y are excluded since they cannot 
contain points which are rectangle as well as curve points. The computation 
terminates when 

(i) a point ζ or an interval Ζ is found with F(z) C Y or F(Z) C Y (inter
section is confirmed), 

(ii) points ζ and z' are found with 
F(z) < yi < F(z') or F(z) < y2 < F(z') (intersection is confirmed), 
(iii) all the subintervals which are available so far have width smaller than 

e (no decision has been possible up to now within the prescribed accuracy), 
(iv) the list of available subintervals becomes empty (no intersection is con

firmed). 
The idea of the algorithm is to demonstrate that there is a point of the 

curve that is guaranteed to be in the box or that is guaranteed that no point 
of the curve is in the box. The algorithm therefore first computes an inclusion 
of the curve over the domain X. If this inclusion is outside Y then there is 
no intersection. Similarly if the inclusion is contained in Y then an inclusion 
is guaranteed. If neither of the above situations are valid then the algorithm 
proceeds by evaluating inclusions of the curve at the endpoints of the domain 
X. 
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If a decision is not reached for the whole rectangle, the rectangle is recur
sively subdivided and the process repeated till either a point of the curve lies in 
a subrectangle or no curve point lies in no subrectangle which gives a validated 
decision. If not decision is reached till all subrectangles are smaller than a give 
width, the algorithm is terminated with an uncertain result. 

Input parameters are the inclusion function F for / over X which satisfies 
(5.35), the rectangle 71 and a termination parameter e > 0. 

A L G O R I T H M 15 (Rectangle curve intersection test) 

Step 1. Compute F(X). 

Step 2. IfF(X) η Y = 0 then STOP (no intersection is confirmed). 

Step 3. If F(X) C Y then STOP (intersection is confirmed). 

Step 4. Compute J\ = F(xx) and F2 = F(x2). If Fi C Y or F2 C Y then 
STOP (intersection is confirmed). 

Step 5. / / Fi V F2 > y2 set G(X) = F{X), Ζ = Y and set r = lb(Fi V F2) 
goto 8. 

Step 6. IfFiVF2 < yx setG(X) = -F(X), Ζ =-Y and set r = -ub{FiVF2) 
go to 8. 

Step 7 . STOP (intersection is confirmed). 

Step 8. Initialize list C = {(X,r, 1)}. 

Step 9. Denote by (W,q,d) the first element of C and remove this element 
from C. 

Step 10. IfG(W)nZ = 0 go to 14. 

Step 1 1 . If G{W) C Ζ then STOP (intersection is confirmed). 

Step 12. Subdivide W into Wi and W2. 

Step 13. Fori = 1,2 

1. If ubG(mid m(Wi)) < z2 then STOP (intersection is confirmed). 
2. Enter (Wi,lbG{mid (Wi)),d + 1) onto the list C so that the list is 

first ordered by increasing third component then by increasing second 
component. 

Step 14. If C = 0 then STOP (no intersection is confirmed). 

Step 15. Ifw(W) < e for all (W,q,d) 6 C then STOP (all the subintervals 
Wi in the final (nonempty) list have a width smaller than e). 
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S t e p 16 . Goto 8. 

The algorithm behaves as binary search in the worst case. However, in 
general it only needs to subdivide until a decision has been reached. This may 
happen after just a few steps. 

It is obvious that the algorithm as well as its numerical realization is com
plete, i. e., it deals with every possible configuration. The algorithm and the 
numerical realization are correct as a wrong result never can arise. The com
putation terminates after a finite number of steps since the subdivision process 
bisects the current subintervals uniformly so that their widths become finally 
smaller than e, provided no earlier termination took place. 

The second test can be considered in two parts. The first part tests for 
simple configurations which can be dealt with easily. In the second part the 
interval Newton procedure is applied in order to localize intersections of the 
curve with the lower or upper horizontal side of Ti after which the existence 
test is applied to provide guaranteed results. 

Input parameters are the inclusion function F of f over X which satisfies 
(5.35), the rectangle Tl = Χ χ Y and the termination parameter e > 0, as 
well as the data which are required for running the interval Newton algorithm 
(the parameter e' of the interval Newton algorithm must be larger than the 
parameter e here.) 

A L G O R I T H M 16 (Improved rectangle curve intersection test) 

S t e p 1. Initialize list C = {X}. Remove X from list. 

S t e p 2 . Compute F(xi),F{x2) andF(X). 

S t e p 3 . IfF(xi) CY or F(x2) C Y, then STOP (intersection is confirmed). 

S t e p 4 . IfF(X) C R\Y , then 
(i) if C is empty then STOP (no intersection is confirmed) 
(ii) delete X (since it does not contain parameter values with curve points 
in Tl) 
and go to Step 8 (select next interval). 

S t e p 5 . IfF{xi) < y 2 and yx < F{x2) 
or 

ifF(x2) < y2 and yi < F(xi) 
then STOP (intersection is confirmed). 

S t e p β. Ifyi e F ( n ) V F ( i 2 ) or if F(Xl),F(x2) < yu 

then apply interval Newton method to f — y\ over X. 

If during the interval Newton computation 
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(i) a point ζ G X or a subinterval Ζ is found with 

F(z) CY or F{Z) C Y 

then STOP (intersection is confirmed), 

(ii) a subinterval Ζ is found with F(Z) < j/i then Ζ can be deleted since 
it contains no intersection points with the curve, 

(iii) the processing list of the interval Newton method becomes empty then 
STOP if £ is empty (no intersection is confirmed) otherwise go to Step 
8 (select next interval). 

If the interval Newton computation terminates because all the subintervah 
Zi in the final (nonempty) processing list of the interval Newton method 
are sufficiently small then apply the existence test to each of these boxes. 
As soon as the existence test verifies that a zero of the function f — yi 
exists, that is a solution of the equation / = j/i in one of the these boxes 
then STOP (intersection is confirmed). Apply the statements (i), (ii), 
and (iii) also to the existence test computation. 

Bisect those intervals which remained in the procession list of the interval 
Newton algorithm (existence test included) if their width is larger than 
w(X)/2 and put them at the end of the list C. Put those intervals the 
width of them is already smaller than or equal to w(X)/2 at the end of 
the list C without bisecting them. 

Step 7 . Ify2 G F(Xl) V F(x2) or if F(Xl),F(x2) > y2, 
then apply interval Newton to f — y2 and proceed symmetrically to Step 
6. 

Step 8 . Remove the first interval from the list C that has width larger than 
or equal to e and denote it by X = \x\, x2\. If the width of all intervals 
of the list (which cannot be empty) is smaller than e then STOP (no 
decision about the intersection has been possible yet with respect to the 
chosen accuracy). 

Alg. 16 as well as its numerical realization are complete, correct and ter
minate after a finite number of steps. These properties are due to the logical 
construction of the algorithm and the properties of the interval Newton method. 

More general, we now deal with a parametrized curve z(t) = (x(t), y(t)) 
with t G [0,1], and z(t) G R2 and wish to check for an intersection with the 
rectangle TI. We need an inclusion function Z(T) = (X(T),Y(T)) G Γ2 for 
z(t), with Τ G I([0,1]), where X and Y are inclusion functions for χ and y. In 
analogy with the previous tests, the conditions 

w{X(T)) - u;(nx(T)) -40 as w(T) -> 0, 1 
w(Y{T)) - w(Oy(T)) -+0 as w(T) -* 0 J 
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are required for subintervals Τ of the parameter interval [0,1]. Geometrically, 
Z(T) can best be interpreted as the rectangle X(T) χ Y(T). A termination 
parameter e > 0 is needed as before. 

The following algorithm checks whether the rectangle TZ is intersected by 
the curve z(t). Similarly to Alg. 15, the parameter interval is subdivided, until 
it is recognizable that curve points are in TZ or that none of the subintervals 
contains any curve points. If the widths of all the subintervals are smaller than 
€, the computation is terminated without a conclusive result. Interval Newton 
steps are not incorporated since these steps can only be reasonably applied 
when a well determined search interval is available. Theoretically, this would 
be possible, but practically, it would lead to a large number of cases which are 
not worth the effort. 

The input parameters are the rectangle TZ = Α χ Β, the curve z(t) = 
(x(t),y(t)) with t € [0,1], the inclusion function Ζ as described above and 
which satisfies (5.36), and a termination parameter e. 

ALGORITHM 17 (Testing for intersection between rectangle and paramet
ric curve) 

Step 1. Set Τ = [0, l],ti = 0, and h = 1, 

Initialize list C = {T}. Remove Τ from list. 

Step 2. Compute Z(h), Z(t2) and Z{T). 

Step 3. If Z(ti) C TZ or Z(t2) C TZ, then STOP (intersection is confirmed). 

Step 4. / / Z(T) C R2\TZ , then 
(i) if list C ist empty then STOP (no intersection is confirmed) 

(ii) delete Τ (since Τ does not contain points with function values in TZ) 
and go to Step 7 (select the next interval). 

Step 5. (i) IfY(h) < b2 and bi < Y(t2) 

or 

ifY(t2) < h andbj < Y{ti) 

then STOP (intersection is confirmed). 

(ii) IfX(h) < a2 and αχ < X(t2) 

or 

ifXfo) < a2 and a v < X(h) 

then STOP (intersection is confirmed). 

Step 6. Split Τ into two subintervals of equal length and put them at the end 
of the list. 
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Step 7 . Remove the first interval from the list, denote it by Τ and its endpoints 
by h and t2. Ifw(T) < e (then all intervals of C have width smaller than 
e) then STOP (no decision about the intersection has been possible with 
respect to the chosen accuracy). 

Step 8 . Go to Step 2. 

Alg. 17 as well as its numerical realization are complete, correct and ter
minate after a finite number of steps. These properties are due to the logical 
construction of the algorithm. 

Condition (5.36) says that the excess-widths of the inclusions X(T) and 
Y(T) tend to zero as the width of the underlying interval Τ does, that is, 
the approximation of the current range of χ and y over Τ by the inclusions 
X{T) and Y(T) becomes better and better. Without this property the iterated 
subdivision which is pursued throughout the algorithm would be pointless. 

5.8 Box-Sphere Intersection Test 

5.8.1 Introduction 
Testing for the intersection of a circle with an axis-parallel rectangle or for 
the intersection of a sphere with an axis- parallel box is a computer graphics 
primitive that occurs in a number of applications. In the field of solid modeling 
such tests are applicable as a preprocessor for many surface-surface intersec
tion algorithms. In particular, the implementation of the tests in this section 
responds directly to the concerns expressed in [51] where it is stated that 

...the numerical schemes available so far for dealing with offsets 
and intersections fail to meet the minimum standards of reliability, 
accuracy and efficiency... 

The rectangle-circle test is used to decide whether a circle or disk overlaps a 
region in the view-plane and the sphere-box test is used in spatial subdivision 
techniques in ray tracing. 

Arvo [10] describes a series of such tests where the midpoint m and the 
radius r act as sphere parameters. The tests determine the smallest or largest 
distance from m to the box and compare it with r. This enables [10] to solve 
several variants of the intersection problem such as solid box vs. solid sphere, 
solid box vs. hollow sphere, etc. The tests are independent of the dimension. 
Moreover, Guibas-Stolfi [85] propose an Incircle Test where the circle is defined 
by three points a,b,c € R2. The test recognizes whether a query point e € 
R2 lies inside this circle or not and it is based on the determination of the 
oriented volume of a 3-dimensional tetrahedron whose vertices lie on a rotation 
paraboloid. This leads to the computation of a 4 by 4 determinant. If now e is 
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replaced by a rectangle (being the Cartesian product of two intervals), and if 
the determinant is evaluated in a well-defined manner with interval arithmetic 
then a circle-rectangle intersection test results [215]. 

The aim of this section, based on [216], is therefore first to show that Arvo's 
box-sphere tests can be unified and simplified using interval techniques such 
that only one (interval-) function evaluation is needed to perform the tests. 
Then, the test in [215] is lifted to dimension 3 such that another box-sphere 
test results. We give a new proof that avoids arguing with tetrahedrons on 
hyper-rotation paraboloids (which would be the case if the test in [85] was 
generalized directly) and that is - with the exception of a sign - independent 
of the dimension such that it also provides a simpler proof for the test in [85]. 
It finally turns out that Arvo's and the extension of the test by Guibas-Stolfi 
are mathematically almost identical as the underlying formulas differ by just 
a constant. An algorithm for one of the tests is given and further numerical 
examples are provided. 

We need a small observation. Let 

/ (χ) = αχ2 + bx + c. (5.37) 

Then the range of f(x) over X = [XI,XR], denoted by Ef(X) can be found 
by first computing ti = }{XL), h = /(*«) and if α φ 0 then t 3 = f(-b/(2a)) 
finally obtaining 

af(X) = i [min( ii'<2)*3),max(i l,i2,i3)] if - bj (2a) 6 X and αφΟ 
\ [min(ii,i2),max(ti,i2)] otherwise. 

(5.38) 

5.8.2 Midpoint and Radius as Sphere Parameters 
Let a sphere S be defined by its midpoint m € R3 and its radius r > 0. Hence 

S={x£R3: \\x-m\\ = r}. 

Let us now introduce a distance comparing function 

F(x) = ||x - m||2 - r 2 for χ G R3. (5.39) 

Then, if the · stands for the standard inner product, 

F(x) - (x - m) · (x - m) - r 2 

= x -x — 2x · m + m · m — r 2 

3 
= y ^ ( x 2 — 2xjm<) + m · m — r 2. 

•=i 

F(x) compares the distance from χ to m with the distance from the points of S 
to m, expressed in squares to avoid square roots. A point χ is therefore inside 
S iff F(x) < 0. 
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2 

Figure 5.27: Box-sphere configuration 

Let Ε = (Ei,E2,Es) be an axis-parallel box, where Ei,E2,E3 G I(R)-
This box will be compared with S. A typical situation is shown in Figure 5.27. 
The comparison can be made if we take the distance comparison function F 
together with set-value considerations. For example, if 

F(x) < 0 for all χ G Ε 

which is equivalently expressed by DF(E) < 0, one can be sure that Ε lies 
inside the sphere. One only has to find a way to determine DF(E). This can 
be done easily in interval arithmetic: 

Let fi{xi) = x 2 - 2mjXj for x< G R,i = 1,2,3. Then fi is of the form (5.37) 
and Dfi(Ei) can be evaluated by (5.38). By (5.39), F(x) = Σ<=ι /<(χ<) + τη • 
τη - r2 for χ G R3 and finally, OF(E) can be evaluated directly as 

3 

OF(E) = Σ Ofi(Ei) +mm-r2 

«=i 

with interval arithmetic. 

This leads to the following: 

Test for the intersection behavior of the box Ε and the sphere S: 

1. Evaluate C\F(E) as explained above. 
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2. (i) DF(E) < 0 iff Ε inside S (no intersection), 

(ii) OF(E) > 0 iff Ε outside 5 (no intersection), 

(iii) 0 G DF(E) iff Ε and S intersect. 

Example 1 . As an example to illustrate the above consider a sphere S 
defined by m = (0,1,0) and r = 1 together with a box Ε = ([3,4], [0,2], [-1,1]). 
Then fi(xi) = x2, f2(3:2) = x\- X2 and h{xs) = x\ from which Π/ι(Ει) = 
[9,16], 0/2(^2) = [-1/4,2] and af3(E3) = [0,1] using (5.38). From this 
DF(E) = [8.75,19] > 0 showing that Ε is outside S. 

The test is concerned with Ε as a solid object and with 5 as a hollow one. 
One can immediately derive variants - as considered by [10] - with S solid, Ε 
hollow, etc. For example, if Ε and S are solid, QF(E) < 0 is equivalent to 
Ε inside S (which means here that ECS), and intersection is given. By the 
way, if a decision is needed to whether S C Ε with Ε solid it is not necessary 
to compute DF(E). One can check this directly by computing 

SCE\flEiL<mi-r<mi+r<EiR (i = 1,2,3) 

where Et = [EiL,EiR]. 
When numerically computing OF(E) values OF(E)NUM are calculated due 

to rounding errors. In this case there is an extremely small percentage chance 
that the test leads to a wrong decision due to the deviation of ^F(E)NUM from 
DF(E). Nevertheless, if machine interval arithmetic is used it is still possible 
to save almost all of the conclusions of the test. In this case, instead of the 
interval HF(E) = [u, v] only including intervals for the endpoints u and ν can 
be calculated 

U £ [ U L , U r ] , ve[vL,vR], 

and we have the following "guaranteed" conclusions summed up: 

Numerical version of the Test (E solid, S hollow): 

(i) vR < 0 implies DF(E) < 0 (i.e., Ε inside S), 

OF(E) < 0 implies vL < 0. 

(ii) « L > 0 implies DF(E) > 0 (i.e., Ε outside 5), DF{E) > 0 implies 
uR > 0, 

(iii) uR < 0 < VL implies 0 G DF(E) (i.e., Ε and 5 intersect), 

0 G OF(E) implies uL < 0 < vR. 

Remark 1 . It is obvious that the considerations of this section can be 
formulated for each dimension. 
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5.8.3 Four Peripheral Points as Sphere Parameters 
In [85] an Incircle Test is presented which determines whether a query point 
is inside a circle given by 3 of its points. We generalize this test to dimension 
3 which is also of interest for the computation of three-dimensional Voronoi 
diagrams [85,198]. The resulting Insphere Test accordingly determines whether 
a query point e is inside the sphere S that is now given by four of its peripheral 
points. We provide a new proof, which avoids hyper-geometric interpretations 
and which can be performed in any dimension. We also single out the close 
mathematical connections of the test with the distance comparing functions, 
F(x) = (x-m) (x-m) - r 2 , introduced in Subsec. 5.8.2. After this, we go one 
step further and replace the query e by a box Ε and the Insphere Test becomes 
a test for box-sphere intersections, if some basic rules of interval arithmetic are 
considered. 

Let a, b,c,d£ R3 be affinely independent points. Then there exists a unique 
sphere, 5, such that the given points lie on the sphere. We again denote its 
midpoint by m and the radius by r. The generalization of [85], the Boolean 
predicate Insphere(o, 6, c, d, e) will be introduced and be defined to be true iff 
e G R3 is inside the sphere. Whereas the Incircle Test requires the determina
tion of a 4 by 4 determinant the Insphere Test leads to the determinant 

V(a, b, c, d, e) = 

αϊ αϊ a3 a - a 1 
bi bi 63 b · b 1 
Cl C2 C3 c c 1 
d\ d2 d$ d-d 1 
ei ei e3 e • e 1 

(5.40) 

Let β = b — a, 7 = c — α, δ = d — a, e = e-a and 

V = 
β\ βι βζ 
7ι 72 73 
δι δ2 ($3 

Then 

£>(α, b, c, d, e) = 

ei e 3 

6 · b — a · a 

c-c — a- a 

d-d — a-a 

e-e — a - a 

(5.41) 

In order to avoid orientation assumptions and dealing with oriented volumes 
(one way to proceed would be the assumption that β, η, δ are positively ori
ented) we introduce 

a = sign(|V1). 
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The determinant \V\ need not be evaluated separately since it occurs as a minor 
of (5.41). Since a,b,c,d€ S, 

\\x — m\\ — (x - m) • (x - m) — r2 for χ = α, b, c, d. (5.42) 

Subtracting the equation (5.42) for a from the corresponding equations for 
6, c, d yields 

bb — a- a = 2m · β, 
c-c — a-a — 2m · 7 , 

dd — a - a = 2m • δ. 

This leads to a system of linear equations for the components of m, 

(5.43) 

mi bb — aa 
m 2 1 = - I c c - a a 
m$ I \ d • d- a - a 

(5.44) 

Inserting the values of m into one of the equations (5.42) gives the value of r. 

L E M M A 4 (i) V{a, b, c, d, e) = 16|V\F(e) 

(ii) Insphere(a,b,c,d,e) w true iff aV(a,b,c,d,e) < 0. 

Proof, (i) By (5.42) and the definition of F(x), we get 

ee — aa = e • e + m · m — a • a — m • m 
= (e - m) · (e - m) + 2e · m - (a - m) · (a - m) - 2a · m 
= F(e) + 2e · m. 

Hence, by (5.43), 

D(a,6,c,d,e) = 16 

= 16 

: m-β 

V : m · 7 

: m - 5 

ei €2 €3 : m · e + F(e) 

: 0 

V : 0 

: 0 

ei t2 £3 : F(e) 
= 16|V|P(e). 

(5.45) 

(5.46) 
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(The determinant (5.45) results from the preceding one by multiplying the first 
column by —mi, the second by -rri2, the third by -m.3 and then adding it to 
the fourth column.) 

(ii) Now, e is inside S is equivalent to F(e) < 0, cf. Subsec. 5.8.2, which 
together with (i) - gives the result. • . 

The lemma enables us to compare the two approaches to perform an In-
sphere Test if four aJHnely independent points a, b, c, d e R3 are given (that is, 
if \V\ Φ0): 

1. Compute m,r and F(e). If F(e) < 0 then e is inside S. 

2. Compute σ and T>(a, b, c, d, e) (advisably not directly as 5 by 5 matrix) 
and apply point (ii) of lemma. 

Both approaches show about the same level of numerical costs and stability, 
even if the number of arithmetic operations of the first approach is a bit smaller. 

The conclusions attained so far can immediately be transformed to box-
sphere intersection tests based on determinants in the same manner as the 
Incircle Test in [85] formed the basis for the circle-rectangle test in [215]. Ac
cording to our range notation we set OT>(a, b, c, d, E) = {V(a, b, c, d, e) : e G E] 
for a box Ε C R3. Furthermore, the Boolean predicate Insphere(o, 6, c, d, E) 
shall be true iff Ε lies inside S. Then the lemma gets the following form 

C O R O L L A R Y 1 (i) DV(a,b,c,d,E) = l6\VpF(E). 

(ii) Insphere(a,b,c,d,E) is true iff oOV(a,b,c,d,E) < 0. 

The Corollary enables us to compare the two approaches to perform an 
Insphere Test for boxes E, if affinely independent points a,b,c,d £ R3 are 
given: 

1. Compute m,r and DF(E). If OF(E) <0,E lies inside 5. 

2. Compute σ and ΠΡ(α, 6, c, d, E) and apply point (ii) of the Corollary. 

Remark 2 . Because of the close connection between F and V shown in 
point (i) of the corollary, OV(a, b, c, d, E) can be used in the same manner 
as DF(E) for several variants of the Insphere Test (box outside sphere, box 
intersects sphere, etc.) cf. Subsec. 5.8.2. 

Remark 3 . If one wants to evaluate DV(a, b, c, d, E) without determining 
m and r, the following procedure is suggested: 

Developing the determinant (5.41) by the fourth row yields 

V(a, b, c, d, e) = —eiiui + «2102 - €3x03 + (e-e - a- a)un 
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where the Wi's are the appropriate minors. Let 

ζ = (b • b — a • a, c- c — a- a, dd — a - a)T 

and let V< denote the ith column of V, then the minors are 

VJi = \V2 V3 2 | , ίο, = \VX V3 z\, w3 = \VX V2 z\, 104 = |V|. 

From ee — aa = ee + 2eawe get 

(5.47) 

V(a,b,c,d,e) = J2/*(«<) = Σ ^ ( e < _ a <) 
»=1 

where 
fi(Xi) = wAx] + ( ( - l ) ' t O j + 2aiW4)xi. 

(5.48) 

(5.49) 

One notices that /i(x<) is of the form (5.37) such that Ofi(Ei - Oj) can be 
calculated with formula (5.38). This gives 

DV(a, b, c, ά,Ε) = Σ Dfi(£i ~ °0- (5.50) 
t = l 

Example 2. We continue Example 1 by considering S as being defined by 
the four points α = (1,1,0), b = (0,1,1), c = (0,2,0) and d = (0,0,0). Then 

so that 

β = 
7 = 

δ = 

V = 

b-a = (-1,0,1), 
c - α = (-1,1,0), 
d-a = ( -1 , -1 ,0) 

- 1 0 1 
- 1 1 0 
- 1 - 1 0 

We also calculate ζ = (0,2, -2 ) T . Now 

toi = 

102 = 

W3 = 

0 1 0 
1 0 2 

- 1 0 -2 

- 1 1 0 
- 1 0 2 
- 1 0 -2 

- 1 0 0 
- 1 1 2 
- 1 - 1 -2 

= 0, 

= -4, 

= 0 
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and finally wA = |V| = 2. From these calculations (or using Gaussian elimina
tion directly on (5.44)) we could recreate m and r using (5.42) and (5.44) then 
proceed as in Example 1. Since our aim is to illustrate the above theory we 
elect instead to proceed as above with equation (5.49) obtaining the separable 
components of Ρ as 

Finally we can compute OV(a,b,c,d,E) = •/ι([2,3])+Π/ 2([-1,1])+Π/ 3([-1,1]) = 
[16,30] + [0,2] + [0,2] = [16,34] > 0 from (5-50). This shows that Ε is outside 
5. 

5.8.4 Algorithm 
We now present an algorithm for the case when the sphere S is defined by four 
affinely independent points using the equations suggested in Remark 3. 

A L G O R I T H M 18 (Sphere-box intersection test) 

Step 1. Four affinely independent points a, b, c and d defining the sphere and 
Ε = (Ει,Ει,Ε3) defining the box are entered as data. 

Step 2. Calculate vectors β, 7 and δ and form matrix V. 

Step 3. Compute u>j, i = 1 , . . . , 4 from (5-47). 
Step 4. Evaluate the coefficients of fi{Xi), i = 1,2,3 using (5-49). 
Step 5. Evaluate OV(a,b,c,d,E) using (5.50). 

1. OV(a, b, c, d, E) < 0 implies that the box Ε is contained in the sphere 
S. 

2. OT>(a,b,c,d,E) Β 0 implies that the box Ε and the sphere S inter
sect. 

3. OT>(a,b,c,d,E) > 0 implies that the box Ε and the sphere S are 
disjoint. 

5.8.5 Numerical Examples 
We now present three more examples with less detail than the first two to 
illustrate the possible cases further. Let the sphere 5 be defined by a = (2,0,0), 

Λ(*ι) 
/ 2 (x 2 ) 
/ 3 (x 3 ) 

2x\ + 4xx 

2x2, 
2x2

3. 

Step β. 
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Figure 5.28: Box partly intersecting sphere 

b = (0,2,0), c = (0,0,2), d = (-2,0,0). Then the midpoint is easily found to 
be m = (0,0,0) with the radius r = 2. 

Example 3 . The sphere S defined above is compared with the box Ε 
defined by Εγ = E% = E3 = [1,2]. The configuration is shown in Figure 5.28. 
The approach in Subsec. 5.8.3 yields the distance comparing function in (5.39) 
as F(x) = x\ + x\ + x\ - 4 which has the separable components /»(XJ) = xj. 
This gives DF(E) = [-1,8] which shows that S and Ε intersect. 

The approach of Subsec. 5.8.3 yields |V| = -16 , σ = - 1 and minors 
W\ = tt)2 = VJ3 = 0, W4 = -16. The separable components of V are /i(xi) = 
-16x? - 64x1( / 2 (x 2 ) = -16x^, / 3 (x 3 ) = -16x| . 

If Xi is replaced by Ei - a (i = 1,2,3) in each case (use formula (5.38)), 
we find that OT>(a,b,c,d,E) = [-16,128]. Again, the calculation shows that 
S and Ε intersect which confirms the previous result. 

Example 4. The sphere 5 is as in Example 3 with Ε defined by Ei = 
Ei = £ 3 = [2,3]. This results in the configuration in Figure 5.29. Proceeding 
as in Example 3 we get OF(E) = [-1,8] and DT>{a, b,c,d,E) = [128,368]. In 
both cases the results show that 5 and Ε axe disjoint. 

Example 5 . The sphere S is as in Example 3 with Ε defined by Ei = 
E? = E3 = [2,3]. This results in the configuration in Figure 5.30. Proceeding 
as in Example 3 we get DF(E) = [-4,-1] and •£>(<!,b,c,d,E) = [-64,-16]. 
Here both results show that Ε is included in S. 
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c=(0,0,2) 

d=(-2 ,0 ,0) 

/ i r = 2 \ 

/ \i>=(0,2,0) 

I \ /m=(0,0 ,0) J 

= ( 2 , o , o ) ; 
E3=[2,3] 

r B=[2,3] 
Bi=[2,3] 

Figure 5.29: Box outside sphere 

Figure 5.30: Box included in sphere 
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Chapter 6 

T h e S C C I - H y b r i d M e t h o d 

f o r 2 D - C u r v e T r a c i n g 

6.1 Introduction 

A hybrid method for plotting 2-dimensional curves, which are defined implicitly 
by equations of the form f(x, y) = 0 based on [225], is developed in this chapter. 
The method is extremely robust and completely reliable and consists of Space 
Covering techniques, Continuation principles and Interval analysis, and it is 
called SCCI-hybrid method. The space covering, based on iterated subdivision, 
guarantees that no curve branches or isolated curve parts are lost (which can 
happen if grid methods are used). The continuation method is initiated in 
a subarea as soon as is proven that the subarea contains only one smooth 
curve segment. Such a subarea does not need to be further subdivided which 
means that the computation is accelerated as far as possible with respect to 
the subdivision process. 

The crux of the SCCI-hybrid method is the intense use of the implicit func
tion theorem for controlling the steps of the method. The formulas which 
are required in this theorem are evaluated using interval arithmetic so that 
the application of the theorem gives logically and analytically correct results 
which are not contaminated by rounding or approximation errors. Although 
the implicit function theorem has a rather local nature, it is empowered with 
global properties by evaluating it in an interval environment. This means that 
the theorem can provide global information about the curve in a subarea such 
as existence, non-existence, uniqueness of the curve or even the presence of 
singular points. The information obtained from the theorem allows the above-
mentioned control of the subarea and to decide how it is processed further, i.e. 
deleting it, subdividing it, switching to the continuation method or preparing 
the plotting of the curve in this subarea. The curves can be processed mathe-
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186 The SCCI-Hybrid Method 

matically in such a manner, that the derivation of the plotted curve from the 
exact curve is as small as desired (modulo the screen resolution). 

Let an equation 
/(*,») = 0 (6.1) 

be given, where / is a smooth real function in two variables, χ and y. The aim 
of curve or contour tracing is to graphically represent the set of real solutions, 
(x,y), of (6.1). The set of solutions of (6.1) is called the contour of the curve 
or also the curve itself which is implicitly defined by (6.1). Even if / is a 
polynomial, the curve can behave very badly with respect to a plotting or to a 
preceding computational phase. The curve need not be connected, it can have 
forks and other nonsmooth parts, and it can happen that there are isolated 
parts, that consist of one point only. This means that the numerical and 
graphical treatment of equation (6.1) can be nontrivial. 

The most important tool for obtaining explicit representations of the con
tour is the implicit function theorem which is well-known in analysis. Its ap
plication is however rather restricted and only valid if, besides a few technical 
conditions, the curve locally admits an explicit representation. For example, 
the theorem does not work for singular points such as the point (0,0) of the 
simple function /(x, y) = xy. 

Standard traditional methods for numerical solutions of (6.1) are contin
uation methods, simplicial methods, homotopy methods and space covering 
methods. Surveys of the first three methods can be found in, for example, 
Zangwill-Garcia [279], Schwetlick [240], Rheinboldt [227], Allgower-Georg [8], 
Guddat [84]. Space covering methods are well-known in interval analysis. As 
far as we know, they were first applied to contour tracing as part of computer-
aided geometric processing by Mudur-Koparkar [174]. Further approaches to 
contour tracing with interval methods can be found in Neumaier [178], Suffern-
Fackerell [258], Duff [37], Snyder [253], Kearfott [126], Kearfott-Xing [130], 
Schramm [239], [22] and others. These papers, however, differ from ours either 
by the problem statement or the methods used. The affine arithmetic used by 
de Figueiredo-Stolfi [53] is a generalization of interval arithmetic appropriate 
for some contouring problems. Grid techniques are also commonly used when 
it is required to plot the curves (see, for instance, [251], [53]). Martin et al. 
[154, 155] compared the accuracy and the costs of several variants of hybrid 
methods, included are variants that use derivative information. 

The article by Taubin [265] and references therein considers the specific 
problem of rendering implicit curves on raster devices which are rectangular 
arrays of domains called pixels having the same colour or shading. A variant 
of this problem is discussed in [267] where the colouring of the pixels contains 
information about the existence of solution points in the pixel. 

Typical examples of curves that would pose problems for many standard 
methods include 

/(x,y) = (x2 + y2 - l)(x 2 + y2 - 1 - e) = 0 (6.2) 
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for small e or 
f(x,y) = (x + y)(x-y) = 0 (6.3) 

if the curves are defined implicitly as above and no other information such 
as "the equation defines two intersecting lines" or "the equation defines two 
close, but disjoint circles" is available. Continuation methods might overlook 
the outer circle when starting with the interior circle of (6.2) or might break 
down at the point (0,0) with (6.3). Grid methods might also have trouble in 
identifying this point in (6.3) with sufficient accuracy. 

We return to these prototype examples in Sec. 6.3. where we show that the 
SCCI-hybrid methods have no difficulties at all in discovering these situations 
and to plot curves with almost arbitrary accuracy. 

The SCCI approach extremely robust and completely reliable and uses 

• space covering, 

• Moore's exclusion test and 

• computationally verifiable global versions of the implicit function theorem 

as basic principles. 
In our approach, the area in which the contour has to be plotted is usually a 

rectangle and it will be recursively subdivided into sub-rectangles. A rectangle 
will not be subdivided further when this rectangle 

(i) is proven not to contain any contour points or 

(ii) is appropriate for applying the continuation method or 

(iii) has reached a prescribed size which is appropriate for submitting the 
contour in the rectangle to a plotting operation or to a plotting stack. 
Frequently, these rectangles are called plotting cells. 

The interval arithmetic proof of (i) that a rectangle does not contain any 
contour points is generally supported by the exclusion test. For this purpose 
one needs an inclusion function, F(X,Y), of f{x,y) as introduced in Ch. 2. 
This means that 

where Χ, Y are compact intervals which means that Χ χ Y is a rectangle with 
edges X and Y. We return to appropriate inclusion functions with a more 
detailed development in Sec. 6.2. Now, the exclusion test can be applied to the 
rectangle Χ χ Y which means to select an inclusion function F of / , to evaluate 
the interval F(X, Y) and to check for 

f{x, y) G F(X, Y) for any χ G X, y G Y, (6.4) 

0#F(X,Y). (6.5) 
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If (6.5) is satisfied, there is no point (x,y) in the rectangle Χ χ Y with 
f(x,y) = 0 because of (6.4). Hence (6.5) guarantees, that the rectangle X xY 
cannot contain any contour points of / . A more sophisticated procedure can 
be found in Neumaier [178] who develops an inclusion function by using a 
mean-value formula and transforms the question of whether 0 G F(X, Y) to 
the solvability of a linear homogeneous interval system. Neumaier calls this 
procedure a "generalized Gauss-Seidel method". 

The most striking feature of the SCCI-hybrid method is a process which 
decides whether the current rectangle should be subdivided further or whether 
the continuation method can be successfully applied in the rectangle, cf. (ii). 
(The continuation method is the least expensive method for computing the 
path, hence the earlier it is applicable the faster the computation proceeds.) 
This decision is simply derived from the above mentioned implicit function 
theorem as soon as it is globally valid in the rectangle. Then the curve in the 
rectangle can be represented uniquely as a function y{x) or as a function x{y). 
Certainly, explicit formulas for y(x) or x(y) need not be developed, however, 
the knowledge that these explicit functions do exist means that the continua
tion theorem can be safely applied without worrying about pathological cases. 
In order to check the validity of the theorem, it suffices to evaluate the par
tial derivatives of / over the rectangle, cf. Sec. 6.2. The partial derivatives, 
computed so far, make it possible to draw conclusions about the monotonicity 
behavior of y(x) or x(y) without further computational costs. 

The continuation method itself corresponds to predictor corrector steps. 
The predictor steps are immediately obtained from the partial derivatives al
ready computed and the correction steps can be done with arbitrary accuracy 
using interval methods. 

There is still a variety of further interval based resources, which seemingly 
have not yet been used in connection with contour tracing. These are mostly 
tools which, together with point methods, make it possible to collect global 
information about the curves in a rectangle. Examples of this are existence, 
nonexistence, connectedness (i.e., one path of the contour), entry and exit 
points of the contour w.r.t. the rectangle, existence or nonexistence of singular 
points. All these features can be obtained using simple tools of interval arith
metic such as inclusion functions of / , partial derivatives of / , and the interval 
Newton method (which also could be avoided if the user is afraid to use it). 

Summing up: The main features of the SCCI method, that is, its robustness 
and complete reliability, stem from the interval tests that are incorporated and 
the relative speed stems from the procedural control gained from the global 
information. A disadvantage of the method is the high computational effort 
which is caused by the fact that the curve is not given explicitly. 

In Sec. 6.2, we will first outline the SCCI method and the tools used. This 
is followed by a more detailed description of the various parts of the method. In 
Sec. 6.3, the application of the presented method to the two critical prototype 
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examples mentioned before is discussed. 

6.2 The Parts of the SCCI-Hybrid Method 
The SCCI-hybrid method is presented here as a complete method consisting of 
the following parts: 

A. The subdivision process 

B. The standard exclusion test 

C. The determination of the global shape of the contour 

D. The continuation method 

E. The plotting 

F. Consideration fo rounding errors. 

Parts A, B, D and Ε are based on known material whereas part C contains 
new material. Each of the parts are described below. The main discussion will 
however focus on parts C and D because of the large influence of part C to 
part D. The other parts are only described in a level of detail necessary for 
the development of the overall method. It should also be noted that the parts 
are mostly independent of each other, except for the dependency of part C on 
part D. The subdivision process, the standard exclusion test and the plotting 
process will therefore only be briefly discussed allowing us to focus on the new 
material. 

Let XQ, YQ be two compact intervals forming the search rectangle ZQ = 
XQ χ Yo and let the smooth function / : ZQ - • R be given. Our aim is to plot 
the contour which is defined by f(x,y) = 0. Recursively, we also have to deal 
with sub-rectangles Ζ of ZQ, i.e., Ζ = Χ χ Y where X C XQ, Y C YQ are 
compact intervals. We look only for those solutions of the equation f(x,y) = 0 
which lie in Z . 

As mentioned, we first need an inclusion function, F of / , that is a function 

F : I(ZQ) -» I ( R ) 

which satisfies 

f(x,y) € F(X,Y) for all (x,y) e Χ χ Υ. 

In order to obtain reasonable results, one should only choose inclusion func
tions which satisfy the condition 

V J ( F ( X , Y ) ) - * Q as v>(X,Y)-*0. (6 .6) 
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For example, if 
f{x,y) = xsiny + ycosx 

then F(X,Y) = XsmY + YcosX is an inclusion function that satisfies (6.6), 
where sin Y and cos X are the ranges of sin and cos over Y and X, resp. (Ranges 
of standard functions can be computed with almost all interval software pack
ages available.) 

In contrast, the function 

F(X,Y) = X[-l,l] + Y[-l,l] 

is also an inclusion function of / , since the values of sin and cos are in [—1,1]. 
But condition (6.6) is not satisfied: Set, for example, X = 1 and Y = 1. 
Then w(X) = w(Y) = 0. But F(X,Y) = 1[-1,1] + [-1,1] = [-2,2] and has 
therefore width equal to 4. 

If w(X) and w(Y) are small, say, not larger than 1/4, the mean value form 
should be used as inclusion function instead of the natural interval extension 
since it has a higher convergence order than inclusions based on the natural 
interval extensions (cf. Sec. 2.12). The meanvalue form is defined as 

Fm(X,Y) = f(c,d) + (X-c,Y-d)T Vf{X,Y) 

for X G I(Xo), Y 6 I(Yo), where c,d are the midpoints of X and Y, respec
tively, and Vf{X,Y) is an inclusion function for the gradient which should 
satisfy (6.6), see for example [212], or any other book of interval analysis. 

For a better understanding of the SSCI-hybrid method we first give an 
informal and then a more detailed description. 

A L G O R I T H M 19 (The SCCI-hybrid method (for plotting the contour of the 
equation f(x, y) = 0 in the rectangle Z Q ) . ) 

The input parameters are ZQ, an inclusion function F of f, and the plotting 
cell size. The method works with two lists, a waiting list, WL for the math
ematical processing and a plotting list, P L , which contains the final plotting 
information. 

S t e p 1. Initialize the waiting list, W L , by entering ZQ onto the list. 

S t e p 2 . If WL is empty, terminate the computation (and start the plotting). 
Otherwise, get the "next" rectangle from WL and denote it by Z . 

S t e p 3 . Apply the standard exclusion test to Z . If Ζ is discarded by the test, 
go to Step 2. 

S t e p 4 . Determine the global shape of the contour in Ζ as specified later. Then 

a) If it turns out that there are no contour points in Z , discard Ζ and 
go to Step 2. 
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β) If Ζ has already plotting size (supplied with the global shape infor
mation), Ζ is put on the plotting list. Go to Step 2. 

7 ) If the information on the global shape of the contour is appropri
ate, the continuation method is initiated for Z . I.e., Ζ is replaced 
by plotting cells, which are put on PL. If the continuation method 
cannot reasonably be applied to some part of Ζ (Ζ included), denote 
this part by Ζ and go to Step 5. 

δ) In the remaining cases, go to Step 5. 

S t e p 5 . Subdivide Z , put the two halves on WL. Go to 2. 

After the termination, the proper plotting procedure can begin, that is, the 
plotting list, PL, can be forwarded to the plotting device. 

We now start with a detailed discussion of the individual parts which are 
needed in the overall method. 

A. The Subdivision Process 
The subdivision process is a known technique in many areas of numerical math
ematics, optimization, CAGD, etc. It has already been applied in Sec. 2.13, 
hence a brief description is sufficient. In general the aim of this process is to 
subdivide a given area recursively into smaller pieces (mainly rectangles, cubes, 
simplices, etc.) until there is enough information available for the current sub-
area to commence a proper investigation or treatment of the problem or parts 
of the problem in this sub-area (for instance, zero search, search for extremum 
points, contour sampling, etc.). 

In our case, we start with the initial rectangle, ZQ = Xo x Yo- This rectangle 
is subdivided and each sub-rectangle Ζ = Χ χ Y which occurs in this process 
has to pass several tests regarding the behavior of / over Z . When a test renders 
a definite answer (no curve patch in Z , or, curve passes through an edge, or, 
when it is promising to switch to the continuation method) or if Ζ has already 
reached a size predescribed by the user (plotting cell size), then this rectangle 
will not be subdivided further. Instead it will be submitted to the appropriate 
mathematical or procedural treatment (such as commencing the plotting or 
deleting the rectangle or commencing the continuation method). Otherwise, 
the rectangle Ζ is subdivided into 2 (or 4) equal-sized sub-rectangles. The 
subdivision bisects the longest edge. The two halves are put on the list WL 
to be processed as mentioned above. There are various possible proposals for 
ordering the rectangles on the list. Examples of the orderings are the various 
types of linear orderings and tree structure orderings. In our experience the 
following linear ordering has been found to be the best: 

1. Get the first rectangle, Z , from the already initialized, nonempty list 
(in our case, the waiting list, WL) and perform the various tests and 
procedures on Z . 
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2. If Ζ has not yet been discarded or forwarded to some other treatment, 
Ζ is subdivided, and the two halves are inserted at the head of the list, 
i.e., the left half before the right half, and the lower half before the upper 
half. 

3. (Optionally) Install a directed "adjacent" relationship structure, from left 
to right, from below to above. 

The advantage of this kind of "last in - first out" principle as opposed to 
uniform subdivision is that one can roll up the process along desired directions. 
This facilitates the incorporation of optional data structures. Furthermore, 
uniform subdivision needs, in general, more storage. 

The adjacency structure is thought of as an accelerating device, however, it 
does not have any influence on the mathematical performance. This means if it 
is already known that a box has curve points on an edge, this information can 
be carried over to the adjacent box which share that edge with the aid of the 
structure. We do not mention the details of how to implement an adjacency 
structure since they are not part of this method. 

The neighbor finding techniques which are described in Ch. 3 of Samet [238] 
may also be used. 

B. The Standard Exclusion Test 
This test has already been described in Sec. 6.1. The test stated that no curve 
points can lie in Ζ = Χ χ Y if 0 £ F(X, Y) which means that Ζ can be removed 
from further processing. If 0 6 F(X, Y), then Ζ is sent to Step 4 (global shape 
determination), which is the next processing step. 

C. The Global Shape of the Contour in a Rectangle Ζ = 
XxY 

Information about the global shape of the contour in Ζ is obtained from a set of 
computer executable queries. The information obtained from the queries is used 
for further decisions as to how to continue the computations. The advantage 
of the global shape knowledge obtained by interval methods in contrast to 
sampling based information is that the knowledge is guaranteed to be correct. 

In addition to the inclusion function F of / , we need inclusion functions 
Fx and Fv of the partial derivatives, f x and / „ , of / , respectively. Again, 
it is reasonable to take the natural interval extensions of f x and f y as in
clusion functions, such that condition (6.6) for Fx and Fv holds automati
cally. Returning to our former example, f(x,y) = χ siny + ycosx, we get 
fxix,y) = siny — ysinx, fy(x,y) = xcosy + cosx as partial derivatives of / 
which means that the inclusion functions are Fx (X, Y) = sin Y — Y sin X and 
Fy(X,Y) = XcosY + cosX. 

�� �� �� �� ��



The Parts of the SCCI-Hybrid Method 193 

The queries which establishes the global information depend on 
a corner sign check (signs of / at the corners of Z), 
the values of F at Z, 
the values of F at the edges of Z, 
the values of Fx, Fy at Z, 
the values of Fx, Fv at the edges of Z. 
Since the global shape investigation is only executed when Ζ does not pass 

the standard exclusion test, we can assume that 

o e F ( x , y ) (6.7) 

in the sequel. We now distinguish several cases: 

I. 0?Fx(X,Y), 0?Fy(X,Y) 

First, we consider the condition 

0#Fv(X,Y). (6.8) 

Since Fy is an inclusion function for the partial derivative / „ , condition (6.8) im
plies that fy(x,y) φ 0 for any point ( x , y ) € Z. Therefore, the implicit function 
theorem is applicable, and provided, a point ( x o , yo) € Ζ with / ( x o , yo) = 0 
exists, there is a unique function h(x) with the property yo = h(x0) and 
/(χ, Λ(χ)) = 0 for all χ belonging to some neighborhood of Xo-

Since 0 £ FX(X,Y), one also has that fx(x,y) φ 0 for any ( x , y ) € Z. 
Therefore h can be globally extended to a strictly monotone function in a 
neighborhood of Ζ and is at least well-defined as long as ( x , h(x)) G Z. This 
function then represents the contour of / ( x , y ) = 0 in Z, and there are no 
further contour points in Z. 

The derivative of h is 

fy{x,h(x)) 

where the strict monotonicity of h can be seen directly. 
One also can practically decide whether h is increasing or decreasing, since 

we know that the intervals FX(X, Y) and Fy(X, Y) do not contain zero. Hence, 
h is strictly monotonically increasing, if these intervals have different signs, 
otherwise h is strictly monotonically decreasing. Fig. 6.1 shows a few samples 
of possible configurations. Fig. 6.2 shows a few configurations that cannot 
occur. 

It remains to be settled whether there is a curve in Ζ at all i. e. it is 
possible to have situations as shown in Fig. 6.1c. In contrast to non-interval 
methods, it is very simple to decide: If there is any curve point in Z, the curve 
must have an entry and exit point in Z, since singular points are excluded in 
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f ) 

Figure 6.2: Impossible configurations 
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case I. (A singular point satisfies fx{x,y) = fy(x,y) = 0.) The entry and exit 
points can coincide, which then gives a corner, cf. Fig. 6.1b. Hence, in order 
to finally find out, whether Ζ contains contour points or not, the signs of the 
function values at the corners of Ζ are considered: 

1. If the four signs are equal then Ζ cannot contain any contour points 
(and Ζ can be removed from further processing). Clearly any curve in 
Ζ has to enter Ζ somewhere. This can only happen if the function is 
0 at some edge point. It would then follow that one of the adjacent 
corners had a positive function value and the other a negative value due 
to the monotonicity properties of / . The curve can not pass through 
a corner since the function value at such a corner would be zero (and 
by assumption the other three corners have function value zero) which 
contradicts the monotonicity properties. 

2. Suppose that three signs are equal and the fourth one is zero. Then 
because of the derivative information, the corner with value zero is the 
only solution point of equation (6.1). Hence this point can be plotted 
(and entered as a degenerate plotting cell onto the plotting list PL), and 
Ζ can be discarded. 

3. For the remaining possible sign distributions (3 positive and 1 negative, 
2 positive and 2 negative, 1 positive and 3 negative, 2 zero, 1 positive and 
1 negative, 1 zero, 2 positive and 1 negative, and 1 zero, 1 positive and 
2 negative) the unique curve enters and leaves via different edges which 
are easy to determine from the sign distributions. All together, the ideal 
situation is reached for applying the continuation method since the entry 
and exit point can be computed with no danger of bifurcations or other 
singular points and there are no further isolated curve segments in Z. 
The entry point of the curve in Ζ is determined, where we think of the 
process as progressing from left to right. (This orientation is not really 
necessary for the mathematical part of the method, but it facilitates the 
algorithmic design.) With respect to this orientation, the entry point is 
either on the left edge of Z, or on the upper or lower edge of Z. I.e., it is 
on the upper edge, if FX(X,Y) and Fy(X, Y) have the same sign (since 
then h'(x) < 0), or on the lower edge otherwise (since then h'(x) > 0). 
We use the interval Newton method to compute the entry point, if it 
is not already at a corner, since it has quadratic convergence under the 
given circumstances, as well as safe bounds for the entry point, cf. Ch. 
ΙΠ. It is clear that the interval Newton method is applied to / restricted 
to the edge in question so that the zero search is one dimensional. 

We restate the main steps: 

a) The entry point is determined, 

b) the process is switched to the continuation method, 

�� �� �� �� ��



196 The SCCI-Hybrid Method 

a) 

Figure 6.3: Possible configurations when QeFx{X,Y), 0 £ FV(X, Y) 

c) d) 

Figure 6.4: Impossible configurations when 0 G FX(X,Y), 0 £ FV(X,Y) 

c) Ζ is removed from further processing. 

II. OeFx(X,Y), 0 * F , ( X , y ) 
The geometric interpretation of the assumption 0 £ Fy(X, Y) is that, given 

any χ G X, there exists at most one y GY with /(x,y) = 0. As in case I, the 
implicit function theorem is applicable if curve points exist in Z, so that the 
curve in Ζ can again be described by a function h(x) where 

h'(x) = -
fx(x,h(x)) 
fv(x,h(x))' 

Singular points do not exist in Z, hence there are no bifurcation or curve 
branches that begin or end in the interior of Z. However, it is possible that 
several branches of the contour go through Ζ with several entry and exit points. 
Fig. 6.3 shows a few examples of possible curves, and Fig. 6.4 shows some 
impossible configurations. 

We will briefly explain why the configuration shown in Fig. 6.4d is impos
sible. We first denote the two branches of h by h i and fa. Then we have 
to distinguish between two principally different cases (further cases are slight 
variations of the two main cases): 
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(i) The function values of / below hi are positive (precisely, /(x, y) > 0 if 
(x, y) € Ζ and y < hi (x)) and the function values above h2 are negative. 
Since / is continuously differentiable, each line leading from the negative 
part to the positive part has to pass a point (x, y) with /(x, y) = 0. 
There are no such points and it follows that the situation described can 
not occur. 

(ii) The function values of / in the region between hi and h2 are all positive. 
This implies that the function values above hi are negative (because 
of 0 ^ Fy(X,Y)) and the values below h2 are negative which means, 
that /y(x,y) < 0 for points (x,y) 6 Ζ with y = hi(x) because of the 
function values decrease in the y-direction and that /„ (x, y) > 0 for points 
(x, y) 6 Ζ with y = h2(x) because of the function values increase in the 
y-direction. Since Fy(X,Y) contains all values fy(x,y) with (x,y) G Ζ 
and since Fy(X, Y) is an interval and therefore convex, Fy (X, Y) contains 
0, which is a contradiction. Hence the situation described here can not 
occur as well. 

Two things are learned for the design of the program from this: 

(i) The left edge of Ζ as well as the right edge contains as most one curve 
point each. 

(ii) The lower and the upper edge of Ζ can contain more than one curve 
point each. But if a curve branch leaves the upper [lower] edge (seen in 
direction from left to right), another branch can enter only on the upper 
[lower] edge. 

Based on the information gleaned so far, the processing of the rectangle Ζ will 
be as follows (and we again think of a curve parametrization from left to right): 

Case 1. The signs of the function values at the corners of the left edge of 
Ζ axe different. 

Then the curve enters Ζ at this edge at exactly one point. This point is 
determined by the interval Newton method, except when the point is already 
a corner. Ζ is then sent to the continuation method which is applied until 
the curve leaves Ζ (for the first time). If the curve leaves Ζ at a point with 
x-coordinate x' e X = [χι, X2], that part of Ζ with x-coordinate χ G [χι, x'] 
need not be processed further, since it cannot have another curve separated 
from the first. Hence, Ζ has to be replaced by the sub-rectangle, Z' = X' χ Y, 
where X' = [χ', x2]. If x' = x2 already, Z' can be dropped. If Z' is sent back to 
the waiting list, WL, it is beneficial to send the information already available 
along with Z', that is, 

a) 0?Fy(X',Y). 
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β) /(x'.yi) = 0 or f{x',yi) = 0 (but not both), where Y = (1/1,1/2],a:' < «2-

7) there is no further entry point of the curve on the left edge. 

It can also happen that when X is reduced to X' the condition 0 G Fx (X, Y) 
is changed to 0 £ FX(X',Y). In this case Z' satisfies the conditions for case I, 
and is returned to this case. 

Case 2 . The signs of the values of / at the corners of the left edge of Ζ 
are equal (only "+" and but not 0 are possible). 

In this case, no curve enters through the left edge of Z , and, it can only 
possibly enter through the upper or lower edge. Let 

Xu = (X,y2) be the upper edge of Z, 
Xi = (X,yi) be the lower edge of Z. 
Then, one evaluates F over Xu and Xi in the following manner: 

(i) If 0 ^ F(Xi) and 0 £ F(XU), no curve points are on these two edges, 
hence no curves enter Z, and Ζ can be discarded. 

(ii) If 0 £ F(Xi), 0 G F(XU) only Xu might have entry points. It is rea
sonable to separate the easy from the more involved cases. An involved 
behavior is, for example shown by 

h{x) = y2 + (x + e - xi) 2 sin χ _|_ X i if χ + e - x x φ 0, 
h(x) = 0 otherwise, 

where 0 < e < < X 2 - x i . In this case it is almost impossible to get an 
overview of the global shape of h only using numerical tools. 
We therefore distinguish between the following cases: 

a) If 0 & FX(XU), there can be at most one curve point on Xu which 
can be shown by checking the signs of / at the corners of Xu: 
al) If the function values at the corners have the same sign (0 is 

again not possible), then no curve goes through Xu, and Ζ can 
be discarded. 

a2) If the function values at the corners have different signs, then 
there is exactly one curve branch going through Z, it enters 
through Xu and leaves through the right edge of Z. This means 
that Ζ behaves nicely and Ζ is sent to the continuation method. 

b) If 0 G FX(XU) then the curve can cross Xu from zero to an infinite 
number of times. It would certainly be theoretically possible to 
determine the exact number of crossing points if there is only a 
finite number of them (this could be done first, using the interval 
Newton method for separating them, and second, by showing with 
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uniqueness tests, that in each separated area there is exactly one 
solution point). It seems, however, more reasonable just to proceed 
with subdividing Ζ (and to store the actual data for keeping the 
computational costs low) due to the many situations that might 
occur. 

(iii) If 0 G F(Xi), 0 £ F(XU), proceed analogously to (ii). For example, swap 
Xi and Xu in (ii), to get (iii). 

(iv) If 0 G F(Xi), 0 G F(XU) then there are again too many entry and exit 
points possible. Hence we will turn to the continuation method only if 
some monotonicity properties can be established: 

a) If 0 i Fx{Xi), 0 # FX(XU) and 
al) if the function signs at the 4 corners of Ζ are equal then there 

are no curve points in Z, and Ζ can be discarded, 
a2) if the function signs at the corners are not equal, two different 

edges of Ζ are involved with a unique entry point and a unique 
exit point of the curve. The entry point is determined using 
the interval Newton method and then a switch is made to the 
continuation method. 

b) If 0 G Fx(Xt) or 0 G FX(XU) it might be possible to find the curve 
points on Xi and Xu. This does not seem reasonable due to the 
possibly large computational effort involved and we therefore rec
ommend that the process is continued by subdividing Z. 

III. 0?Fx{X,Y), OeFy(X,Y) 

This case is analogous to case II. One may swap the χ and y coordinates in 
order to transform this case to case II. 

IV. OeFx(X,Y), OeFy(X,Y) 

This is the case where all can happen, starting from a reasonable curve 
behavior as in case I (cf. Fig. 6.5a) to the occurrence of not connected curves 
or singular points (forks, crossings, the start of new paths), cf. Fig. 6.5 b-g. 
The reason that reasonable curve behavior can also be included in this case 
is due to the overestimation of the range of the derivatives, fx and / „ , by 
their inclusions, Fx and Fy. Therefore it might happen that 0 G FX(X, Y) is 
computed even though fx(x,y) Φ 0 for all (x, y) G Z. 

It certainly would be possible to investigate further details computationally, 
such as the existence of singular points in Ζ (just apply interval Newton method 
to the point equation system fx(x,y) = fy(x,y) = 0 in Ζ and check whether 
the solution satisfies f(x,y) = 0). There are, however, still too many different 
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Figure 6.5: Possible configurations when 0 e FX(X,Y), 0 e FV(X,Y) 

situations possible such that it is best to reduce the size of the rectangles, until 
one obtains one of the more convenient cases in I to ΙΏ since smaller rectangles 
have a smaller chance of containing awkward situations. Even so, it is clear 
that a singular point in a rectangle remains a singular point independent of 
how small the rectangle is. 

Summing up, the rectangle Ζ is sent back to be subdivided further. 

D. The Continuation Method 
The continuation method would be accepted as the most reasonable and ef
ficient method to design contours, if one did not have to deal with the un
certainty of whether there are perhaps easily overlooked disconnected curve 
pieces "near" to the smooth path one is just plotting. In this connection the 
question also arises how to jump from one path to another if they are discon
nected. See, for example, [84]. Both of the two disadvantages just mentioned 
are meaningless when using the SCCI-hybrid method because of the availabil
ity of global information. Accordingly, we switch from the subdivision process 
to the continuation method as soon as the global information indicates that 
the above-mentioned flaws are excluded. Nevertheless, in some cases we switch 
back to the subdivision process, i.e., when the computational effort for going 
ahead with the continuation method would be large. 

Hence, if a rectangle, Z, is destined for the continuation method it is guar
anteed that there is only one path in Z. The path may fall into several discon
nected pieces in Z, which does not matter, since these pieces are then connected 
by the edge of Ζ so that they are always under control, cf., for example, Fig. 
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a) 
< x

0 . y 0 ) 
b ) 

Figure 6.6: Plotting cells Ζ 

6.3b or 6.3d. 
The continuation process itself is simple and easy, and comparable to march

ing methods: We start with the entry point and we continue to keep track of 
the path, until it leaves Z, and we check whether there is a re-entry of the 
curve (on the same edge). The track keeping is nothing but the covering of the 
path with plotting cells, one after the other, from left to right. Then the curve 
is generally only interpolated in the plotting cells, in our case, linearly. 

Thus, let (xo,j/o) € Ζ be the entry point as well as the starting point. 
Since the whole method progresses from left to right, (xo,yo) either lies on 
the left edge of Z, or on the upper or lower edge of Z. In the latter cases, 
there is no curve point to the left of (χο,ι/ο)· Let d be the width of a plotting 
cell, prescribed by the user. The value of d can be fixed, or variable, or can 
have different values in the two coordinate directions. We choose d as a fixed 
constant. 

Let 
X = [x0,x0 + d]nX, 
Ϋ = [Vo - d, y0 + d] (Ί Y, 
Ζ = ΧχΫ, 

cf. Fig. 6.6. 
The area Ζ is the rectangle where the plotting in form of a linearization is 

intended. (This paper does not discuss other interpolation types, since they 
have no influence on the SCCI method itself.) As the continuation method is 
developed from left to right, we need not consider the area left of x u . But we 
have to consider the area below and above j/o, since the curve can move down 
as well as up. 

In order to get a reasonable linear interpolation, we just look at the exit 
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i n t e r v a l f o r s e a r c h i n g 
f o r e x i t p o i n t 

( χ ο < 7 0 ) 

Figure 6.7: Cone containing contour 

point of the curve from Ζ which then will be the second point for the linear 
interpolation, if appropriate. If there are only a few further entry and exit 
points, one can continue to interpolate, or one can colour the box black, if 
there are too many. 

Now, first of all, the path in Ζ will be included in a cone with vertex (xn> yo)-
The cone is obtained from the partial derivatives. (A similar idea was already 
used by Hoffmann [107] who used Lipschitz constants. This was, however, dif
ficult to realize since methods for determining the Lipschitz constants required 
were not available. - Note that our method delivers a way to determine a Lip
schitz constant implicitly and almost automatically.) Since the contour lies in 
the cone, the contour leaves Ζ also within the cone. Hence it is in general not 
too difficult to localize the (first) departure point, cf. Fig. 6.7. 

Since we switched to the continuation method from the part of the algorithm 
where the global shape of the contour in Ζ was explored the following conditions 
are satisfied: 

0#Fx(X,Y) or 0#Fv(X,Y). (6.10) 

These conditions are carried over from Ζ to Ζ because of the inclusion Ζ C Z. 
Since (6.10) holds not only for the initial plotting cell we have considered so 

far, but also for all other plotting cells lying in Z, we will no longer distinguish 
between the different cells and denote them all by Ζ = Χ χ Ϋ. It is not essential 
whether Ζ is now the initial cell in Ζ or not. Accordingly, we let (xoiJ/o) be 
the entry point of the curve in Z. Note that (xo,yo) lies on the left edge of Ζ 
or on the upper or lower edge of Ζ due to our left to right orientation. 

We now distinguish between two cases: 
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I. 0?Fy(X,Y) 

As we have seen above the curve in Ζ can be completely described by an 
explicit function h(x) as long as (i, h(x)) G Z. In general we do not know this 
function, but we know the derivative 

, / / χ /x(x,h(x)) 
/„(x, h(x)) 

as discussed in (6.9). This is enough to get the cone, and that h(x) is unknown 
does not matter as we will see below. 

An inclusion function for h' could be 

H'(X,Y) = -F;(*%\ for X G I(X),Y G I(Y). 

Although H' is an inclusion function for ft'(x), it is reasonable to carry 
along Y as a second (interval) variable in order to have a better control of the 
bounds of h(x) such as h(x) G Ϋ. This helps to obtain tighter inclusions. This 
means that H'(X, Y) is an inclusion of ft'(x) as long as (χ, Λ(χ)) G Χ χ Y 
which is exactly the situation we have to deal with in the plotting cells Z. 

The inclusion function H' is convenient to work with. In many cases, it 
would however be better to find a direct inclusion of ft'(x) by looking first for 
an appropriate expression of Λ'(χ) (in terms of χ and h(x)) and then to choose 
the natural interval extension of this expression by replacing χ by X and h(x) 
by Y. The reason is that different expressions for one and the same function in 
general lead to different inclusion functions as discussed in Sec. 2.8. Experience 
has shown that the function H' as defined above does not produce the tightest 
bounds. 

The inclusion function H' (or an improved one) is now used to define a cone 
which covers the curve in the plotting cell Z. The cone is 

C = {(x,y) : χ > x 0 ) y G yo + Η'{Χ,Ϋ)(χ - x 0)}. 

The point (xo>yo)) which is the entry point of the curve in Z, is the vertex of 
C, and C is built up with the slopes of all tangents of the graph of h in Z. 

Hence, by the meanvalue theorem, any point of the contour that lies in Z, 
lies in C, cf. Fig. 6.8. 

Let 
Cmax(x) = yo + (maxH'(X, Ϋ))(χ - xo), x > xo 
Cmin(x) = yo + (mmH'(X,Y))(x - x 0), χ < x 0-

Then c m a x and c m j n describe the upper and the lower boundary of the cone. 
We have 2 cases: 

(i) Both half-lines, θ η , ω and c r a i n intersect the right edge of Z, cf. Fig. 6.8a, 
for instance. Then, the curve leaves Ζ on this edge between the two 
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Ζ 

a) b) c) 

Figure 6.8: Possible cones 

intersection points. Simply, apply the interval Newton method to the 
function /(xo,J/) with x 0 = min(xo + d, x 2) as a function in the variable 
y on the interval bounded by the intersection points in order to determine 
the (unique) solution point, say {xo,Vo)- This point will then be the initial 
point for the continuation step in the next plotting cell or the exit point 
of the curve out of Z, if xo = x 2 . If this exit point has, in fact, been 
reached, the processing of the curve in Ζ is finished, all the interpolation 
points for the curve or their plotting cells are on the plotting list, and Ζ 
can be removed from further processing. 

(ii) At least one of the half-lines Cmax or c m j n intersects with the upper or 
lower edge of Z, cf. for example, Fig. 6.8b. The chance for a simple 
continued " marching" as was the case with case (i) has already decreased 
(theoretically, there could be still an infinite number of curve entries or 
exits on the upper or on the lower edge), however, one could be lucky and 
one should therefore exhaust all possibilities for recognizing a convenient 
plotting behavior if such a behavior is present at all. Otherwise we have 
to deal with a plotting crash (black box colouring) or to plot by sampling 
as most non-interval based algorithms do. 

We consider the most extensive case only, that is, c m a x goes through the upper 
edge of Ζ and cmin goes through the bottom edge of Z, cf. Fig. 6.9. 
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i x o - y 0 ) 

Figure 6.9: The general case for a cone 
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The other cases that occur are when Cmax and cmj„ both go through the 
upper edge of Z, or both go through the lower edge, or c m a x or cmin (but not 
both) go through the right edge of Z. These variants can easily be derived 
from the most general case from which one may learn how to incorporate the 
information about the upper and lower edge. The case that cm\n coincides with 
the lower edge or that c m a x coincides with the upper edge should also be clear. 

We return to the general case sketched in Fig. 6.9. We only need to consider 
those parts of the edges that lie in Z. Hence the edges to be considered are, 
cf. Fig. 6.9, 

Zu (with endpoints a and b) as that part of the upper edge of Ζ that lies 
in C, 

ZT (with endpoints 6 and c) as that part of the right edge of Ζ that lies in 
C, and 

Zi (with endpoints d and c) as that part of the lower edge of Ζ that lies in 
C. 

As mentioned before we wish to exhaust all reasonable possibilities to rec
ognize a convenient and true plotting behavior. For this reason, the following 
tests are performed. 

1. If 0 0 FX(Z), there is a unique exit of the curve through one of the three 
edges, Zu, Ζχ or Zr. The edge, which has the exit, is easily determined by 
comparing the function values at the points a, b, c and d. The exact posi
tion is then found by the interval Newton method. Linear interpolation 
suffices for plotting. 

2. Κ 0 0 FX{ZU) and 0 £ Fx(Zt), there is also a unique exit as in Test 1. 
One proceeds as in Test 1. 

3. If 0 0 F(ZU) and 0 £ F(Zi) there is a unique exit of the curve through 
Zr. Proceed as in Test 1. 

4. If 0 0 F(Zi) and 0 £ FX(ZU), there exists a unique exit of the curve 
through Zu or Zr. Proceed as in Test 1. 

5. If 0 0 F(ZU) and 0 £ Fx(Zi). there exists a unique exit of the curve 
through Zi or Zr. Proceed as in Test 1. 

If these 5 tests are not passed successfully, one can make a last attempt and 
try the following: 

If 0 € F(ZU) and 0 € FX(ZU)_bisect Zu iteratively to a depth of 3 or 4 
obtaining 8 or 16 subintervals of Zu. If the following condition is satisfied for 
each subintervai /„ , 

O0F(J„) or O 0 F x ( / „ ) , (6.11) 

then each I„ has at most one intersection point with the curve, and the signs 
of / at the endpoints of Iu clarify matters. 
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An analogous partition is done if 0 G F(Zi) and 0 G Fx(Zi). If the subinter
val condition (6.11) is satisfied for the appropriate subinterval, one has sufficient 
information for the plotting (either linear interpolation, if points on different 
edges need to be connected, or quadratic or piecewise linear interpolation, if 
points on the same edge need to be interpolated). Note, there can be no cross
ings or saddlepoints. Furthermore, if the curve leaves via one edge, a re-entry 
is only possible via the same edge. Further, if F(b) and F(c) have the same 
sign, the curve will finally leave through Zu or Z|, otherwise through Z r . 

If the plotting cells are sufficiently small and if more than 4 entry or exit 
points he on at least 3 different edges, it makes sense to colour the whole cell or 
parts of it black (for example, the rectangle hull or convex hull of the points). 

If all these efforts for assigning a convenient plotting behavior to the curve 
in Ζ have been without success (practically, this will never occur, and we 
discuss this point only, in order to have a strategy suggestion for the worst-
case enthusiasts), we terminate the continuation process (one does not know, 
where to continue). It is best to proceed as follows: 

1. Discard that part of Z, which is to the left of Z, since the continuation 
method already worked fine there. 

2. The remaining part has still to be processed and is then destined for the 
subdivision part. The continued subdivisions will generate smaller rectangles, 
where the continuation method can be again applied partially, or until one 
again winds up with the necessity of colouring some plotting cells black (but 
then not being forced "to continue" the curve from this cell). 

II. 0?Fx(X,Y) 

This condition means that to each y G Y at most one χ G X exists with 
f(x,y) = 0. This means that if there is a contour in Ζ = Χ χ Y, it is unique 
w.r.t. the x-coordinate. Therefore, the application of the continuation method 
is still possible, but not from left to right. It is then best to swap the two 
coordinate directions and to apply the procedure as discussed under case I, 
that is the case 0 £ FV(X,Y). Then it is, in fact, possible to use the left-to-
right-trend, cf. Fig. 6.10. 

In order to have no plotting discontinuities at the connection points with 
other cells, it is reasonable to have a bookkeeping of the swapping incorporated 
in the overall data structure, if it is used at all. 

If the continuation process is interrupted due to an involved plotting be
havior, cf. the discussion in the former case, one has to re-swap the part which 
has not yet processed for further treatment. 

Remark. The exit points will not be determined exactly when the interval 
Newton method is applied. Instead they will only be enclosed by some bounds. 
For example, if the exit is on the right edge of Z, we get bounds like 

Vi < Vo < Vu 
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y 

0^F x(x,y) 0$Fy(x,y) 

Figure 6.10: Swapping for left-to-right trend 

with a prescribed maximum accuracy for the bound distance yu — yt. Thus, 
for the next plotting cell, the cone will not have a shaxp vertex but only a flat 
vertex such as 

C = {(x,y) • y G uVi, yu] + Η'(Χ,Ϋ)(χ-χ0), χ > xo}, 

where Ζ = X xY already denotes the "next" cell, and the entry point is y0. 
The exit point of the curve from Ζ is then again to be searched at one of the 
edge parts of Ζ within C, and again with the interval Newton method. It is 
important to mention that there is no error accumulation by using the cones 
with the flat vertices as is the case when solving differential equations, since the 
tolerance yu — yt for the determination of y0 is not affected by the inaccuracies 
accumulated in the former step. The accuracy depends solely on the tolerance 
predescribed for the bound difference which is the termination parameter for 
the interval Newton method and this can be made as small as possible. When 
the algorithm is implemented on a computer then inaccuracies due to rounding 
errors cause coarsening and this can also be handled with the cone idea and 
it does not matter, whether the inaccuracy comes from Newton or rounding 
errors. 

E. The Plotting 
It is difficult to make any suggestions how to draw the contours in the plot
ting cells. By this, we do not mean the technical process of drawing, which is 
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left to the plotting machine, but rather the decision as to how to approximate 
the contours in a cell by simpler lines which are then actually plotted. This 
decision depends on the size of the cells chosen and on the optical accuracy 
required. Some suggestions and hints are found in the literature, see, for exam
ple, Hoschek and Lasser [109], Suffern [257], Sutcliff [263]. Some of the main 
points of discussion seem to be, 

linear or quadratic approximation of the contour, if only two edge 
points are discovered or "sampled" in the cell, how to draw, if more 
than two edge points are found in the cell, when to colour the whole 
cell black. 

We will not contribute to this discussion, since the choice of the type of ap
proximations is not up to interval methods. Nevertheless, interval methods are 
able to support these decisions, because of the localization of the contour in the 
cell and in particular because of the localization of the points on the cell edges. 
This does not depend on the sampling, which is an uncertain and statistically 
completely unreliable procedure since contour points can easily be lost, but on 
the interval recipe, which can be made as reliable as necessary. 

The global information part about the contour in the plotting cell that we 
are able to bring out of the interval theory, may include (besides the basic 
knowledge that 0 lies in F(Z), where Ζ is the current cell) the computation of 

the values of Fx and Fy at Z, 
the values of F at the corners and edges of Z, 
the values of Fx and Fv at the edges of Z, 
interval Newton based knowledge 

(number of zeros of / on each of the edges, zeros of the gradient, 
V / , in Ζ (if there is no such zero in Z, no singular points like 
bifurcations, crossings, or isolated points or contour pieces lie in 
Z)). 

The geometric meaning of these expressions is described in Sec. 2 and may be 
used directly to control and direct the plotting procedure. To unify all these 
issues is a combinatorial puzzle rather than a mathematical activity and it is up 
to the user's requirements which of these issues are worthy of being included. 
Therefore we restrict ourselves to give a few examples. 

Before we do this, it is reasonable to distinguish between touching points 
and crossing points of the contour. By touching points, we mean a point where 
the contour only touches the edge, but remains locally on the same side of the 
edge, i.e., outside or inside the cell, on the same side of or on the edge. By 
crossing points, we mean that the contour enters the interior of the cell from 
the outside or vice versa. Generally, one can distinguish between the two cases 
computationally and figure out their number on each edge of the plotting cell, 
if the situation is not too involved. 
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We now give a few examples for the plotting: 

1. Touching points which are also singular points, are plotted as points. 
Touching points which are not singular points are part of an interpolation 
procedure for curves outside or inside the cell, or perhaps on the edge 
itself, and are plotted at this overriding level. 

2. If there are exactly two crossing points lying on two different edges and 
if 0 0 VF(Z), (where VF(Z) is an abbreviation for (FX(Z), FV(Z))), we 
plot a straight connection line between the two points. 

3. If there are exactly two crossing points lying on the same edge and if 
0 0 VF(Z), we do a rough search for a third point in the cell lying on 
the symmetry line between the two edge points and use piecewise linear 
approximation (resulting in a cone) or quadratic interpolation. 

4. If there are exactly two crossing points and one inside touching point on 
the edges, and if 0 0 VF(Z), again a cone is plotted by connecting the 
touching point with each of the crossing points. 

5. If there are exactly four crossing points on the edges and if 0 £ VF(Z), we 
have a case which may cause headache for users of the sampling strategy. 
In contrast, this case can be solved easily with the interval mode. 

Without loss of generality, we assume that 0 0 Fy(Z). (Otherwise the 
x-and ^-coordinates have to be swapped.) We have already seen that 
then the equation f(x, y) = 0 can be resolved for y in Z, such that the 
curve in Ζ can be represented by a function y = h(x) with a derivative 
h'(x) = -fx(x,h(x))/fv(x,h(x)), cf. (6.9). This means that the slope 
can never reach an infinite value such that contours of the type shown in 
Fig. 6.4a) are excluded. We have further seen, that if the curve leaves 
the cell at the upper [lower] edge, a reentry can happen only on the same 
edge, cf. Fig. 6.3d, so that the configurations as shown in Fig. 6.4d 
cannot happen. This leads to following definite answer: 

Enumerate the four crossing points on the edges by increasing x-values, 
that is, z\, z2,z3,z4, when xi < xi < £ 3 < £ 4 . Then the curve in Ζ is 
split into two isolated parts, where one part connects z\ and z2, the other 
one connects z3 and 2 4 , cf. Fig. 6.11 

Hence, the plotting instructions are obvious. If the two points connected 
lie on different edges, connect them with a straight line, as also done in 
Ex. 2. 
Otherwise connect them with a piecewise straight line (cone) or a quadratic 
curve, as done in Ex. 3. 

These few examples could show the great variety of cases that could be 
recognized by interval computations. The user has finally to decide yet, when 
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a) b) c) d) 

Figure 6.11: Two curve pieces 

to start to colour the whole cell black. We do it, for example, if more than four 
crossing points or inside touching points are in the cell, provided 0 £ V(Z). 

Up to now, we avoided the case 0 G VF(Z), since the computational effort 
is very high in order to reach decisions that are as definite as in the case 
0 0 VF(Z). Certainly, one could continue the subdivision (for improving the 
mathematical precision and not for the plotting) until 0 £ F(Z) or 0 £ VF(Z) 
is arrived at. For the remaining cells, a search for singular points (satisfying 
Vf(z) = 0 and f(z) = 0) would make sense and also to clarify which kind of 
singular point had been found. In our code, we chose a very simple procedure 
in the case 0 € VF(Z) being aware that we are confronted with a rare case: 
We just subdivide Ζ into 4 or 9 congruent sub-rectangles, and we colour a 
sub-rectangle, Zj black when 0 G F(Zi), that is, if we cannot exclude that Zj 
contains no curve points. 

F. Consideration of rounding errors 
Up to now, the development of the parts of the hybrid method took place in 
the space of reals, that is, in the real plane. If the calculations are performed in 
a floating point environment, the occurrence of rounding errors will falsify the 
results. The execution of the computations with machine interval arithmetic 
with its outward rounding helps to control the rounding errors as usual. 

The inclusions which occurred above and which were checked whether they 
contain zero or not were primarily F ( X , Y ) , F X ( X , Y ) , and F Y ( X , Y). 

As an illustrative example, let us focus on the inclusion F ( X , Y). Let the 
machine interval arithmetic evaluation of this inclusion be F M ( X , Y). Then the 
outward rounding implementation guarantees that F ( X , Y) C F M ( X , Y) holds. 
So if a computation results in 0 £ F M ( X , Y), one knows that 0 £ F ( X , Y), and 
the discussions for the case 0 £ F ( X , Y) are applicable. 

Conversely, if a computation results in 0 G F M ( X , Y), it is likely that 
0 G F ( X , Y) holds, but one cannot rely on it. But this does not matter, 
because not even the situation 0 G F ( X , Y) allows to conclude that 0 is in the 
range of the function f(x, y) over the rectangle X xY. This was the reason 
for introducing the check of the signs at the corners of the rectangle in order 
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to get a definite answer. These corner checks have to be done now as well. 
However, the evaluation of the function values at the corners is also subject 

to floating point errors. This means that for a corner (xi,yi) of the rectangle 
XxY the true but usually unknown function value /(xi, j/i) is contained in an 
including machine interval, say /Λ / (xi , J/ι)· In most of the cases this interval will 
be strictly positive or strictly negative so that the true but unknown function 
value /(xi,j/i) will be of the same sign as its including interval. But what 
happens if, for example, fn{(xi,yi) is equal to [-10 - 3 , +10 - 4]? Practically, 
all can happen: A zero could be the corner exactly, it could lie outside the 
rectangle, and it could lie inside the rectangle. 

In such cases it is reasonable to subdivide the rectangle as was done in case 
0 G FX(X,Y) and 0 G Fy(X,Y), cf. case IV of part C and to put the halves 
onto the list WL for further processing. But if the rectangle XxY has already 
cell width one can either 

(i) use data (like signs of the derivatives and signs of corners) of adjacent 
rectangles to get a decision about the site of the zero, which is frequently 
possible, 

or 
(ii) put it on the plotting list, PL, with a mark that indicates a suspected 

zero. Such a mark could be, for instance, different colouring of the cell or 
plotting a cross instead of filling the cell black. Another way is to plot the cell 
like a zero. In this case the interpretation of the contour should be so that no 
zero is lost in the plotting, but that not every plotted point is really a zero. 
Those problems arise only with functions which are very sensitive to evaluate, 
but nevertheless, such situations cannot be excluded. 

A similar procedure could be provided for the two other inclusions, FX(X, Y) 
and Fy(X,Y). One only has to keep in mind that the computational result 
that, for instance, 0 is contained in the machine interval arithmetic evaluation 
of FX(X,Y), means only that it is not proven that Fx(x,y) φ 0 for all χ G 
X,y€Y. 

6.3 Examples 

We present a few numerical and graphical results out of a larger collection of 
mainly ill-posed problems. 

For each of the examples the input information provided is the function 
defining the contour implicitly, the function gradient, the function domain 
which is of interest, and the cell-widths for controlling the quality of the plot
ting. No other information is made available to the SCCI-hybrid method. If 
further information about the class of objects to be plotted would be provided 
the method probably could be replaced by a more effective one. For example 
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if the function is 

f(x,y) = x2 + y2 - 1 

then the fact that its zero set defines a circle of radius 1 centered at the origin is 
assumed to be completely unknown to the performance of the method. If such 
information were made available then there are many methods in the literature 
that will plot the circle much faster than the SCCI method. 

The first example consists of two disconnected circles with a relatively low 
distance between them. Again, knowledge that it is two circles is not provided 
and would mean that any one of a number of circle generating algorithms could 
be used to generate the contours. In that case, the circles could touch, intersect 
or be disjoint and the circle generating algorithms would be able to plot the 
contours without any problems. 

The second example consists of two straight lines crossing each other so 
that the contour has a double point. Similarly, only the function defining the 
line pair implicitly and the gradient are known. If it would be known that 
the objects which are plotted are straight lines any straight line generating 
algorithm could be used to draw the lines and the configuration of the lines 
(intersecting or not, parallel, etc.) would pose no problems. The cell-width in 
this example was chosen as 1 0 - 3 (in contrast to the other examples where 1 0 - 2 

was chosen) in order to demonstrate that a small size of the cell-width has no 
negative influence to the plotting result as the average pixel size on a common 
screen is about 0.05cm. The robustness of the SCCI method is demonstrated 
by this parameter value and could be observed at the other examples of this 
section too. Several other contour tracing methods would have dissolution 
problems in such situations. 

The third and fourth example show three straight lines crossing in a point 
which is once defined exactly and the other time denned within some artificially 
generated tolerance. As one can see the dissolution of the plotting result is very 
satisfactory. 

The fifth example discusses a function which defines a curve with a crossing 
point where the last example shows a function which defines two circles which 
touch each other that is, they have the same tangent line in the critical point. 

The reason for presenting these examples is that they clearly highlight how 
the SCCI method overcome the prototype difficulties encountered in contour 
tracing caused by various kinds of singular points, crossing points and disjoint, 
but close contours. We also note that the plotting domain for the input data 
was partially oversized in the examples in order to show that the method easily 
handles areas without contours. 

A computer code for the SCCI method was written in PASCAL-XSC, the 
contours were drawn by GNU-PLOT. 

In the following examples the statistical parameters are as follows: 
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Counter name Counter Description 
nbis 

nfe 
ngrad 
nNBisect 

nNewton 
nNStep/nNewton 

nplottinglist 

Number of bisections 
(excepting bisections done in Newton steps) 
Number of function evaluations 
Number of gradient evaluations 
Number of bisections done in the 
interval Newton algorithm 
Number of calls of the interval Newton algorithm 
Average number of iterations at each call of 
the interval Newton algorithm 
Number of points in the plotting list 

Two concentric circles with midpoint (0,0) and radii 1.0 and (1.2) 1/ 2 are 
represented by the equation 

}{x,y) = (x2+y2 - l)(x2 + y2 - 1.2) = 0. 
The SCCI method was applied with the following input data: 
Search domain: Ζ = Χ χ Υ, Χ = [-5,7], Υ = [-6,9] 
Plotting cell width: Ι Ο - 2 . 

Statistics of the computation: 

Counter name Counter Counter name Counter 
nbis 1027 nNewton 1988 
nfe 7373 nNStep/nNewton 1.6 
ngrad 5336 nplottinglist 1693 
nNBisect 206 

It should be emphasized that the discretization of the circles is comparable to 
that which would have been achieved if the class of geometric objects, that is, 
circles, would have been available such that specialized circle algorithms could 
be used. 

The contour consisting of two straight lines crossing each other in the point 
(0,0) is represented by the equation 

/(«,») = {x + y)(x - y) = 0. 
SCCI was applied with the following input data: 
Search domain: Ζ = Χ χΥ,Χ = Y = [-2,2] 
Plotting cell width: 10~3 (The width was made especially small in order to 

demonstrate the high dissolution ability of the method.) 
Statistics of the computation: 
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Figure 6.12: Two close co-centric circles 

Figure 6.13: A cross with a singular point, small cell width 

Counter name Counter Counter name Counter 
nbis 375 nNewton 11980 
nfe 29445 nNStep/nNewton 2.3 
ngrad 28268 nplottinglist 11848 
nNBisect 0 

The result of the plotting is shown in Fig. 6.13. Again, if the complete 
geometric information would have been available that is, that the objects to 
be plotted are straight lines then the resulting plotting of appropriate methods 
would be comparable and certainly not significantly better. 

In Figure 6.14 the contour defined implicitly by f(x,y) = (y-x)(y+z)y = 0 
consisting of three lines crossing at a triple point (0,0) is plotted. 

The input for the plotting routine was a cell width of 1 0 - 2 . The plotting 
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Figure 6.14: Plotting of a curve with a triple point 

domain was [-2,2] χ [-2,2]. 
The plotting statistics were 

Counter name Counter Counter name Counter 
nbis 2555 nNewton 1616 
nfe 8383 nNStep / nNewton 1.8 
ngrad 6964 nplottinglist 2540 
nNBisect 72 

In Figure 6.15 the contour defined implicitly by the equation f(x,y) = 
(y — x)(y + χ +p)(y — p) = 0 consisting of three lines is plotted with the value 
of ρ = 0.1 This contour has an approximate triple point at (0,0). 

The input for the plotting routine was a cell width of 10~2. The plotting 
domain was [-2,2] χ [-2,2]. 

The plotting statistics were 
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Figure 6.15: Plotting of a figure with an approximate triple point 

Counter name Counter Counter name Counter 
nbis 1615 nNewton 1564 
nfe 6798 nNStep/nNewton 1.7 
ngrad 5281 nplottinglist 1984 
nNBisect 120 

In Figure 6.16 the contour implicitly defined by the equation f(x,y) = 
y2 — x 2((l + x)/(l - x)) = 0 is plotted. This contour has a crossing point at 
(0,0). 

The input for the plotting routine was a cell width of 10~2. The plotting 
domain was [-2,0.9] χ [-0.9,0.9]. 

The plotting statistics were 

Counter name Counter Counter name Counter 
nbis 349 nNewton 585 
nfe 2143 nNStep/nNewton 1.8 
ngrad 1692 nplottinglist 541 
nNBisect 16 

In Figure 6.17 the contour defined implicitly by the equation f(x,y) = 
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Figure 6.16: Plotting of a curve crossing point 

Figure 6.17: Plotting of a circle touching another circle 

(x2 + y2 - l)(x 2 + (y - l ) 2 - 4) =0 is plotted. This contour consists of a circle 
touching another circle at (—1,0). 

The input for the plotting routine was a cell width of 1 0 - 2 . The plotting 
domain was [-2,2] χ [-3,1]. 

The plotting statistics were 

Counter name Counter Counter name Counter 
nbis 781 nNewton 1516 
nfe 5075 nNStep/nNewton 1.6 
ngrad 3804 nplottinglist 1522 
nNBisect 66 
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Chapter 7 

I n t e r v a l V e r s i o n s o f 
B e r n s t e i n P o l y n o m i a l s , 
B e z i e r C u r v e s a n d t h e d e 
C a s t e l j a u A l g o r i t h m 

7.1 Introduction 

Bernstein polynomials and Bezier curves are well known and widely used in 
computer-aided design (see for example [46,15], although there are still ways in 
which they are being further developed (see [46,109] for overviews). During the 
last years the extension to interval Bernstein polynomials and interval Bezier 
curves has also attracted the attention of researchers (cf. for example, [110, 
243, 242]). 

It is therefore reasonable to provide an introduction to this interesting area. 
A complete coverage of the area would fill another book, however, the key to 
the area is the basic interval arithmetic principles, tools and ideas which are 
explained in detail that lead from the point-view to the interval-view. If the 
reader has understood this introduction it is not too difficult for him to apply 
these principles to other geometric, algebraic or analytical situations. 

In Sec. 7.2, we introduce some elementary concepts relating to the definition 
and manipulation of curves in the plane R2 with emphasis on polynomial forms 
and Bernstein polynomials. These concepts are used in Sec. 7.3 to define sets 
of curves called interval curves with interval tools, i. e. interval Bernstein 
polynomials. The techniques for manipulating curves are similarly generalized 
to interval curves. Bezier curves and their extension to interval Bezier curves 
are considered in Sec. 7.4. The interval version of the de Casteljau algorithm 
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is explained in Sec. 7.5, and a new proof is provided showing that the interval 
version has similar properties with respect to subdividing the curve and creating 
new control points as the point version. 

7.2 Plane Curves and Bernstein Polynomials 
In this section we first introduce some elementary concepts relating to the 
definition and manipulation of curves in the plane R2. These concepts are then 
used to define sets of curves called interval curves with interval tools. The 
techniques for manipulating curves are similarly generalized to interval curves. 

We are particularly interested in interval curves useful in computer graphics, 
solid modeling as well as the other areas mentioned in the introduction to this 
monograph. 

Further material on curves of interest for this section can be found in the 
excellent book by Farin [46]. Because of the aims of the monograph, only curves 
and interval curves in 2 dimensions, that is, plane curves will be considered. 
Most of the results are also valid for higher dimensions. 

2-dimensional curves can be defined in a non-parametric (implicit) or in a 
parametric form. The standard parametric form is 

(x(t), y(t)), t G Τ 

where Τ is the parameter interval. Frequently is Τ = [0,1]. An important 
special case occurs when there is an explicit functional connection between 
x(t) and y(t) such as 

y = f{x), χ G T. 

which is equivalent to the form 

(t, /(*)), t G T. 

An implicit functional definition of the curve can be done via an equation 

g(x,y) = 0, (x ,y)GD 

where D is a domain in the plane. The well-known implicit function theorem 
says when the representation g(x,y) = 0 can be transformed to an explicit 
connection like y = f(x). Unfortunately, this theorem can only be applied 
locally in most of the cases. For example, the implicit form for the unit circle 
curve, 

x2 + y2 - 1 = 0 

is only locally representable in the forms 
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with 0 < x,y < 1. A more convenient and probably most frequently used form 
is the parametrization 

When considering curves in the sequel we think of the standard parametrized 
form. 

Curves are often defined by polynomials or rational (quotient of polyno
mials) functions and can thus be evaluated using only the four fundamental 
arithmetic operations. That is, the coordinate functions of the curve, x(t) and 
y(t) are then either a priori polynomials or rational functions or are at least 
approximated by polynomials or rational functions. Especially for these rea
sons polynomials have become an attractive standard vehicle for numerically 
computing with curves. 

A given polynomial may be written down in a number of explicit expressions 
or forms. (We prefer to say form instead of expression because of its common 
use in the interval arithmetic literature.) As an example p(x) = x 2 — 4 can also 
be written as p(x) = (x - 2)(x + 2) and p(x) = x 2 — 8 + 4. These three forms 
are all identical as functions. However, when they are evaluated using fixed 
length floating point arithmetic or when evaluated as interval expressions (see 
also Sec. 2.8) they will in general be different (where by evaluation we mean 
the execution of operations as given by the form). 

This leads us to consider forms which allow, for example, a numerically sta
ble or robust computation of polynomial values. Another reason for studying 
various kinds of forms is that polynomials are representable as linear combina
tions of basis polynomials. Depending on the mathematical or computational 
purpose for using polynomials the one or other set of basis polynomials is ad
vantageous for the purpose in mind. The set of basis polynomials is frequently 
chosen so, that special theories or properties of the polynomials can be derived 
from properties or theories of the basis polynomials. One might for example 
think of Lagrange, Newton and Hermite polynomials for interpolation prob
lems, Chebyschev and Bernstein polynomials in approximation theory, and the 
many other forms, supplemented by weights, for numerical integration. In the 
area of computational geometry and solid modeling, we need to consider the 
power (or standard) form, Bernstein polynomials, and Bezier curves. 

We will deal with the power form and the Bernstein polynomials as far 
as needed in the remainder of this section, and with Bezier curves and their 
interval variants in the next sections. 

The power form (also called standard or normal form) for a real polynomial 
in one variable of degree η is 

(cost, sint), t e [0,2π]. 

η 

(7.1) 
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where the basis polynomials are the powers 1, x,..., xn and where a, G R, i = 
0,1, . . . ,η with an φ 0, are the coefficients. This representation is usually 
preferred because of its simplicity. 

Another representation of ρ is the Bernstein form. Here ρ is expressed 
as linear combination of the so-called Bernstein basis polynomials of a given 
degree fc > n. Then this form of ρ is defined by 

k 
p(x) = Yb\k)Blk)(x) (7.2) 

«=o 
where the k functions 

Bik)(x)= ( · "*)*-' , « = 0 ,1 , . . . ,* (7.3) 

are the Bernstein basis polynomials of degree k and where 6j, i = 0,1, . . . , k are 
the coefficients. Since the real degree of ρ (that is the degree of the polynomial 
in the power form) is almost never needed when Bernstein forms are considered 
and since misunderstandings occur rather seldom the Bernstein form (7.2) is 
said to be of degree k as the degree of the basis polynomials is of degree k even 
if the real degree of ρ is η. 

A polynomial written down in the form (7.2) is also called a Bernstein 
polynomial of degree k. Many important results of approximation theory origi
nate from dealing with Bernstein polynomials. An extensive discussion of how 
to compute with them is found in [48]. The use of Bernstein polynomials in 
analysis was discussed in the monograph by Lorenz [151]. 

It became clear early that it was sometimes quite difficult to evaluate poly
nomials in the power form in fixed length floating point arithmetic within a 
certain accuracy [271]. A theory of conditioning of polynomials therefore devel
oped and it turned out that polynomials that are ill-conditioned in the power 
form could be better conditioned in other bases. This is particularly true for 
Bernstein polynomials [47]. 

It was also realized early that the Bernstein polynomials had some interest
ing properties useful in designing curves for CAGD (computer-aided geometric 
design). For example, they form a partition of the unity, cf. (7.8), they have 
only one local maximum, and they form a possible basis for Bezier curves [46] 
as will be seen in the next section. This property in particular explains the 
close relationship between these polynomials and the curves. 

Let p(x) = ΣΓ=ο α » χ < again be a polynomial of degree η in the power form. 
A short calculation shows that p(x) can be converted to the Bernstein form of 
degree fc > η by setting 

ρ(χ) = Σι>?)Β?)Μ (7·4) 
»=0 
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with 

(:) 
Qi, i = 0,1 (7.5) 

Conversely, if a polynomial of degree η is represented in the Bernstein form 
(7.2) as p(x) = T,i=ob<ik)Bik)(χ) o f degree k > η then it can be converted 
to the power form by computing the power form coefficients by means of the 
formulas 

Note that o„ φ 0 and o< = 0, i = η + 1 , . . . , k. 
It is obvious that the real degree of a polynomial can be recognized imme

diately if it is written down in the power form. The situation is different if a 
Bernstein polynomial such as (7.2) is given. In this case one can only say that 
the real degree η is not larger than the degree of the basis polynomials, that 
is k. In order to determine the degree η the computation of the power coeffi
cients (7.2) seems to be unavoidable. If η is known it is possible to represent 
the polynomial as a Bernstein polynomial of degree n, cf. [47]. This process is 
called degree reduction, since the degree of the basis polynomials is reduced. 

Degree reduction and also its inverse process, degree elevation can be exe
cuted step by step. The formulas required for this procedure are obtained if a 
polynomial ρ of real degree η is expressed with Bernstein basis polynomials of 
degree k > η and of degree k + 1, 

where B\ ' (x) and B\ ' (x) are the basis polynomials of order k and fc + 1 
respectively and where the oj*̂  and the b\k+1^ are the corresponding coeffi
cients. In order to determine the relationship between the coefficients the basis 
polynomials of degree A; + 1 are expanded forO<i<fc + las follows: 

(7.6) 

ρ(Χ) = Σίν)Βΐ,')(*) = Σι>?+ι)Β?+1)ω 

x < + i ( l _ x ) * + i - « + i ) 

fc + 1 ( k 
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After some smaller manipulations we get 

k+1 i + l [ h 

+ ( i -
2 

i = l,...,k (7.7) 
Jfc + 1 

and b 0

k + l ) = b0

k) and 6 & ι > = 6<*> 
This is one stage of degree elevation. Similar formulas can be derived for 

degree reduction. 
Degree elevation and reduction are extensively applied in computer graph

ics and CAGD. Degree elevation is, for example, used to enable a finer control 
and modeling of the shape of Bezier curves, which are introduced in Sec. 7.4 
and have Bernstein polynomials as coordinate functions. For example, typo
graphical fonts can be described and modeled with Bezier curves, cf. [136], 
p. 116. If the Bezier curve cannot describe the design of a font satisfactory, 
two steps are executed: First, the number fc of control points of the curve 
is increased which means degree elevation for the coordinate functions, that 
is, the Bernstein polynomials. Second, the new control points are adjusted 
by moving them around until the shape of the font is more satisfactory than 
before. Although the degree elevation does not increase the real degree η of 
the polynomials the adjustment of the control points will, cf. formula (7.6). 
Executing these two steps is rather involved but is generally accepted because 
of the extreme robustness of this procedure. 

An extensive collection of formulas and properties for Bernstein polynomials 
can be found in [75]. The following two formulas are emphasized because 
of their importance and because they can be used to estimate the range of 
polynomials, see [212]: The first is 

i=0 
i.e. the basis polynomials of a certain degree, fc form a partition of the unity 
(this follows from the expansion of (i + (1 - x))k), and the second is 

where the basis polynomials are strictly positive on the open interval (0, 1). 
Some computations and formulas involving Bernstein polynomials are sim

plified if the binomial coefficients ( * Y cf. (7.3), and the coefficients of the 
Bernstein polynomial, cf. (7.2), are combined. Then p(x) can be written down 
in a slightly different form called the scaled Bernstein form, 

k 
(7.8) 

B\ (x) > 0, 0 < x < 1. (7.9) 
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k 
p(x) = Y)d\k)xi(l-x)k-i. (7.10) 

i=0 

Accordingly, a scaled Bernstein polynomial is a polynomial expressed in the 
scaled Bernstein form. 

As an example of this concept we show how one step of degree elevation 
works. Let again η be the real degree of the polynomial p. We denote its scaled 
form with the basis polynomials x'(l -χ)* - * for i = 0 , f c , which are of degree 
fc > η as described by (7.10), by p*. Analogously, denote the scaled form with 
the basis polynomials of degree fc + 1 by Pk+ι, etc. If we consider that p* and 
Pk+ι are identical as functions we obtain 

Pk+i(x) = 
pk(x)x +p*(x)(l - x ) = 

4k)xk + £ ( d j f c ) + < O x i + 1 ( l - * ) * " ' + d f >(1 - x)k+l (7.11) 
»=o 

(see also [48]). One recognizes that formula (7.11 ) is so constructed that the 
coefficients d[* + 1 \ which are required for the representation of ρ*+ι, can be 
obtained immediately. 

For a degree elevation that amounts I single steps the following calculation, 
which uses (7.8 ) leads from p* to Pk+i-

\i=0 / i=0 

= kt(t/k)(3[r))-r(l--)k+'-r- (7-12) 

The expression (7.12 ) is of type pk+t(x) so that the determination of the 
coefficients is obvious. 

Since Bernstein polynomials are stable with respect to evaluation and other 
types of manipulations (see [48]) it is recommended that any algebraic ma
nipulation of polynomials in the Bernstein form should be done either in the 
original Bernstein form or in the scaled Bernstein form rather than converting 
them to power form, performing the manipulation and then reconverting to 
one of the two Bernstein forms as is often done. 
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7.3 Interval Polynomials and Interval Bernstein 
Polynomials 

In the last section we considered polynomial forms and Bernstein polynomials. 
In this section we discuss these concepts in an interval arithmetic setting. This 
viewpoint is caused by the requirement of having intervals instead of real num
bers as coefficients for the various kinds of polynomials. The introduction of 
intervals is mostly due to two requirements: The first is that rounding errors 
occur as side product of numerical computations and numerical manipulations. 
As the impact of scientific computation becomes larger and larger one can no
tice a trend towards developing techniques for a reasonable error analysis. Such 
a technique is interval arithmetic, and the interval coefficients can thus be seen 
as localization of the exact but unknown values combined with bounds for the 
errors. Second, a polynomial with interval coefficients can be interpreted as a 
collection of non-interval polynomials in the same way as an interval as a col
lection of real numbers. This interpretation offers new ways of modeling curves 
as the interval polynomial is a notation which on the one hand stands for a 
set of non-interval polynomials, cf. (7.14), which are provided for the use of 
modeling curves for a special purpose, and on the other hand, the manipulation 
of the curves is much easier if done in the context of an interval polynomial 
than as a set of functions. 

Interval polynomials, or more precisely interval valued polynomials are func
tions Ρ : R -¥ I of the form 

η 
P(x) = Y/Aixi (7.13) 

»=o 
where A< € I, i = 0,1,2,... ,n. The form in which Ρ is written down in (7.13) 
is called the power form of P. If An φ 0 then Ρ is said to be of degree n. 

The most important relationship between an interval polynomial Ρ and real 
polynomials is given by 

P(x) = ^ A i x < = l ^ a i x i : a jGAj , i = 0 , . . . , n l (7.14) 
i=0 I i=0 J 

for any χ G R. 
Arithmetic operations for interval polynomials are defined point-wise in the 

same manner as the arithmetic operations for functions. That is, if Q is another 
interval polynomial, the arithmetic operations are 

(P*Q)(x)=P(x)*Q(x) 

for any χ G R, where the symbol * represents each of the four arithmetic oper
ations. Clearly, division is only defined if no division by an interval Q(x) that 
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contains zero occurs. Unfortunately, the familiar formulas for the arithmetic 
operations for non-interval polynomials can extended to interval polynomials 
only in case of addition, subtraction and in special cases of the other operations. 
That is, if 

m 
Q(x) = Y/BiX

i, 
i=0 

and if we assume for simplicity that η < τη and that non-defined coefficients 
are set equal to zero, we get 

P(x)±Q(x) = Yl(Ai±Bi)x\ 
i=0 

P(x)Q(x) C Σ AiBj + l Σ AiBj ] χ + 
i+j=0 \»+j=l 

+ ί 2 AiBj j x m + n . (7.15) 

We are confronted with an inclusion instead of an equality in the product 
formula due to the subdistributive law in interval arithmetic, cf. [206]. Equal
ity can only be expected in exceptional cases, which nonetheless occur in our 
context, for example, if the variable χ ranges over a nonnegative interval only, 
and if additionally, the coefficients of Ρ are all nonnegative or all nonpostive, 
and the coefficients of Q are all nonnegative or all nonpostive. 

Let again be the interval polynomial Ρ be defined by (7.13) and set Ai = 
[ui, Vi] for t = 0, ...,n, and let ρ and q be the lower and upper boundary 
functions of P, that is, 

P(x) = [p(s), </(*)]· 

It is to emphasize that in general, ρ and q are no longer polynomials but only 
piecewise polynomials. For example, if 

P(x) = [0, 1] 

then 

p(x) = 0, if χ > 0, 
= x, if χ < 0, 

q(x) = x, if χ > 0, 
= 0, if χ < 0. 
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As one can see, neither ρ nor q is a polynomial, but their restrictions to the set 
of nonnegative numbers and to set set of nonpositive numbers are polynomials. 
This holds, by the way, for all interval polynomials. 

Since we are only interested in the representation of an interval polynomial 
in a Bernstein form and since Bernstein forms operate on the interval [0, 1], 
we can forget about these nonsmooth cases and have 

η η 

P(x) = [p(x), q(x)] = Σ^ί*] if x > 0. 
i=0 i=0 

This formula is in particular true if χ € [0, 1]. 
The next step is to transform the polynomials ρ and q to their Bernstein 

form with basis functions of degree k. Formulas (7.1), (7.4) and (7.5) will do it 
and one obtains 

p M ^ ^ ^ i x ) (7.16) 

with 

(7.17) 

«(s) = £ W ( x ) (7.18) 
«=0 

with 

^ = Σ τ4τ"'' »' = 0 , 1 , . . . , * . (7-19) 

It remains to show that 

k 

P(x) = Σ C^B^ (x) for 0 < χ < 1 (7.20) 
t = 0 

where C\k) = [bf \ c{k)\ e / , t = 0 , 1 , . . . ,n. 
As first part of the proof we show that the left hand side of formula (7.20) 

is contained in the right hand side: Let 
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η 

r(x) = Σ α » χ ' w i t n c*i G R 
i=0 

be a polynomial which is included in P{x). Because of (7.14) it follows that 
Qi e At = [UJ, Vi] for ι = 0,1, . . . , n. By (7.4) and (7.5) the Bernstein form of 
r with basis polynomials of degree k is 

r(x) = ^ 7 i * ) B { ' , ( x ) 
«=o 

where 

Since u4 < η, < v{ we have b\ ' < 7,' ' < c\> and finally 

r ( s ) e £ e | f c ) B < f c ) ( s ) . 
»=o 

This proves the inclusion from the left hand side to the right hand side. 
In order to show the converse inclusion of formula (7.20), one proceeds 

analogously and uses formulas (7.4), (7.6) and (7.1). We can drop the details. 
The representation of the interval polynomial Ρ in the form (7.20) is called 

its Bernstein form of degree k. Interval polynomials written down in the form 
of (7.20) are called interval Bernstein polynomials of degree k. 

Conversely, not each interval Bernstein polynomial can be written in power 
form. For example, the interval Bernstein polynomial of degree 1 with the 
coefficients = [0, 1] and c[l) = 0 is 

P(x) = [0, 1], B£](X) = [0, 1], x°(l - x) 1 = [0, 1 - *]. 

I. e., P(0) = [0, 1] and P(l) = 0. As one can check for oneself there is 
no interval polynomial in power form that satisfies these two values. If one 
would extend the definition of interval polynomials to expressions like P(x) = 
Σ"=ο -^«(Χ' — χό) the given interval Bernstein polynomial could still be written 
in power form. But there are then counter examples of higher degree, which 
can be found easily, even if one neglects the areas outside the interval [0, 1]. 

We emphasize the fact that interval Bernstein polynomials cannot always 
be brought to power form since some authors define an interval Bernstein poly
nomial already as an interval polynomial, cf. [243]. 
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The arithmetic operations of interval Bernstein polynomials are subsumed 
to the arithmetic operations of functions in general, that is, the operations are 
executed point-wise. Interval Bernstein polynomials can be added and sub
tracted just by adding and subtracting their coefficients, since the distributive 
law holds in this case as the polynomial values B^ (x) are nonnegative reals. 
In order to compute the product of two interval Bernstein polynomials, Ρ and 
Q one has first to compute the values P(x) and Q{x) and then multiply them. 
If one would multiply the Bernstein forms of the two polynomials as it, for 
example, was done on the right hand side of the formula (7.15), one only would 
get a superinterval of P(x)Q(x), as it was shown in formula (7.15) for the case 
of the power form. 

Further aspects of multiplication and division of interval Bernstein polyno
mials can be found in [243]. 

7.4 Real and Interval Bezier Curves 
Bezier curves are curves that are numerically extremely stable with respect 
to variations of their shape by means of special parameters called the control 
points, cf. [47]. Bezier curves are therefore important in computer graphics 
and CAGD, cf. [46]. They were discovered by Bezier around 1963, while he 
was working for Renault and they have been given the name Bizier curves. 
He used these curves in in an early design program called UNISURF (see [18] 
for a historical account). Similar, but unpublished work, had been done by de 
Casteljau at Citroen. The formulation commonly used in the literature was 
developed by Forrest about ten years later, cf. [25]. 

Bezier curves are 2-dimensional parametric curves, their coordinate func
tions are Bernstein polynomials and they are constructed in the following man
ner: 

Assume η + 1 points ζο,···,ζη are given in the plane. Furthermore let 

p(t) = (Px(t), P „ ( t ) ) = f > ( ? ) ί < ( 1 " < ) η _ < ' 0 - ' - L ( 7 · 2 1 ) 

· = 0 ^ ' 

Then ρ(ί) is called a Bizier curve of degree η with control points z$,..., zn-
Bezier curves can be expressed in terms of Bernstein polynomials, 

p(t) = f > B < n ) ( t ) 

where the functions B^ are the Bernstein basis polynomials of degree η as 
introduced in Sec. 7.2. The coordinate functions px and pv are thus Bernstein 
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3 

2 . 5 

2 

1 . 5 5 

Figure 7.1: Bezier curve of degree 3 

polynomials of degree n. By definition of the basis polynomials, cf. (7.3), one 
has p(0) = zo and p(l) = zn. Hence zo and zn always lie on the curve. 

The control points can be viewed as tools for changing the shape of the curve 
in a controlled manner. In [71] this is called pseudolocal control meaning that 
if a Bezier curve p(t) is specified by a sequence of control points zo, zm and 
if some control point Zj is moved a little bit, the curve is most affected around 
the points with parameter value close to t = i/n. Important is that the change 
of the curve by moving the control points is a numerically stable process. This 
is one of the main reasons for working with Bezier curves. If the coordinate 
functions px and pv of the curve would have a form different from the Bernstein 
form, for example, if they were Lagrangian interpolation polynomials, and if the 
modeling of the curve would be done via the Lagrangean knots (also known as 
Lagrangean interpolation points) this would also be possible but would lead to 
numerically unstable results. One has, however, to pay a price for the stability 
of the Bezier curves, that is, the control points will in general, not lie on the 
curve although they clearly effect the shape of the curve. The disadvantage is 
not serious, however, as shown by the use of these curves in several well-known 
curve designing software programs like ADOBE or TGIF. 

Since any polynomial can be represented as a Bernstein polynomial and any 
Bernstein polynomial converted to the power form, cf. Sec. 7.2, any parametric 
polynomial curve can be represented as a Bezier curve and any Bezier curve 
can be reformulated as a polynomial curve with the coordinate functions in 
power form. 

In Figure 7.1 an example of a Bezier curve in the plane with 4 control points 
is given. They are 

The control points zo and z3 are on the curve, z\ and z2 are not. The Bezier 

zo = (1, 1), Z l = (3, 3), z2 = (4, 3), z3 = (4, 1). 
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curve is given by 

p(t) = 1(1, l)r3 + 3(3, 3)t2(l - i) 
+ 3(4, 3 ) ί (1 - ί ) 2 + 1(4, 1 ) (1 - ί ) 3 · 

The two coordinate functions of ρ are 

Pt(t) = i 3 + 9 t 2 ( l - t ) + 1 2 t ( l - t ) 2 + 4 ( l - t ) 3 , 
P v i t ) = i3 + 9 i 2 ( i - t ) + 9 t ( i - i ) 2 + ( i _ t ) 3 . 

The control points shape the curve globally even if they are not on the 
curve. By that we mean that the overall shape of the curve can be modeled 
by moving the control points around. If we for example move the point z 2 to 
the other side of the curve it should pull towards that point. This is shown in 
Figure 7.2. 

If finer control of the shape of the curve with η control points is required 
then the process of degree elevation can be employed. That is, one uses a 
larger number of control points for designing the curve, say η 4- 1 or more. 
These points then determine a Bezier curve of degree η +1 or higher according 
to eq. (7.7). 

Although it is easy to guide the overall behavior of the curve via the control 
points it is much more difficult to ensure that the curve passes through one or 
more given points (interpolation). To achieve this two or more Bezier curves 
are usually pieced together at the given points and some smoothness conditions 
are added. The resulting curves are called Bezier splines. 

A further important property of Bezier curves is that the curve is contained 
in the convex hull of its control points as shown in the example in Figure 7.3. 
This implies that a bounding polygon for the curve can be constructed by 
connecting control points. Testing if two Bezier curves intersect is therefore 
best done by first testing for intersection between the bounding polygons. 

The length of a Bezier curve is discussed in [79] and a quick way to draw 
Bezier curves is given in [162]. 

Interval Bezier curves are obtained if the control points are rectangles, that 
is, two-dimensional interval vectors, which are commonly called interval control 
points. 

Thus, if Zi G J 2 , i = 0,...,η then 

is called an interval Bizier curve of degree η with interval control points Zi, i = 
0,...,n. 

«=o 
0 < t < 1 (7.22) 
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7.5 Interval Version of the de Casteljau Algo
rithm 

The de Casteljau algorithm is a recursive scheme to determine the value of a 
Bezier curve at a given point and to subdivide the curve at this point. There 
is no need for giving explanations or developing its theory since it has already 
been satisfactorily done by other authors, for example, [46, 15, 71]. Instead we 
discuss the basic features of extending the de Casteljau algorithm to interval 
form in this section, partially following [243]. The main result will be that the 
conclusions of the algorithm is valid even when the control points are replaced 
by rectangles, that is, two-dimensional interval vectors. 

We first describe the non-interval form of the algorithm. The crucial step 
of the algorithm is to determine a point between two given points, say z' and 
z" with a given ratio, cf. [46]: 

Let z' and z" be points in the plane and let a parameter value t G [0, 1]. 
be given. Then the point 

ζ = C(z',z",t) = tz" + (1 - t)z' (7.23) 

lies on the straight line connecting z' and z". Formula (7.23) says that the 
distance from z' to ζ related to the distance from z' to z" has the ratio t. 
Formula (7.23) means further that ζ is a convex or barycentric combination 
of the points z' and z", cf. Fig. 7.4. One also finds the statement that the 
assignment ζ(ζ', ζ", t) is an affine mapping. This is only correct if t is a variable 
of the mapping, but not z' and z" and the assignment maps the unit interval 
[0, 1] onto the straight connection line between z' and z" by the function 
prescription 11-> ζ(ζ',ζ",ί) with constant points z' and z". Or, if one extends 
the domain of the variable t to R, the assignment maps R onto that straight 
line which goes through z' and z", provided the two points are different. 

Let a Bezier curve ρ be given by η 4-1 control points ZQ, ..., zn G R2. Then 
the de Casteljau algorithm computes the numerical value of the curve point 
p(f) and subdivides the curve at p(t) into two parts. For each of the parts n + 1 
control points are determined. The outline of the algorithm is as follows: 

A L G O R I T H M 20 (De Casteljau Algorithm) 

Step 1. Set z[ 0 ) = zk for k = 0,... ,n, 

Step 2. Set z£+l) = ζ ^ Λ , 4°- t) for r = 0,... ,n - 1; k = r + 1 , . . . ,n. 

The final result z^ after the termination of the algorithm is the value 
p(i). The algorithm also splits the curve into two parts, the first being p(s) for 
s G [0, t], the second p(s) for s G [t, 1]. Further, the points z0°\ z[l\..., z i n ) 
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y 
ί z> 

z" 

" - χ 

Figure 7.4: Convex combinations 

are control points for the first-mentioned curve segment, and the points zn

n\ 
zn

n~l\..., Zn^ for the second curve segment, cf. for example, [46]. 
The interval version of the de Casteljau algorithm is formally the same as 

above. The only difference is that the control points are replaced by rectangles 
(two-dimensional interval vectors) and are called interval control points. For 
the interval version let first Z' and Z" be such rectangles and let the parameter 
value t G [0, 1] be given. Then the interval vector 

Ζ = ζ(Ζ', Z",t) = tZ" + (1 - t)Z' (7.24) 

is the convex or barycentric combination of Z' and Z" with respect to the ratio 
t. There is no need to distinguish between the interval and non-interval convex 
combination and thus both are denoted by ζ. In the same manner as an interval 
polynomial can be seen as a collection of real polynomials as specified in (7.14), 
the interval point Ζ can be seen as the collection of all convex combinations 
ζ = C(z',z",t) = tz" + (1 - t)z' with z' G Z' and z" G Z", cf. Fig. 7.5. 

One can also read in the literature that the assignment ζ{Ζ',Ζ",ι) is an 
affine mapping. In this case Z' and Z" are not variables of the mapping, but 
constants, and the function prescription is t >-> ζ(Ζ'',Ζ",t). 

Let an interval Bezier curve Ρ now be given by η +1 control interval vectors 
Zo,...,Zn G I2. Then the interval de Casteljau algorithm determines the 
interval curve value P(t) and subdivides the curve at P(t) into two parts. For 
each of the parts η + 1 interval control points are determined. The outline of 
the algorithm is as follows: 

ALGORITHM 21 (Interval de Casteljau Algorithm.) 

Step 2. Set Z£> = Zk for k = 0,... ,n, 
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*" χ 

Figure 7.5: Interval convex combinations 

Step 2. Set Z k

r + i ) = C ( 4 - i . Zk \ t) for r = 0,... ,n - 1; 

k = r + 1 , . . . ,n. 

The final result after the termination of the algorithm is the interval 
value P(t). The interval curve is also split into two parts, the first being P(s) 
for s G [0, t], the second P(s) for s G [t, 1]. Further, the rectangles Z Q ° \ 
ZJ1^,..., ζή"' are interval control points for the first-mentioned curve segment, 
and the rectangles Zn"\ z£n_1\..., Zn°* for the other curve segment, cf. for 
example, [243]. We now provide a proof for this proposition since we could not 
find one in the literature. We will not repeat a proof of the validity of the point 
version of the de Casteljau algorithm, since there are many descriptions of such 
a proof in the literature, see for example [71]. The output of the algorithm is, 
however, that: 

(i) p(t) = 2 < n ) , 
(ii) the points z0°\..., are control points 

for the curve segment p(s) for β G [0, t], 
(iii) the points z i n - 1 \ . . . , are control 

points for the segment piece p(s) for β G [t, 1] 

The proof for the interval version can be reduced to the point version. One 
only has to choose two point curves that characterize the interval curve. This 
can be the midpoint and width curve of P, as well as the two boundary curves 
of P. We prefer the latter for reasons we which we will explain at the end of 
this section. 

For this purpose it is reasonable to extend the simple interval notation [a, b] 
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by I 

a = ( a x / a y ) 

b = ( b x , b y ) 

Figure 7.6: Two-dimensional interval 

to interval vectors in order to avoid overly complex formulas. Let 

α = (αχ, αν) 6 Β?, b = (bx, bv) 6 R2, ax < bx, and ay < by. 

Then we introduce the quite natural notation 

[a, b] = [ax, bx] χ [ay, by] = ([ax, bx], [ay, by]). 

It says that [a, b] is a rectangle where the projections to the two coordinate axes 
are [ax, bx] and [ay, by], or equivalently, [a, b] is a two-dimensional interval 
vector having the components [ax, bx] and [ay, by], cf. Fig. 7.6. We sometimes 
will say that a and b are the boundary points or the generating points of [a, b]. 

This notation of a two-dimensional interval is the set theoretic analogue to 
the one-dimensional notation because of 

[a, b} = {c = (cx, cy) : a < c < 6} 

where the inequalities between the vectors are understood component-wise. 
The interval curve is then described by 

P(t) = [p(t), ,(«)], 

where p(t) = (px(t), py(t)), q(t) = (qx(t), qy(t)) and t G [0, 1], cf. Fig. 7.7. 
Since the main steps of the algorithm are convex combinations we first show 

that the convex combination of the two-dimensional interval vectors 

Z' = [a1, b'], Z" = [a", 6"] with ratio ί £ [0, 1] 
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Figure 7.7: An interval curve 

can be determined just by computing the convex combinations of the boundary 
points of Z' and Z", that is, the convex combinations of a', a" with ratio t 
and of b', b" with ratio t. 

We need the following formulas for the calculation which are direct conse
quences of the interval arithmetic operations and vector operations: If a > 0 
and ο = (ax, av), b = (bx, i>„), then 

α[α', b'] = (a[a'x, b'x), a[a'v, b'v}) 

= {[aa'x, ab'x], [aa'v, ab'v}) = [αα', ab']. 

We now are ready for considering the convex combination of Z' and Z" 
with respect to the ratio t, 

Ζ = ζ(Ζ', Ζ", t) 
= tZ" + (l-t)Z' 
= t[a", b"} + (1 - t)[a', b'} 
= [ta", tb"] + [(1 - t)a', (1 - t)b'] 
= [ta" + (1 - t)a', tb" + (1- t)b'] 
= [ζ(α\ a", t), <(*>', b", t)]. 

The first and the last line of this chain of equations give the proposed result, 
that is, the convex combination of rectangles can be performed via the convex 
combinations of their boundary points. 

�� �� �� �� ��



Interval de Casteljau Algorithm 239 

We return to the interval Bozier curve Ρ = [ρ, q] and its n+1 control interval 
vectors Zo, • . . , Z„ G J 2 . Let Ζ* = [α*, 6/t], ak, 6* G iZ2 for k = 0,..., n. We 
are ready to prove that the application of the interval de Casteljau algorithm to 
Ρ and the Z* is equivalent to the application of the de Casteljau algorithm to 
ρ with the control points α* and to q with the control points bk- It is sufficient 
to prove that the steps of the interval and the non-interval versions of the 
algorithm are equivalent. 

Parts 1 of the interval and of the non-interval de Casteljau algorithm are 
just the initialization or what is the same, the renaming of the input data by 
adding the superscript 0. Thus, part 1 of the interval version, that is 

Zk

0) = Zk for k = 0,...,n 

corresponds to part 1 of the point versions, that is, 

α[0) = ak, b[0) = bk for Jfc = 0,... ,n 

of the point version. Since Z* = [ak, bk], we obtain 

^ 0 ) = [a i 0 ) , oi0)]forifc = 0,...,n 

which proves the equivalence of parts 1. 
Parts 2 of the algorithms are a sequence of convex combinations. Each 

maintains the proposed equivalence, as shown before, such that the relation 

Z(

k

r) = [a[r\ b[r)] for fc = 0,...,n 

is valid for any stage r of the computation, where Zk

r^ comes from the interval 
algorithm and the points aj^ and bk

r^ from the non-interval algorithm. As a 
by-product we get 

4 n ) = [ 4 n ) , b^] = [p(t), «(*)], 

which proves the formula Z(

n

n) = P(t). 
It remains to verify that Z Q ° \ . . . , Z „ n ^ are interval control points for the 

curve segment P(s) for s G [0, t], and Z„n\ ···, Z„0^ for the curve segment P(s) 
for s G [t, 1]. 

Putting this together: It follows from the properties of the non-interval 
algorithm that ak

k^ and bj^ for k = 0,..., η are control points for the curves 
p(a) and q(s) for s G [0, t], resp. and that and 6^ for r = n,...,0 are 
control points for p(s) and q(s) for s G [t, 1], respectively. Then, for s G [0, t] 
one obtains 
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P(s) = \p(s),q(s)] = [J24)B\n)(s),J2^)Bln)(s)} 
i=0 i = 0 

η 
= Y^la^B^Hs), o[°BJn)(s)] by definition of interval addition 

«=o 
η 

= 5 [̂α,·'\ δ|̂ ]β{η^(β)] by definition of interval multiplication 

i = 0 

•=0 

The first and the last expression in this chain of equations proves that Z\ 
for ι = 0, . . . ,η are interval control points for the curve piece P(s) for β G [0, t]. 
The proof for the second curve piece is analogously. 

Remark. We were using the characterization of an interval Bezier curve 
by its two generating boundary curves. Some readers might prefer a character
ization of an interval Bezier curve or of other kinds of interval curves by their 
midpoint and width curves. This representation is based on the midpoint -
width form of an interval As I, 

A - mid (A)+w(A)[-l, l]/2, 

cf. Ch. 2. We do not see too many advantages of such a representation. First, 
already involved formulas become even more involved with this representation, 
second, the intervals have to be reformulated from the boundary to the mid
point - width representation and converse. Third, the execution of products is 
certainly possible but gives complex formulas. Fourth, the midpoint - width 
representation is more sensitive with respect to rounding errors since operations 
with the midpoint necessitates an upwards and downwards rounding and the 
operations with the width an upwards rounding. This results in three rounding 
operations. In contrast, the standard representation only needs two roundings, 
that is the downward rounding of the left endpoint and the upward rounding 
of the right endpoint. 

There exist also some investigations about the error analysis of Bezier curve 
computations, see for example, [243, 242]. 
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Chapter 8 

R o b u s t C o m p u t a t i o n s o f 
S e l e c t e d D i s c r e t e P r o b l e m s 

8.1 Introduction 
In this final chapter we select three different areas in order to show the wide 
range of applications of interval arithmetic and ESSA. These are plane convex-
hull computations, Delaunay triangulations, and line simplifications where the 
first two areas are in computational geometry and the last area in GIS. It is 
typical for each of these areas that the rounding errors and the falsification 
of the results by these errors are not easy to control. Many ideas and several 
theories have been invented to make the results reliable and independent of 
the numerical computations or at least to provide the results with safe error 
bounds. 

Each of these areas need a certain depth of knowledge which is necessary 
to get an overview of the theory and to make essential improvements for the 
numerical performance of the related algorithms. Therefore we will discuss the 
areas in more details in order to show how interval analysis and ESSA lead to 
robust results for computations in these areas. 

In Sec. 8.1 we present an algorithm for computing the convex hull of a 
finite set of points. The algorithm is based on a version of the Graham scan 
algorithm and shows the following features: 

• If the points are already (single precision) machine numbers, the compu
tation is rounding-error free, that is, the computed hull is the hull that 
would have been computed if real arithmetic were available. 

• If the points are arbitrary numbers, the algorithm renders the smallest 
possible machine representable convex hull that includes the exact convex 
hull. 

241 
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• The worst case computation time is still 0(nlog 2n). 

• Only floating point arithmetic with double mantissa length is required. 
No mantissa splitting or other mantissa manipulations are needed; one 
only has to know the exponent parts of the numbers. Also, no fixed point 
accumulator is needed. 

• Single precision interval arithmetic is recommended for accelerating the 
computation, but is not necessary. 

In Sec. 8.3 we present an exact and hence robust algorithm for the com
putation of Delaunay and power triangulations in two dimensions, which has 
been developed in [66] The algorithm avoids numerical errors and degeneracies 
caused by the accumulation of rounding errors in fixed length floating point 
arithmetic when constructing these triangulations. 

Most methods for computing Delaunay and power triangulations involve 
the calculation of two basic primitives: the INCIRCLE test and the CCW ori
entation test. Both primitives require the computation of the sign of a deter
minant. We present an algorithm which computes the sign of the determinant 
exactly based on ESSA. The exact computation of the primitives allows the 
construction of the correct Delaunay and power triangulations. The method 
has been implemented and tested for the incremental construction of Delaunay 
and power triangulations. Tests have been conducted for different distributions 
of sites for which non-exact algorithms may encounter difficulties, for example, 
slightly perturbed points on a grid or on a circle. Experimental results show 
that the performance of our algorithm is comparable with that of a simple 
implementation of the incremental algorithm in single precision floating point 
arithmetic. For random distribution of points the exact algorithm is only 4 
times slower than the inexact implementation. The algorithm is easy to imple
ment, robust and portable as long as the input data to the algorithm remains 
exact. 

The sensitivity of computed results in GIS (Geographical Information Sys
tems) is considered in Sec. 8.3 on the example of the Ramer-Douglas-Peucker 
line simplification algorithm. Using ESSA and interval arithmetic we describe 
a robust version of this algorithm, where the determination of the simplifica
tion is rounding error free if the data are already machine numbers. Under 
these assumptions the results are reproducible which is not the case with other 
versions of the algorithm. 

8.2 Convex-Hull Computations in 2D 

8.2.1 Introduction 
The computation of the convex hull of a finite set of points in the plane is a 
fundamental problem in computational geometry. It has been considered by 
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a number of researchers, see for example [198] or the survey [244]. Most of 
the work has been concerned with devising algorithms meeting the worst case 
complexity of 0(nlog2n). 

Problems regarding the accuracy of a convex hull arise when implementing 
convex hull algorithms on finite precision floating point computing devices with 
fixed mantissa length. The computed hull may for example be non-convex, it 
may be larger than the exact hull or it may exclude some points that should be 
part of the hull. These problems were considered by [147] within the framework 
of strongly convex hulls. The thesis of Salesin [237] considered the same prob
lems within the notion of epsilon-geometry. Other authors proposed further 
solutions ([41, 115, 116, 122]). 

This section, which is based on [222] and ESSA presents an algorithm that 
avoids most of these problems. As we see later, double precision execution 
of ESSA suffices for our purpose as far as ESSA is applied to the left-turn 
test for single precision points. We keep in mind that ESSA needs no further 
expansion of the mantissa length nor any other mantissa manipulation. Only 
the exponent part of the numbers must be known, which is, however, a simple 
command in C or C + + . This means that if the given points are already single 
precision numbers then the left-turn test executed with ESSA with double 
precision gives the exact result, even if the distance between two adjacent 
points is smaller than 1 ulp. 

There are many convex hull methods that depend mainly on the left-turn 
test. Since the left-turn test can be executed exactly with ESSA it follows that 
convex hulk constructed with such methods and ESSA are exact convex hulls. 
Even then it is only necessary to perform the left-turn test with ESSA in ex
treme cases. If the constellation of the 3 points is "normal," the usual left-turn 
test computation with single precision would suffice. The result is, however, 
not guaranteed, and further, one never knows a priori, when the standard single 
precision computation is sufficient to guarantee a correct result. Therefore, we 
first execute the left-turn test with single precision interval arithmetic, which 
either gives a guaranteed result or provides the message that the result is un
certain. Our algorithm repeats this left-turn test with ESSA if the second 
situation occurs. 

Hence, if the input data for which the convex hull is required, already con
sists of machine representable numbers it follows that the application of appro
priate convex hull codes together with the exact left-turn test implementation 
as described in Subsec. 8.2.3 renders the exact convex hull. If, however, the 
points of the original input data are not machine representable, a conversion 
error is unavoidable when the data is entered into the machine. One could 
imagine that ESSA now has no effect, since for what does one need an exact 
left-turn test for uncertain points? Clearly, it is no longer possible to com
pute the exact convex hull of the original data. Instead one can construct the 
smallest possible machine representable convex hull which includes the original 
data. This could not be achieved without exact computation devices, cf. Li-
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Milenkovic [147]. For this reason we again use interval arithmetic and replace 
each point of the original data which is not machine representable with the 
smallest machine representable rectangle which is a two-dimensional interval 
that includes this point. Then the convex hull algorithm is applied to the 
totality of all corners of these rectangles. Since the corners are machine rep
resentable, the exact convex hull of the rectangles is computed rounding error 
free such that this is the smallest constructible convex hull of the original point 
set. 

The choice of convex hull method for computing the hull is of less im
portance than ESSA since ESSA provides the essential foundation for exact 
computation. We therefore use a rather simple, transparent and known convex 
hull method in order to demonstrate clearly how the method and ESSA fit to
gether. I.e., we chose the version of Graham scan that is described in O'Rourke 
[190], p. 85 and drop the improvements that have been published within the 
last few years, cf. [1, 76, 82]. Certainly, ESSA can also be used with other 
convex hull methods, no matter how sophisticated they are. In the same way, 
ESSA can also turn 3D-convex hull algorithms into exact and optimal ones. 

The numerical costs of 0(n log2 n) are not changed if ESSA is used in Gra
ham scan. 

In Subsec. 8.2.2 we give a short description of the Graham scan version 
used. In Subsec. 8.2.3 ESSA and Graham scan are merged, and a few interval 
devices are included. Subsec. 8.2.4 contains well- and ill-conditioned numerical 
examples. In Subsec. 8.2.5 it is shown that ESSA can be also be combined with 
convex hull algorithms that are more sophisticated than Graham scan. As an 
example and to point out the principles which have to be considered for such 
a merging, we briefly discuss how an exact and optimal hull algorithm has to 
be designed which is based on the ideas of Kao-Knott[122]. 

8.2.2 A Prototype Graham Scan Version 
We briefly describe a simple and transparent prototype Graham scan algo
rithm [77] for the computation of a convex hull as it is found, for example, in 
O'Rourke [190], p. 85 (version B), omitting refinements and improvements, in 
order to have it available for discussion in the sequel. The combination of the 
proper convex hull idea with ESSA and the interval devices can thus best be 
demonstrated. The prototype also forms the basis for the numerical examples, 
cf. Subsec. 8.2.4. For a more sophisticated combination see Subsec. 8.2.5. 

The algorithm consists of a preprocessing sorting step (Steps 1 and 2) fol
lowed by the convex hull construction (Step 3) as the main part. 

Let a plane point set A = {(xuVi) : i = 1,... ,n] be given. The following 
algorithm constructs the convex hull of this point set, assuming exact compu
tation. More precisely, the algorithm sifts out all points of A which are vertices 
of the convex hull of A. 
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A L G O R I T H M 22 (Prototype Graham scan) 

Step 1 . Among all the points of A having minimum x-coordinate, determine 
the one with maximum y-coordinate. Denote this point by po- It is already 
a convex hull point. 

Step 2. Sort all other points of A by the angle counter-clockwise about po 
where the basic sign of the angle is the positive x-direction. Use any 
sorting procedure, for example, Heapsort, cf. [199], but use the left-turn 
test (cf. Subsec. 8.2.3) for comparing any 2 angles. 

If two points have the same angle, drop the one which is nearer to po 
(simple coordinate comparison). Denote the sorted list bypo,pi,... ,ρη-ι· 
Also Pn-\ is already a convex hull point. 

Step 3 . Create a stack S = (p„-i,Po)- For i = 1 , . . . ,n — 1 do: 

(i) Denote the last two elements of S by ρη,Ρι (I indicates the last, and 
11 the last before the last). 

(ii) If pi is strictly left to the directed line frompn topi then put pi after 
Pi on S else remove pi from S and return to (i). 

The known improvements of Graham scan mostly relate to the preprocessing 
step where "interior" points that can never become hull points are already 
removed during the sorting. Other versions of sorting are also known in which 
cases Step 3 sometimes has to be modified. Such changes do not influence 
the worst case costs of 0(nlog 2n), but the average costs can be considerably 
reduced. 

8.2.3 The Exact and Optimal Convex Hull Algorithm 
The Graham scan version of Subsec. 8.2.2 is taken as the prototype skeleton 
for this algorithm, and nothing needs to be changed. The only items left are 
two details showing how to combine ESSA and the interval arithmetic devices 
with Graham scan in order to meet our claims that the resulting method is 
exact and optimal. 

These two items are the input of the data set and the exact execution of 
the left-turn test, which is the backbone of the angular sorting as well as the 
proper convex hull construction, cf. Subsec. 8.2.2. 

If the input data already consists of machine points, one can skip part A 
since Graham scan combined with the exact left-turn test implementation, cf. 
part B, leads to the exact hull. 

A. The input of the point set 

If the point set for which we want to determine the convex hull has been 
generated by some preceding computer program on the same machine, the 
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points are certainly machine representable, and hence, an exact hull of the 
previously computed points can be expected when our procedure is applied. 
This does not mean, however, that the convex hull is a convex inclusion of the 
exact point set that is expected theoretically or geometrically. The reason is 
that only computed approximations of these points are known. If one wishes to 
obtain at least a convex polygon that contains the exact points then it has to be 
planned in advance. It would mean that error bounds would have to be provided 
from the previous computation phase, for instance, with interval arithmetic. 
In this latter case, the interval boundaries are machine representable, and our 
exact convex hull procedure will render the exact convex hull of all the boundary 
points. This hull will, at the same time, include the originally required hull. 

If the input data has not yet been entered into the machine then it is 
unlikely that the points are machine numbers unless they are integers and the 
exact convex hull cannot be expected. Nevertheless, a best possible including 
convex hull can be determined if one proceeds as follows: 

In order to handle the input data properly one should avoid the standard 
input facilities of the machine since the input mode is, generally, unknown or 
not very reliable. The best one could do is to use an interval software package 
(such as C-XSC [132]), to represent the numbers, which are mostly decimal 
numbers, as a quotient of two integers (such as 0.3 = 3/10) then enter the 
integers into the machine (they will be represented exactly) and then let the 
division be executed by the interval package. Good packages such as C-XSC 
will return the smallest machine representable interval that includes the value 
of the decimal quantity. 

If one has access to a reliable directed rounded arithmetic one can also 
obtain such a smallest inclusion. In this case a left rounding accompanied 
with a right rounding in connection with the division will provide the desired 
inclusion. 

Since we deal with 2D points each of two components will be surrounded 
by an interval so that the points will finally be included in rectangles. If 
the Graham scan code with the exact left-turn test implementation of part Β 
is applied to all these rectangle corners then we obtain the smallest possible 
machine representable convex hull of the given data. 

B . T h e l e f t - t u r n t e s t 

The current literature on convex hull algorithms seems to be united in the opin
ion that the left turn test is the achilles heel of any 2D convex hull program. The 
reason is that there has been no easy way of avoiding the inaccuracies caused 
by rounding errors in this test. It is also well known that these inaccuracies are 
responsible for all kinds of subsequent errors, mainly of a topological, logical 
and numerical nature. Many sophisticated strategies have been developed so 
far in order to avoid this chaotic influence of rounding errors. 

No sophisticated considerations are necessary in this implementation, if the 
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left-turn test is executed with ESSA in double precision, as already explained 
in Chapter 4. In this case no rounding errors can occur (provided the machine 
numbers are single precision). We also show a way to avoid a double precision 
ESSA, if desired, at the end of this section. 

Let the different points a, 6, c in the plane be given with single precision 
components α<, bi, c\ (i = 1,2). The left-turn test says that c is strictly left to 
the directed line leading from α to 6 iff 

D = 
Οι θ2 1 
bi 62 1 
C l C2 1 

>o, 

cf. Ch. VI. There are various ways to evaluate the determinant D, for example, 

D = (b\ - ai)(c2 - a2) - (62 - a2){cx - 01), (8.1) 

which is certainly an optimum way to evaluate D in terms of the number of 
arithmetic operations. We do not need D, however, we only need the exact 
sign of D. ESSA cannot be applied to the computation of D by (8.1) since 
(8.1) is not presented as a sum of numbers. Hence we have to rearrange D so 
that a sum of numbers is formed, that is, 

D = a,\b2 + a2C\ + b\c2 — O2C1 — a2b\ — a\c2. 

ESSA computes the sign of this sum exactly if the summands are exact. Since 
the components O j , bi, Ci are assumed to be single precision numbers, we have 
to present the products a<6j,... in double precision to avoid the loss of being 
exact. This can be coded in C or C + + without additional efforts. 

Note that the left-turn test has to be applied at two different phases in the 
Graham scan version of Subsec. 8.2.2. First of all at the angular sorting and 
secondly, when determining the convex hull points in Step 3 of the prototype 
version in Subsec. 8.2.2. 

The most economical way to execute the left-turn test is probably the fol
lowing procedure which is also used in the sequel: The determinant D is com
puted explicitly using single precision interval arithmetic with formula (8.1). 
Because of the obligatory outward rounding, which is incorporated in every 
interval package, the computational result will be an interval D = [Di,D2] 
with D G D, cf. [165]. (See also [236] for a simple implementation of interval 
arithmetic and [21] for a discussion of the use of interval filters in geometric 
computations). Hence, the possible results 

Ζ) > 0 (i.e., Di > 0), 
D < 0 (i.e., D2 < 0) 

give the guarantee that D > 0 or D < 0 is, respectively. Only the third possible 
result, that is 

Di < 0 < D2 
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does not permit a decision about the sign of D. In this case it is necessary to 
switch to ESSA to obtain the guaranteed information about the sign of D. 

It is maybe superfluous to say that each occurring sign determination can 
be executed with ESSA if one wants to avoid interval arithmetic. Similarly, 
if one does not want to write a code for ESSA in double precision, it can be 
avoided by the following extra step: 

Since the point components O j , ο,·, Cj are single precision, the products 
Oj6j, etc., are double precision and are the summands of the sum in question 
in ESSA. These summands can be split into two parts which are then single 
precision quantities. The splitting can be executed in C or C + + without much 
ado. Now, a single precision ESSA is applicable to the sum of split summands. 
The single precision version will have 12 summands, a doubling of the number 
of summands from the double precision version. 

8.2.4 Numerical Examples 
A large number of numerical tests were made in order to make sure that there 
were no flaws in the method described above. The tests were made with ran
domly generated points, with stable as well as unstable configurations, machine 
representable (Fig. 8.1-8.7) as well as non-machine representable (Fig. 8.8-
8.10) points. The number of points were varied from 10 to 1000 (which gives 
4000 in case the 1000 points were not machine representable) and the example 
described in O'Rourke [190], p. 94, was repeated to show that the algorithm 
handles collinearities and other difficult situations safely. The calculations were 
done on a SUN20 workstation in C and C + + . 

The following abbreviations are used in the statistics: 

η number of points after the input of data (i.e., η is 4 times the 
number of points one had before the input of the data in Fig. 
8.8-8.10) 

nHull number of convex hull points 

nGr number of points after the preprocessing (that is, after having 
removed collinear points discovered by the angular sorting and 
after having removed equal points arisen by the replacement of 
non-machine representable points with up to 4 machine repre
sentable points). Hence, nGr is the number of those points, Step 
3 of Graham scan, cf. Subsec. 8.2.2, is working with. 

nESSA counts the number of ESSA applications during the angular sort
ing and during the main computation (Step 3) 

tESSA time spent with ESSA 

t overall time computed (in microseconds) 

�� �� �� �� ��



Convex-Hull Computations in 2D 249 

In the graphics, the points of the input data are marked by x-like crosses. 
If the points are too dense w.r.t. the plotting solvability, the related crosses 
are united. Those points that are vertices of the convex hull are additionally 
marked with squares, which print over the cross. 

Fig. 8.1 shows the example of O'Rourke [190], p. 94, that contains several 
collinearities, also on the convex hull polygon. Note that they have been dis
covered precisely and that they are not counted as convex hull points as long 
they are not vertices. 

Fig. 8.2, 8.3 and 8.4 show well-conditioned harmless examples with 20, 100 
and 1000 randomly generated machine representable points in the area of [10, 
11] χ [10, 11]. 

Fig. 8.5, 8.6 and 8.7 show ill-conditioned examples with 20, 100 and 1000 
randomly generated machine representable points in the area of [10, 11] χ [10 
000, 10 001]. The ill-conditioning arises since the j/-coordinates of the points 
are all identical at five leading digits. 

Fig. 8.8, 8.9 and 8.10 show ill-conditioned examples with 20, 100 and 1000 
randomly generated non-machine representable points in the area [10, 11] χ 
[10, 11], so that after the input all corners of the including rectangles, that is, 
80, 400 and 4000 points, have to be counted. One notes a rapid increase of the 
number of ESSA invocations. The ill-conditioning comes from the edge length 
of the rectangles being just 1 ulp. 

η nllull nGR Sorting Graham time 
nESSA tESSA nESSA tESSA 

19 8 14 10 0 3 0 2 

Table 8.1: Data from computing with O'Rourke's example as input 
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Figure 8.1: Graphics for Table 8.1 (O'Rourke's example) 
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η nHull nGR Sorting Graham time 
nESSA tESSA nESSA tESSA 

100 13 100 2 0 4 0 14 

Table 8.3: Data from well-conditioned example with 100 points 

10 10.2 10.4 10.6 10.8 11 

Figure 8.3: Graphics for well-conditioned example with 100 points 
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η nllull nGR Sort 
nESSA 

ing 
tESSA 

Gral 
nESSA 

lam 
tESSA 

time 

1000 17 1000 176 3 92 2 208 

Table 8.4: Data from well-conditioned example with 1000 points 

Γ 

** Χ* X Χ * * $ * * x i „ ~ X~ ~ 5 * *X " „ Χ XXJ, Χ 

ΧΧ * - Χ Χ Χ Χ Ί Χ 

X " ΧΧ 
Χ „ Χ * Χ ί χ

 Χ 
. χ * Χ » Χ*** Χ 

Χ >c Χ ΧΧΧ Χ Χ 
Χ > * ΧΧ Χ X*X 

Ν *Χ 
ΧΧ 

ΧΧΚ< Χ Χ 
Χ** Χ< Χ 

ΧΧ .Λ Χ Χ Χ 
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Χ Χ 

Λ Χ Χ Χ 
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Χ

Χ Χ Χ ^ 
Χ ΧΝ 
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Figure 8.4: Graphics for well-conditioned example with 1000 points 

�� �� �� �� ��



254 Robust Computations of Discrete Problems 

�� �� �� �� ��



Convex-Hull Computations in 2D 255 

η nHull nGR Sort 
nESSA 

ing 
tESSA 

Gral 
nESSA 

lam 
tESSA 

time 

100 13 100 471 11 174 3 25 

Table 8.6: Data from random ill-conditioned example with 100 points 

10 10.2 10.4 10.6 10.8 

Figure 8.6: Graphics for random ill-conditioned example with 100 points 
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η nHull nGR Sort 
nESSA 

ing 
tESSA 

Gral 
nESSA 

lam 
tESSA 

time 

1000 19 1000 8700 112 1959 35 427 

Table 8.7: Data from random ill-conditioned example with 1000 points 
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Figure 8.7: Graphics for random ill-conditioned example with 1000 points 
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η nHull nGR Sorting Graham time 
nESSA tESSA nESSA tESSA 

80 12 80 241 3 110 1 14 

Table 8.8: Data from random ill-conditioned example with 20 not machine 
representable points 

10 1 0 5 10.4 10.6 10.8 

Figure 8.8: Graphics for random ill-conditioned example with 20 not machine 
representable points 
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η nHull nGR Sorting Graham time 
nESSA tESSA nESSA tESSA 

400 12 400 1012 7 509 3 85 

Table 8.9: Data from random ill-conditioned example with 100 not machine 
representable points 

Figure 8.9: Graphics for random ill-conditioned example with 100 not machine 
representable points 
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η nHull nGR Sort 
nESSA 

,ing 
tESSA 

Gral 
nESSA 

lam 
tESSA 

time 

4000 17 4000 9980 101 4141 49 1178 

Table 8.10: Data from random ill-conditioned example with 1000 not machine 
representable points 
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* χ Χ χ. χχ XĴ  χ <χ· χ ** „# * 

χΧ 
χ χ χ Χχ „ 

Χ Χ * Χ 

χ i " ^ ^ 
ΧΧΧΧΧ y ν XX 

" χ >xx V ν ^ Χ 
1cxxxx χ

 Χ Ν < Χ Χ Χ Χ ^ Χ ' 

* Χ Χ ^ < χ „ χ χ χ 
χ χ 

χΧχ ***x 
χ** χ 

Χ Χ / V χ Χ * Χ ' 
' Χ Χ 

_XTX 

10 10.2 10.4 10.6 10.8 11 

Figure 8.10: Graphics for random ill-conditioned example with 1000 not ma
chine representable points 

8.2.5 A More Practical Version of the Algorithm 
It was the aim of the previous sections to develop the exact and optimal con
vex hull construction with a simple accessible version of Graham scan as it was 
found in O'Rourke's textbook [190]. Since this version furthermore requires cal
culations with extreme accuracy (high sensitivity of the angular sorting in the 
preprocessing stage, occurrence of collinearities or almost-collinearities, occur
rence of points with 1 ulp distance), an opportunity was given to demonstrate 
the powerful combination of ESSA and a convex hull method. Hence it is shown 
completely that also worst cases and extremely ill-conditioned problems cannot 
crash the methods presented here. 
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There are of course algorithms for the convex hull computations that are 
more sophisticated than Graham scan. As examples we mention the algorithms 
by Kao-Knott[122], Andrew[9], Jaromczyk-Wasilkowski[116] and Chan[24]. In 
this section we show, using the version of Kao-Knott[122] as an example, that 
ESSA can be applied as well to more sophisticated convex hull algorithms such 
that improved, useful and applicable methods results. 

The main feature of our version of the improved algorithms is: 

1 Instead of an angular sorting a stair-like arrangement is executed, which 
only needs coordinate comparisons instead of left-turn tests. A further 
advantage of the stair-like sorting is that "many" points are discovered 
and dropped that never can become convex hull points. This means that 
ESSA only has to be applied to the main phase. 

2 If the input data is not machine representable and if the points are internally 
to be represented by machine representable rectangles, one does not need 
to process all the corners of the rectangles any more, but only one corner 
of each rectangle such that the computational costs are reduced by 75% 
compared with the version of Subsec. 8.2.3. 

Outline of the Algorithm 
First, the data points have to be entered into the program and be replaced by 
including rectangles of minimum size, say 

S W = [*i°,*i?]x|»il,.lf8)]. i = l , . . . ,n , 

where the corners are machine representable. These rectangles can be degen
erate. The procedure consists of 2 parts: 

• P a r t 1. (Preprocessing) generates up to 4 monotone stairs of points con
taining the final convex hull points, where only coordinate comparisons 
are used, 

• P a r t 2. (Main part) eliminates those points on the stairs that are no 
convex hull points using the left-turn test with interval arithmetic and 
ESSA. 

Note that the algorithm works on exact machine numbers, since only compar
isons, interval arithmetic and ESSA is needed as was the case in Subsec. 8.2.3. 
Let S = {S^ : t = l , . . . ,n} . Then the algorithm will determine the exact 
convex hull of 5. 

The steps of P a r t 1 are: 
Step 1. Construct the rectangle hull of all the including rectangles, that is, 

the smallest axes parallel rectangle, RHs that covers S. The coordinates of 
the corners are 
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= mm 

--• max 

{ 4 ° : 
{·<£ 

= min {y<° : 

= max · 

= l , - . . , n j , 

i = l , . . . , n | , 

= l , . . . , n j , 

i = l , . . . , n j , 

cf. Fig. 8.11. 
Step 2. Determine 4 sub-rectangles of RHs that already contain the final 

convex hull of S. For that reason, we need the following anchor points lying 
on the edges of RHs: 

xB = 

XB = 
ι 

XT = 

VR = 

VR = 

Vi = 

VL = 

{ * ί ? : 

i n { x ? : 

i n { ^ : 

max 

min 

max 

min 

max 

min 

max 

min 

= lf 
= y 

y i < } 

v{£ 

vli = 
x(i) -xR — 
JA -
XR — -

«» = Χ

Ι = 1, 

, t = l , . . . , n | , 

\ i = l , . . . , n | , 

m a x , i = l , . . . , n } , 

; m a x , i = l , . . . , n } , 

m a x , i = l , . . . , n 

* i 4 ) = 
, i = l , . . . , 

i m i n , i = l , . . . , n | . 

Hence, x B and χ Β are the rightmost and leftmost corners, respectively, of 
the input rectangles that lie on the basis edge of RHs, etc. Now, let 

PB 

PT 

PL 

PR 

(xB,ymiD), 

(*T,ym a x), 

(xmax,y«), 

P B = 

P' = 

-min 

P » = 

.yi,)> 

, iLi are defined as follows: Then the four subrectangles denoted by R\,. 
Ri shall be spanned by P R and PB, 

R2 by PR and PT, R3 by PT and PL, and 
Λ4 by Pi and P B , 

cf. Fig. 8.12. From the geometry of this figure it is obvious that all convex 
hull points of 5 lie in Ri to R4 • Note that Ri to R4 can be degenerate. 

Step 3 is applied to each of the 4 subrectangles. It deletes further points 
that cannot be convex hull points, and it arranges the remaining points of each 
Ri in a stair-like shape connecting the 2 points which we used to span Ri. 
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.max 

,mm 

• 
• 

π 

.max 

Figure 8.11: Rectangle hull of 5 

.max 
Ρ Ρ 
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, m i n 

Ρ 
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mm ,max 

Figure 8.12: The four subrectangles 
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Figure 8.13: Stair in Ri 

Figure 8.14: The four stairs 
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The parts of Step 3 focused on Ri are: 
(i) Initialize a list Coo = 0. 

(ii) For i = 1 , . . . , n: If x^ > x'B and y^ < yR then enter [x(£ ,ν^) 
onto C\. 

(iii) Sort Coo with respect to increasing values of y^ obtaining an 
ordered list C{ = {(x^'\y^) :i = l , . . . ,m} of length m < η 
where y^ < for i = 1 , . . . ,m — 1. 

(v) For t = 1 , . . . , m : If χ^' > x C U r r then set x c u r r = χ('* and enter 
(xW,j/W) onto list Mi after the last element. 

(vi) Enter P R onto list Mi after the last element. 

The list Coo created in (ii) consists of all south-east corners of the rectangles 
of S which lie in the (topological) interior of Ri. The other 3 corners (in the 
case of a non-degenerate rectangle) cannot be convex-hull points, and hence 
they are dropped. The stair-shape finally comes out by (v) since only points 
with strictly increasing x-values are admitted (cf. Fig. 8.13). The treatment of 
i ? 2 , i?3 and R4 is analogous and results in stair shaped lists Mi, M3 and Mi, 
respectively (cf. Fig. 8.14). 

Part II. (Main part) is nothing more than the proper convex hull con
struction acting on the ordered lists Mi to Mi, in exactly the same way as 
it is shown in Subsec. 8.2.2 with the list po,...,pn-i. The hull construction 
can be applied to each of the lists Mi separately, or to that whole list which 
Mi,...,Mi as sublists (in this order). 

Summing up, this algorithm provides on the average a reasonable compro
mise between coding effort (overhead), computational cost and effective com
putation. If the sorting of the lists in Part I is executed with a 0(nlog 2n) 
method (such as Quicksort), the whole algorithm also has worst case cost of 
0(nlog2 n). 

8.3 Exact Computation of Delaunay and Power 
Triangulations 

8.3.1 Introduction 
The requirement for creating a triangulation of a point set or other sets of 
objects (usually called sites) in the plane is common to scientific fields such as 
numerical analysis, computer graphics and geographical information systems, 
to name a few. Roughly spoken, a triangulation of a set 5 is a subdivision of S 
into subsets whose bounded faces are triangles. Some introductory references 

(iv) Set x, c u r r = x'B and initialize a list Mi = \PB 
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are [198], [30], [42]. 
There are many possible triangulations of the given set 5 which depend 

on the request which of the sites should be considered as a unit and be put 
together in one subset. Among these the Delaunay and the power triangulation 
have special interesting properties. For example it has been shown that the 
Delaunay triangulation of a terrain map is the triangulation that minimizes 
the roughness of the resulting terrain, no matter what the actual height data 
is, cf. [228]. It has also been shown that various graphs (such as the Euclidean 
minimum spanning tree) defined on a set of points, say S, are subgraphs of the 
Delaunay triangulation of S. More specifically, the Delaunay triangulation, 
which is concerned with point sets) is used in numerical analysis, CAGD, etc., 
and the power triangulation, which subdivides set of sites which are objects in 
the plane, for example, geometric figures, has found practical applications in 
crystallography, metallurgy, economics, etc. 

The Delaunay triangulation is closely related to the Voronoi diagram in the 
sense that the Delaunay triangulation is the dual of the Voronoi diagram in the 
sense of graph theory. Similarly, the power diagram is the dual of the power 
triangulation. If the Voronoi diagram for a set of η points has been computed 
then the Delaunay triangulation can be found with complexity O(n). 

The problems which are caused by the numerical computation of Delaunay 
and power triangulations are nearly the same as for other geometrical computa
tions. Thus, there is often a large gap between theoretically correct geometric 
algorithms and practically valid computer implementations [107]. For example, 
a recent paper states that rapid progress of computational geometry in the past 
two decades has resulted in many geometric algorithms, some of which are op
timal in the worst-case sense [187]. However, most of them are designed under 
the assumption that numerical computation can be done precisely. In actual 
computation errors are inevitable. These errors often generate inconsistencies 
in the topological structure creating degenerate situations, which can some
times be worse than numerical errors. This has led to a number of approaches 
for dealing with the problems caused by the errors. Below they are classified 
into three groups. 

Group A consists of approaches that investigate the bounds of possible 
errors in the construction. One of the general approaches from Group A is 
to obtain symbolic bounds on numerical errors so that the stability of the 
computation can be guaranteed. As shown in [49], it can be difficult to obtain 
bounds that are tight enough to be useful. Another approach is topologically-
oriented and it ensures the consistency of the system topology, i.e. the topology 
of the triangulation, during the process of computation, rather than controlling 
the numeric precision [187, 260]. The result is a system free of inconsistency, 
constructed for any imprecise data set, which is only an approximation of the 
correct result. Moreover, this result is not free from all the consequences of 
numerical errors described above. 
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Group Β in our classification includes degeneracy-oriented methods, back
ward error-analysis methods and epsilon- tolerance methods. The degeneracy-
oriented methods employ the idea of avoiding degenerate special cases (which 
require extensive and correct computation) instead of dealing with them. This 
can be achieved by conceptual perturbation of the input data [41, 274]. This 
simplifies the algorithm, but might change the topology of the system, which 
violates an essential feature of a Voronoi diagram. 

One of the methods popular among programmers is the epsilon tolerance 
approach, where two geometric elements are considered to be at the same 
location if the distance between them is less than a tolerance e [108, 147]. The 
shift of any of the points within the e-distance would not change the system 
topology. The originality of the input set is also lost in this approach, and it is 
not free from inconsistencies (when, for example, three or more elements come 
close to each other). Other applications of e-geometry and e-arithmetic have 
also been considered by some authors [59, 61, 237]. Although the algorithms 
are numerically stable, they compute approximate solutions. 

In the error-analysis approach computational results are classified accord
ing to the fuzzy logic as true, false or inconclusive (unreliable) [158, 237]. Only 
conclusive results are used, and the number of inconclusive ones can be lim
ited, but not completely eliminated, by applying backward error analysis. The 
computation of the most appropriate error bound is also quite complicated. 

Group C, which includes the algorithm proposed in this section, represents 
a different approach to the problem [120, 123]. Instead of trying to avoid or to 
deal with the numerical error, the problems are simply eliminated by perform
ing exact operations on the data. This should be done under the reasonable 
assumption that data items under consideration are already machine numbers. 
Then, in each step of the algorithm, the exact values of all the components are 
calculated, which eventually will lead to the correct result. The only question is 
how expensive this exact computation can be. As stated in one paper devoted 
to exact computation: 

Exact computation provides simplicity and assured robustness at 
the expense of the computational efficiency. It provides simplic
ity in the sense that algorithms map directly to implementations, 
without need to treat numerical error. Moreover, the handling of ge
ometric degeneracies is vastly simplified by the absence of complex 
interactions between numerical errors and tests for degeneracies. 
[123] 

In our approach we suggest using fixed-precision floating point arithmetic to 
solve the efficiency dilemma. We apply the approach to the exact computation 
of Delaunay and power triangulations. First, we apply the economic variation 
of ESSA, cf. Ch. IV for the exact computation of the necessary primitives. 
Then we apply a floating-point filter based on interval analysis to improve the 
performance of the algorithm. Our method is then tested on the algorithm for 
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incremental construction of the Delaunay and power triangulations [86]. We 
show that the worst-case performance of the exact algorithm is the same as for 
the inexact algorithm, that is 0(n2), since the exact computation of each single 
primitive takes only 0(1). The average time complexity is, therefore 0(n) [86]. 
However, the time required for the exact algorithm presented here to perform 
the operations is on average 4 times longer than that of the inexact algorithm 
(as shown below). 

Independent of the statistical analysis of the numerical examples, there 
arises a very surprising insight to triangulations as a side effect. The examples 
show drastically how large the number of wrong edges is if no error control is 
implemented. This number ranges from 1% in stable constellations up to 50% 
at close to degenerate constellations. The conclusion is that error control is 
unavoidable if one wants to obtain reliable triangulations. 

8.3.2 Definitions and Methods for Computing Voronoi 
Diagrams 

We consider d-dimensional Euclidean space Rd and a set of points, S C Rd. 
The Voronoi diagram of S which is one of the most important geometrical data 
structures in computational geometry, stores proximity information for the set 
5 by dividing the space into Voronoi regions V(p) for points ρ G S according 
to the nearest-neighbor rule. They are defined as 

V(p) = {x G Rd\p(x,p) < p(x,q), Vg G S\ {p}}. 

where ρ denotes the Euclidean distance [12]. Voronoi regions for different points 
of S are disjoint. In two dimensions, the Voronoi regions are open polygonal 
regions. In order to define the Voronoi diagram we collect first all points of the 
Voronoi regions in the open set 

VoriS) = [J{V(p)\ptS}. 

Each point of the space Rd is then either a point of Vor(S) or a boundary 
point of Vor(S), but not both. If d = 2, that is, the space is the plane, the 
Voronoi diagram of S is defined as the set of boundary points of Vor(S), 

VD(S) = R2 \ Vor{S). 

The Voronoi diagram is a regular planar graph of degree three under the 
assumption that no four points of S are co-circular [188]. The vertices of 
the graph are called Voronoi vertices. They are boundary points of exactly 3 
Voronoi regions. 

A very important property for the algorithms in the sequel is that each 
Voronoi vertex is the center of a circle defined by three points of the set S and 

�� �� �� �� ��



268 Robust Computations of Discrete Problems 

that no other points of S lie in the interior of the circle, cf. Sec. 8.3.5. This 
is known as the empty circle condition. 

Many interesting properties of Voronoi diagrams are known. A listing of se
lected properties can be found in [188]. The Voronoi diagram also has numerous 
applications in different mathematical and industrial fields [188]. 

Numerical errors in finite-precision arithmetic are inevitable in the con
struction of the Voronoi diagram, as stated in the paper by Sugihara and Iri 
[260]. For example, if any coordinate of the vertex of the VD(S) is a rational 
number, infinite precision floating point numbers may be required to repre
sent the coordinate. This cannot be implemented in finite precision arithmetic. 
Therefore, the authors introduce a robust topology-oriented incremental algo
rithm for Voronoi diagram construction, where a higher priority is placed on 
the topological structure of the diagram rather than on the numerical values. 
The numerical stability of the algorithm is guaranteed in the sense that no 
matter how poor the precision may be, the algorithm will always produce a 
topologically consistent output. The diagram becomes "closer" to the correct 
Voronoi diagram as the precision becomes higher. The same idea has been ap
plied to the construction by the divide-and-conquer method. However, as was 
mentioned above, this method of Sugihara and Iris while topologically correct 
only produces an approximation of the real diagram. Moreover, degenerate 
input can increase the time required to perform the task as well as degrading 
the accuracy of the result. 

We overcome the hurdle of the rounding errors in the following manner: 
Instead of computing the Voronoi diagram VD(S) as precisely as possible, we 
will calculate the exact Delaunay triangulation (abbreviated Del(S)), which is 
defined as the straight line dual of the Voronoi diagram. Del(S) is a graph that 
can be obtained by connecting each two points S whose Voronoi regions share 
an edge point which is not a vertex. Under the assumption that the points of S 
are already machine numbers we construct the Delaunay triangulation in aver
age 0(n2) time, no matter how degenerate the input data, 5, is, since VD(S) 
and Del(S) are planar graphs embedded in the plane, so that their complexity 
is 0(n), and once we get Del(S), it can be transformed into VD(S) in O(n) 
time. We always obtain the exact diagram as a result, which in this connection 
means, that the resulting VD(S) will be topologically correct. Numerically it 
may, however, be only an approximation of the real VD(S). 

Up to now the geometric sites we were dealing with were points. We turn 
now to sites which already are geometrical objects, i. e. we focus on spheres in 
the space Rd . Let S therefore be a set of such spheres, then a diagram which 
corresponds to the Voronoi diagram is the power diagram. (We use the notation 
S for sets of spheres too since the steps of the algorithm we will establish are 
the same for both kinds of sets.) 

First we need some measure for the distance of a point χ of the space to a 
given sphere p. This is done by the power function which is defined to be 
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pow{x,p) = (x - c(p))T(x - c(p)) - r2(p) 

(see [12]) where χ G Rd, but χ does not lie in the interior of the sphere, and 
where c(p) and r(p) are the center and radius of the sphere. 

The power function can be interpreted in the following manner: Draw a 
tangent line from χ to the sphere p. Let the tangent touch p, say at the point 
y. Then, by the law of Pythagoras, y/pow(x,p) is the Euclidean distance from χ 
to y. Or, with other words, y/pow(x,p) represents the distance from the sphere 
ρ to the point χ outside the sphere measured along a tangent line through the 
point x. 

Corresponding to the Voronoi regions in the case of point sites, one considers 
in the case, where the sites ρ are spheres, the power cells of ρ G S. They are 
defined by 

cell(p) = {x G Rd\pow(x,p) < ροιυ(χ,ί), Vt G 5 \ {ρ}}. 

In order to define the power diagram of S we collect first all points of the 
power cells in the open set 

Pcl(S)=\J{V(p)\peS}. 

Each point of the space Rd is then either a point of Pcl(S) or a boundary 
point of Pcl(S), but not both. If d = 2, that is, the space is the plane and the 
spheres are circle (lines), the power diagram PD(S) of S is defined as the set 
of the boundary points of Pcl(S), 

PD(S) = R2 \ Pcl(S). 
In the planar case the sites of S are circles. In this case the power diagram 

of 5 is a regular planar graph of degree three under the assumption that no 
four sites of S are co-circular [12], that is, there is no solid circle (the boundary 
of which need not be a site!) that is outside of the four circles of S and touches 
each of the four circles. 

When the straight-line dual graph of power diagram PD(S) is drawn be
tween the centers of the circles, it yields a planar triangulation of set of sites, 
which we will refer to as a power triangulation (abbreviated Pow(S) in the 
sequel). 

8.3.3 Methods for Constructing Delaunay and Power Tri
angulations 

The correctness of many computational geometry algorithms depends on the 
exact computation of one or more simple algebraic expression. The algorithm 
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C i r c l e g 

χ 

chor(p, g) C i r c l e ρ 

Figure 8.15: Power diagram 

for the exact computation of the Delaunay and power triangulation is a good il
lustration of this fact. We will focus our attention on two methods for Delaunay 
triangulation construction, namely, the divide-and-conquer and the incremental 
method. The well known divide-and-conquer algorithm, introduced by Guibas 
and Stolfi [85], runs in optimal O(nlogn) time. The simple modification of 
this algorithm suggested by Dwyer [39] runs in 0(n log log n) expected time, 
improved to 0(n) by Katajainen and Koppinen [124]. Both algorithms use 
only two geometric primitives: the CCW (Counter Clock Wise) orientation 
test and the INCHICLE test. The CCW orientation test is used to find for a 
current point of the input set that triangle of the actual state of the triangula
tion which contains the point. The INCIRCLE test enables the determination 
of whether a triangle which occurs during the computation belongs to Del(S). 
The algorithms for constructing the power triangulation are similar to those 
for the Delaunay triangulation. Only the INCIRCLE test has to be modified 
for the power triangulation while the CCW test remains the same. 

Among the incremental algorithms we can distinguish algorithms based on 
incremental construction and on incremental search. The incremental con
struction algorithms (one of which we have chosen for the tests) starts with a 
triangle the area of which covers S. This triangle is seen as a Delaunay tri
angulation of itself which commences the initialization of a recursive process. 
The recursion consists of adding one point of S after the other and subdividing 
the triangle at the same time maintaining the Delaunay triangulation property 
till all points of S are subsumed. Then the triangulation of S is terminated 
after deleting the initializing triangle, cf. for example, [86, 237]. 

The incremental search algorithms [40, 147] start already with one triangle 
of the final triangulation, and grow the diagram by one valid triangle after the 
other, till all points of S are subsumed. 

We note that only two primitives, the CCW and the INCIRCLE test, are 
used in the described approaches. The result of each test depends on the 
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computation of the sign of a determinant. If we want to construct a correct 
Delaunay triangulation, the value of the determinant has to be computed ex
actly. The approaches used to solve this problem in the literature are based 
on an arbitrary-precision arithmetic or integer arithmetic or both. Jiinger et. 
al. [120] represent the input data as integers in the range from 0 to Μ and 
prove that the result of the determinant computation lies in the range from 
0 to 6M 4 . Karasick et. al. [123] use adaptive-precision rational arithmetic. 
They represent the data as integers and use an interval filter to improve algo
rithm performance. The algorithm is four times slower than the floating-point 
implementation. Fortune and Wyk [62] also implement a number of Delaunay 
triangulation algorithms in adaptive-precision arithmetic with interval analysis 
as filter. They test their model on some incremental and divide-and-conquer 
algorithms and show that the performance of the algorithm has a cost close to 
that of floating-point arithmetic. 

There are, however, some disadvantages to using integer and adaptive-
precision arithmetic. One of these comes from the fact that not many processors 
can perform operations on the arbitrary precision numbers. Therefore, these 
operations have to be implemented at the software level and, consequently, they 
will be slower than those performed at the hardware level. Another problem 
with integer arithmetic is when the precision of the input data increases, the 
amount of space and time required for the algorithm grows exponentially, in 
proportion to the complexity of the expression. For example, the space required 
to store the result of calculation of a 4 χ 4 determinant is 4 times larger than 
that for its operands. In fact, if the operands are of single precision, the result 
is of the maximum possible precision in most computers - quadruple. 

In our case we are interested in developing robust and reliable algorithms 
for the computation of Del(S) and Pow(S). We therefore chose the incremental 
algorithm of McLain [152] for the exact construction of the Delaunay and the 
power triangulation, based on standard floating-point arithmetic. The input 
data, S is represented by machine numbers. This is a reasonable assumption 
since a triangulation is usually computed as an intermediate part of a larger 
computation such that the input data for the triangulation is the output of a 
previous computation. 

The incremental algorithm has complexity Ο (η2), it is simple to implement 
and it is based on only two primitives, the CCW orientation test and the 
INCIRCLE test. Both of the two primitives require the exact computation of 
the sign of determinants which is done by ESSA. As already done at other 
geometrical computations we improve the performance of the algorithm by 
using an interval filter before executing ESSA. The reason for doing this is that 
if the computation of the CCW or the INCIRCLE tests is well-conditioned, i.e., 
the configurations are not close to being degenerate, then the less expensive 
interval evaluation of the determinants will provide the exact sign. 

The approach has been tested on the algorithm for incremental construc
tion of the Delaunay triangulation described in [86]. The performance of the 
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algorithm is verified by computational experiments described below. The fixed 
mantissa length is never exceeded during the computation and can be single 
or double precision, etc., depending on the purpose. For simplicity, we assume 
single precision computation with mantissa length t. The algorithm we intro
duce will render the exact result provided the input data consists of machine 
numbers. 

8.3.4 Exact Computation of the C C W Orientation Test 
The CCW orientation test is almost identical to the left-turn test, cf. Ch. 
IV and is used to locate that triangle among the current triangles during the 
computation which contains in its interior a given point, which is, depending 
of the class of sites, either the next point of S or the midpoint of the next circle 
of S to be processed. This test is seen as a primitive and decides whether a 
point lies to the left, right or on a directed line defined by two other points. 
The result of the test can be calculated as the sign of a 3x3 determinant. We 
assume the coordinates of the points from the input set are machine numbers. 
Let P I , P 2 , P 3 be 3 points in the plane such that ρ,· = (xi,yi),i = 1,2,3. If pTpT 
denotes the directed straight line segment from pi to pi, then p 3 is to the left, 
on or to the right of ρϊρΐ iff 

is positive, zero or negative, cf. the description of the left-turn test in Ch. IV. 
We know that the determinant is already a sum, 

Since pj = (x«,j/i) ,t = 1,2,3 are represented in single precision arithmetic, 
the products appearing in (8.2) can be computed exactly using double precision 
arithmetic. Thus, we can apply a double precision version of ESSA to the sum 
(8.2) and get the correct sign. In order to achieve better performance, we 
use again the interval filter. That is, we first apply interval arithmetic to the 
expression (8.2). Thus, if the (single precision) interval arithmetic computation 
of D gives the interval result D1, then, 

When 0 € DT it is not possible to decide the sign of D with the chosen accuracy 
of the representation of the intervals and we apply ESSA to compute the sign 

1 xi yi 
D = 1 x2 1/2 

1 X3 J/3 

D = XiJ/2 + X2J/3 + X3Vl ~ XlJ/3 - X2J/1 ~ X3J/2- (8.2) 

if D1 > 0 then D > 0, 
if D1 < 0 then D < 0, 
if D1 = 0 then D = 0. 

of D. 
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8.3.5 Exact Computation of the I N C I R C L E Test 
We first consider point sites S. When the circle defined by three given points 
Pi)P2,P3 £ S does not contain any other point from S, the empty circle con
dition is satisfied, the interior of the triangle pi,P2,P3 does not contain any 
further point of S, and the triangle Pi,p2,P3 is a Delaunay triangle. 

The INCIRCLE test enables to check whether the current triangles which 
occur during the computation, already belong to Del(S). It is performed on a 
diagram which consists of a quadruple of points generating 2 adjacent triangles. 
The test decides whether the inner edge of the two triangles remains or has to 
be flipped so that the triangulation of these 4 points satisfies the conditions of 
the Delaunay triangulation. 

As the algorithm proceeds recursively, the INCIRCLE test is applied to the 
current state of the recursion so that S will then mean the current state of the 
point set. 

In order to determine which situation occurs, the sign of a 4 x 4 determinant 
has to be calculated. Let pt = (ii,y<),i = 1, . . . ,4 be four points in the plane 
and assume Pi,pi,P3 (not collinear) define a circle C. Then the relationship of 
Pi to C is determined by the sign of the determinant 

D = 

y\ χϊ + νϊ 1 
Xl χΐ + νϊ 1 
X3 Ϊ/3 χ\ + νΙ 1 
X i V4 x\ + y\ 1 

Assume that pi,P2,P3 in this order lie clockwise on the circle. (This is checked 
with the CCW test.) Then 

if D > 0 then p4 is inside C, 
if D = 0 then p4 is on C, 
if D < 0 then pA is outside C. 

If now D > 0, the diagram consisting of the 2 adjacent triangles {pi,P2,P3j 
and {pi,P2,P4} is a Delaunay triangulation of the set {ρι,Ρ2,Ρ3)Ρ4}· If D < 
0, the diagram is not a Delaunay triangulation of this set, but the diagram 
consisting of the 2 adjacent triangles {p3 ,P4,Pi} and {P3,P4,P2} is (flipping 
operation), cf. [30]. 

Numerically, we have to determine the sign of D. When the determinant is 
multiplied through then products of the form 

xiVj(xl + vl) = xiVixl + xiV}yl (8-3) 

result. Each product of the form XiVjX2. requires quadruple precision for getting 
exact results with ESSA if the points are single precision quantities. However, 
those expressions could also be accomplished by 4 double precision quantities 
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without too much mantissa manipulations. This is done as follows: we start 
with XiVjXk in single precision, compute the products Xjj/j and x\ in double 
precision, but split each of them immediately in the sum of two single precision 
numbers, 

XiVj = (xiVj)L + ((xiVj)R, xl = (XI)L + (χ*)β. (8.4) 
Finally, we execute the four products 

(Χίνί)ΛχΙ)μ, v^ = L,R (8.5) 

in double precision. Their exact sum is Xjj/jX2.. We perform the same operations 
to calculate Xjj/jj/2.: 

XiVi = (xiyj)L + ( ( Χ < ^ ) Λ , vl = (VDL + {VDR- (8.6) 

Finally, we execute the four products 

{χ*νί)ΛυΙ)μ, v^ = L,R. (8.7) 
Hence, the determinant is the sum of 192 double precision quantities and the 
computation of the sign of D can be done exactly by ESSA. When computing 
the determinant, we first apply interval arithmetic as explained in the previous 
section and ESSA is only executed when an inconclusive result occurs. 

Let us now turn to the case where the sites are circles, that is, the power 
triangulation is the target of the computation. Then the form of the 4x4 
determinant in the ENCIRCLE test is changed [66]: 

xi yi Xi+yl-rl 1 
X2 V2 xl + vi-rl 1 
xs yz xl + vl-rl ι 
X4 i/4 x\ + 2/4 - Λ 1 

D = 

where c< = (χ*, j/j), i = 1 , . . . , 4 are the centers of circles, and r<, i = 1 , . . . , 4 
are the radii of the circles, let ρ = (c, r) be a circle (not necessarily belonging 
to S) which does not contain the circles Pi, P 2 , and p3 in its interior (but ρ can 
belong to the interiors of one or more of the circles pi, pi, and 03) but which 
touches the circles Pi, P 2 , and 03. If such a circle exists it is uniquely defined. 

Then the sign of the determinant reflects the following cases: Let the points 
C\, C2, and C3 be clockwise ordered. If D < 0 then the interiors of the two disks 
which have P4 and ρ as boundaries are not disjoint. If D = 0 then P4 touches 
p, but the interiors of the related disks are disjoint (and pi, p2, P3 and p4 
are cocircular). If D > 0 then the disks which are generated by p4 and ρ are 
disjoint 

We have to compute the sum of products in the form 

XiVjixl + vl) = XiVjxl + xiVjvl - xiVjrl (8-8) 

which is done in the same way as for Del(S) and the determinant will be 
computed as a sum of 288 double precision quantities. 
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8.3.6 Complexity Analysis for the Primitives 
We analyse and compare the expected costs of the CCW and INCIRCLE prim
itive calculation for 3 different implementations, the straight implementation 
only using single precision machine numbers, the implementation using inter
val arithmetic and the implementation which uses ESSA. In the analysis of the 
implementation with ESSA we assume that the average number of iterations 
performed by ESSA is one half of the initial number of summands (experiments 
confirm this assumption). The total sizes of lists of summands are I = 6 for 
the CCW orientation test, / = 192 for the INCIRCLE test in the Delaunay 
triangulation and I = 288 for the INCIRCLE test in the power triangulation. 
At each iteration of ESSA, at most two additions are performed. 

C C W O r i e n t a t i o n T e s t 

In the straight implementation the CCW test is calculated by the following 
formula: 

CCW(pi,p2,P3) = (x2-xi)(V3 - y i ) - (xa - xi)(yi - yi)-

This involves 2 multiplications and 5 additions. 
In the interval implementation, the calculations are performed using the 

same formula, but the operands are represented by intervals. Since an interval 
addition requires 2 scalar additive operations, and an interval multiplication re
quires 4 scalar multiplications and comparisons, the total number of operations 
for interval CCW test is 10 additions and 8 multiplications. On the average, 
the interval implementation is approximately 4 times slower than the direct 
implementation, because most of the time is spent doing multiplications. For 
the ESSA implementation, the preparation of the list of summands (eqn. (2)) 
requires 6 multiplications. The ESSA itself requires approximately 2* (6/2) = 6 
additions. 

I N C I R C L E T e s t for t h e D e l a u n a y T r i a n g u l a t i o n 

In the straight implementation with machine numbers, the INCIRCLE test is 
calculated by the following formula: 

INCIRCLE(puP2,P3,P4) 
= D(p!) * CCW(P2,P3,P4) - D(P2) * CCW(pi,P3,p4) 

+D(P3) * CCW(pUP2,P4) - Dfa) * CCW(pUP2,P3) 

where D(pi) = x2 — y2, i = 1,. . . ,4. As one can count, this requires 27 
additions, 12 multiplications and 8 squares. 

The interval implementation of INCIRCLE test will therefore require 54 = 
2 * 27 additions and 64 = 4*12 + 2*8 multiplications (the interval square 
requires only 2 multiplications). 
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Primitive 
Straight-forward Interval ESSA 

Primitive + * + * + * 
CCW 5 2 10 8 6 6 
INCIRCLE(Delaunay) 27 20 54 64 192 288 
EMCIRCLE(Power)(S) 31 24 62 72 288 432 

Table 8.11: Total number of operations 

For the implementation with ESSA one has to build 48 products of the 
form X j j / j X 2 . . Each of the four products need 6 multiplications. Therefore, 
288 multiplications are required in total to prepare the list of summands. The 
execution of ESSA will require 2 * (192/2) = 192 additions on average. 

INCIRCLE Test for the Power Triangulation 

In the straight implementation the INCIRCLE test for the power triangulation 
is calculated by the following formula: 

INCIRCLEipuPi^pi) 
= £>(pj) * CCW[p2,p3,p4) - Dfa) * CCW{pupz,Pi) 
-rDfa) * CCW{plyp2,Pi) - D(pA) * CCW{pup2,pz) 

where p> = fan), c< = (xi,yi), D(pi) = x- - y- - r?, t = 1 , . . . ,4. This 
requires 31 additions, 12 multiplications and 12 squares. 

The interval implementation of the INCIRCLE test requires 62 = 2 * 31 
additions and 72 = 4*12 + 2*12 multiplications. 

For the ESSA implementation one has to build 72 products of the form 
X i j / j X 2 . Each of the 4 products needs 6 multiplications. Therefore, 432 multi
plications are required in total to prepare the list of summands. The execution 
of ESSA will require 2 * (288/2) = 288 additions on average. The performance 
results for all the tests are summarized in Table 8.11. 

Both the straight-forward and the interval implementations use single preci
sion operations, while the ESSA implementation uses double precision additions 
and single precision multiplications. 

8.3.7 The Main Scheme of the Incremental Algorithm 
We only want to sketch the algorithm in order to show where the primitives 
and hence demand for exact computation are located in the computation. I. e., 
we don't discuss sophisticated implementations and versions which are worked 
out completely. 

The algorithm we consider is based on the incremental construction method 
of the Delaunay triangulation [86]. It works for sets 5 of point sites as well 
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as for classes of circle sites. In the latter case the algorithm is applied to a 
set S which consists of the midpoints of the circles, and only the INCIRCLE 
test has to be modified. Therefore it suffices to deal only with the Delaunay 
triangulation in the sequel. 

The idea of the algorithm is the following: Let S = { p i , . . . , p „ } be the set 
of points (or the set of midpoints in the case of the power triangulation of sets 
of circles). Then a triangle with vertices, say a, 6, c not belonging to S has 
to be found the interior of which covers the set S completely. Now let Si = 
{a,b,c,pi,...,pi} and TJ the Delaunay triangulation of St for i = 0,...,n. The 
essential feature of the incremental construction is that r< can be constructed 
using the two primitives if T J - I is known (i = 1 , n ) . Since To is the Delaunay 
triangulation of So and consists therefore of the triangle a, 6, c, the start of the 
recursion is settled too. The final state of the recursion is r „ . Removing the 
points a, b, c and all edges with these points as endpoints from this diagram 
gives the Delaunay triangulation of S. 

The input for the algorithm are the coordinates of the point sites of the given 
set 5 in the plane resp. the coordinates of the midpoints of the circles. The 
radii of the circles are hidden input parameters as they occur in the INCIRCLE 
test only. 

A L G O R I T H M 23 (Delaunay Triangulation) 

Input: The set S = { p i , . . . , p n } of points in the plane where no 4 points 
are cocircular. 

Step 1. Find three points a,b,c such that all points of S lie in the interior of 
the triangle defined by the three points. 

Step 2. Set i = 0 and initialize Ti as the triangulation consisting of a,b,c. 

Step 3. Seti = i + l. 

Step 4. Find one triangle of T i , say u,v,w, containing p i by applying CCW 
tests in an appropriate manner (where by triangle an atomar triangle is 
meant, which contains no points of Ti in its interior). 

Step 5. If 
Pi lies in the interior of triangle u,v,w 
then 

• subdivide the triangle u, v, w by connecting Pi with each of the points 
u, v, w. by a straight line. Let T j + i be that triangulation which arises 
from Ti by adding Pi together with the three new triangles. (This 
triangulation need not be a Delaunay triangulation. It has first to be 
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checked whether the edges of the triangle u, v, w satisfy the neighbor
hood relationship between the vertices also in T j + i . If not, the edges 
are switched with the edges of the adjacent triangles. This is done 
by calling the following procedure, which is explained below.) 

• call LEGALIZEEDGE(uv,Ti+i) 

• call LEGALIZEEDGE(vw,Ti+l) 

• call LEGALIZEEDGE(wu,Ti+l) 

else (pi lies on an edge of the triangle u, v, w, say on wo; let ζ be the third 
vertex of the adjacent triangle which has pi as an edge point ) 

• subdivide the triangles u, v, w and u, ν, ζ by connecting pi with each 
of the points w and ζ by straight lines. Let T j + i be that triangula
tion which arises from Ti by adding Pi together with the four new 
triangles. (As above, this triangulation need not be a Delaunay tri
angulation and the check for the correct neighborhood relationship 
has to be done for the four outer edges of the triangle pair u,v,w 
and u,v,z.) 

• call LEGALIZEEDGE(uz,Ti+i) 

• call LEGALIZEEDGE(zv,Ti+i) 

• call LEGALIZEEDGE(vw,Ti+1) 

• call LEGALIZEEDGE(m,Ti+l) 

S t e p 6. Seti = i + 1. 

S t e p 7 . Ifi<ngo to Step 4-

S t e p 8. Discard a,b,c and all incident edges from r „ . The resulting diagram 
is the Delaunay triangulation of S. 

An essential part of the algorithm is the flipping operation which poten
tially has to be executed when a new point is added to the actual state of the 
triangulation in order to maintain the Delaunay property of the triangulation. 
This is done by the procedure LEGALIZEEDGE: 

Let δΰ be an interior edge of any state of the triangulation, say τ , which 
might occur during the execution of the algorithm. Then there are two adjacent 
triangles which share uv as edge, say u, v, w and u, v, z. It is well possible that 
the edge uv does not satisfy the neighborhood relationship which is required 
for the Delaunay triangulation. Then the edge uv is replaced by the edge wz, 
which then satisfies the neighbourhood relationship, cf. Fig. 8.16. This process 
is frequently called flipping. 

The procedure consists of the following steps (its only a finite number of 
steps, cf. [30] so the procedure will terminate): 
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w w 

u V u φ V 

ζ ζ 

Figure 8.16: Flipping the edges 

LEGALIZEED GE (ΰϋ,τ) (Legalize an edge or flip it) 

Input: An inner edge uv of a triangulation r, and τ itself. Let u,v,w 
and u,v,z be the two triangles of τ that share the edge uv, and u,v,w (in this 
order) be clockwise oriented. 

Step 1 . Set D = INCIRCLE{u, v, w, z), cf. Sec. 8.3.5. 

Step 2 . If D < 0 (that is, the edge ΰΰ does not obey the neighborhood rela
tionship and has to be flipped) 

• Replace uv with wz (Flipping. Note that τ will be changed by the 
flipping process!) 

• call LEGALIZEEDGE(UZ,T) 

• call LEGALIZEEDGE(ZV,T) 

Output: Either the triangulation of the input or a triangulation which 
arose from the input triangulation by flipping one or more edges which then 
satisfy the neighborhood relationship. 

There is not too much to say about the comparison of the numerical costs 
of the straight implementation which performs on single machine numbers, 
of the algorithm with the exact implementation with uses ESSA and interval 
arithmetic as filter. The complexity order of ESSA and of the interval arith
metic operations is independent of the number of sites, say N, of S. Since 

then 
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the complexity of the exact algorithm is 0{N), and the worst-time complexity 
is 0(N2), the same holds for the straight implementation, because the two 
implementations are distinguished only by ESSA and interval instead of real 
arithmetic operations. 

8.3.8 Test Results 
Many examples were computed in order to investigate the numerical perfor
mance of the exact algorithm (the one with interval filter and ESSA). For 
comparison, the performance of the straight algorithm (that is the plain im
plementation of the algorithm in machine numbers without caring about error 
control). The experiments were conducted on a 486DX2/66 PC. 

In the first series of experiments we tested the two implementations on 
different distributions of points in the following input sets (Sites were points): 

• Sites are randomly distributed in a rectangular area (further referenced 
as random distribution) 

• Sites are distributed at the nodes of a rectangular grid (further referenced 
as grid distribution) 

• Sites uniformly distributed on a circle line (further referenced as circle 
distribution) 

• Sites uniformly distributed on the boundary of a square (further refer
enced as square distribution) 

The number of tests was 5 for each class of sets. Each set consisted of 100 
points. A perturbation parameter, Ρ was also chosen for the tests except for the 
random distribution. It set the distance from the original points of the input 
data to perturbations in the distance of P. The perturbation was randomly 
applied to the input set in question before the computation commenced in 
order to generate input data with different rate of degeneracy. Note that grid, 
circle, and square distributions are degenerate. The parameter was in the range 
from Ρ = 0.1, where the points were significantly perturbed from their original 
positions, to Ρ = IE — 9, where the points were only slightly shifted. For 
Ρ = 0.1 the distribution practically becomes random. 

When Ρ decreases the number of degenerate situations (when four points 
are cocircular) increases. We varied the value of perturbation parameter from 
IE - 9 (when coordinates of points are perturbed only in the last digit of 
mantissa) to 0.1 (when points perturbed in almost all digits of the mantissa). 
With small perturbations the number of degenerate situations in the input set 
is significant, since the original data in the three perturbation cases is already 
degenerate, and with large perturbations the distribution of points is close 
to random distribution. If a perturbation had been applied to the random 
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Ρ 
Grid ( 261 edges) Grid ( 197 edges] 

Ρ ESSA TE TD WE ESSA TE TD WE 
1E-1 0 5.71 2.92 0 1 4.67 2.81 0 
1E-2 0 5.88 2.92 0 1 4.67 2.80 0 
1E-3 8 6.27 2.96 0 17 4.89 2.75 0 
5E-4 19 6.32 2.91 1 27 5.66 2.69 0 
1E-4 60 7.64 2.91 1 81 6.97 2.64 0 
5E-5 66 8.07 2.80 2 114 10.16 2.69 1 
1E-5 80 8.46 2.86 9 314 11.54 2.69 3 
5E-6 80 8.62 2.86 13 371 13.18 2.75 11 
1E-6 83 8.68 3.24 32 362 17.75 2.80 41 
5E-7 81 8.52 2.91 30 345 16.85 2.69 54 
1E-7 81 8.02 2.98 32 357 17.35 2.69 73 
5E-8 81 7.91 2.86 28 354 17.84 2.80 75 
1E-8 81 7.91 2.97 27 410 18.89 2.90 80 
1E-9 81 7.53 2.92 26 337 18.18 2.74 87 

Table 8.12: Algorithm performance for perturbation values on grid 

distribution it would have been still a random distribution equally, how the 
size of Ρ would have been. Therefore the input data with random distribution 
remains unperturbed. 

We compare the performance of the exact with that of the straight imple
mentation of the incremental method. The results of the tests are presented in 
Tables 8.12 and 8.13. In the table Ρ stands for the perturbation parameter, 
ESSA for the number of ESSA calls, TE for the computation time of the exact 
implementation (in seconds), TD for the time of the straight implementation, 
and WE for the number of wrong edges produced by the straight implementa
tion. 

Although it would be sufficient for an exact computation if the input date 
would be single precision machine numbers, the tests were executed with double 
precision machine numbers. The reason is that the statistics for the computa
tional performance in dependency of the perturbation grants more insight as 
the perturbation is applied to each digit of the mantissa, and the more digits 
are available the more obvious the dependency can be demonstrated. 

The number of ESSA calls grows when the perturbation is decreased. Since 
ESSA is the most time consuming test, the growth of TE depends entirely on 
this number. The first phenomenon that we can note is that the number of 
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Ρ 
Square ( 225 edges) 

Ρ ESSA TE TD WE 
1E-1 0 5.15 2.97 0 
1E-2 0 5.16 3.18 0 
1E-3 0 6.35 3.07 0 
5E-4 4 6.09 3.08 0 
1E-4 8 6.19 3.07 0 
5E-5 23 6.01 3.07 0 
1E-6 46 6.09 3.02 1 
5E-6 46 6.08 3.08 2 
1E-6 52 6.09 3.08 6 
5E-7 64 6.18 3.07 9 
1E-7 63 6.17 3.07 18 
5E-8 61 6.09 2.97 24 
1E-8 60 6.09 3.07 25 
1E-9 58 5.55 2.97 27 

Table 8.13: Algorithm performance for perturbation values on square 

ESSA calls remains almost constant when the perturbation parameter reaches 
some critical value Pmax-

The related statistics is printed out for grid distri
butions in Tables 8.12 and 8.13 At this value of the perturbation the straight 
implementation is no longer able to produce reliable results (because it consid
ers many cases as degenerate or close to degenerate), and therefore the number 
of wrong edges increases. As it can be seen from Tables 8.12 and 8.13 Pmax 

lies between 5E -7 till Ε - 5 depending on the actual constellation. 
Figure 4 illustrates the time ratio of the exact and the straight implemen

tation in dependence on the value of the perturbation parameter. The time 
ratio is denned as 

Tratio = TE/TD. 
As we can see, the ratio remains constant after the perturbation reaches the 

value P m a x , since the ratio also depends on the number of ESSA calls. Another 
phenomenon is that for the circle distribution the ratio is much higher than 
that of the grid and square distributions. This can be explained by the fact, 
that any four points in the circle distribution are cocircular, hence the interval 
filter gives the inconclusive result for almost all INCIRCLE tests. We have 
included the ratio for the random distribution. Since the number of ESSA calls 
performed for the random distribution is very low (the random distribution does 
not depend on the perturbation parameter), the ratio is entirely determined by 
the efficiency of interval filter. 

The number of wrong edges increases significantly as the perturbation pa
rameter decreases. The straight algorithm encounters more pseudo-degenerate 
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Figure 8.17: Time ratio vs. perturbation 

50% 

1E-1 1E-2 1E-3 1E-4 1E-5 1E-6 1E-7 1E-8 1E-9 

Figure 8.18: Percentage of wrong edges vs. perturbation 

situations. Also sometimes it recognizes actual degeneracy and performs incor
rect CCW tests, which results in wrong edges inserted into the triangulation. 
This in turn leads to the increase of wrong edges (see Figure 8.17 and Tables 
8.12 and 8.13). The number of wrong edges reaches almost 50% for small per
turbations in the circle distribution. The number of wrong edges in the random 
distribution is usually very low (less than 1%). 

In the next series of experiments we investigated how the performance of 
the exact implementation is affected by the number of points in the input 
set. Figure 8.19 illustrates the results for different point distributions. The 
time ratio grows slowly and tends to a constant. For example, for the grid 
distribution this constant is approximately 10. The ratio is lower for smaller 
sets of points because more time is spent in straight and exact algorithms for 
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Figure 8.19: Time ratio vs. number of points 

miscellaneous tasks. The time ratio for the circle distribution is much higher 
than for the other distributions because the circle distribution is a worst-case 
example for the algorithm, i. e., the interval filter almost never gives the 
conclusive answer for the INCIRCLE tests. The random distribution has the 
lowest increase since it generally has only a few close-to-degenerate cases, which 
can not be analysed by the interval filter, it is the situation where the straight 
implementation produces a wrong result. 

The percentage of wrong edges as a function of number of points also tends 
to a constant (see Figure 8.18). One can note that for the worst-case example 
(the circle distribution) the percentage of wrong edges is much higher than for 
other distributions. For the circle distribution the straight algorithm simply 
fails to produce a reliable result, generating 30% of wrong edges. For certain 
values of perturbation this percentage reaches 50%. Hence, the computational 
expense of the exact algorithm pays off by correcting more edges in the Delau
nay triangulation. The percentage of wrong edges for the random distribution 
does not exceed 1%. 

Independent of the statistical analysis of the numerical examples, one gets 
a very surprising insight to triangulations as side effect. The examples have 
shown drastically how large the number of wrong vertices is if no error control 
is implemented. This number ranges from 1% in stable constellations up to 
50% at close to degenerate constellations. One learns that error control is 
unavoidable if one wants to obtain reliable triangulations. 

8.4 Exact and Robust Line Simplification 

8.4.1 Introduction 
Line simplification is a data reduction process that occurs for example in car
tography when the scale of a map is decreased. Given a polygon V on a map a 
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3 5 % 

N u m b e r of 

Figure 8.20: Percentage of wrong edges vs. number of points 

line simplification algorithm generates a simplified polygon with fewer number 
of vertices which lies in some neighborhood of V. 

It is also used in image processing and pattern recognition as part of the 
vectorization process [268, 114] and for general approximation of planar curves 
[38, 203]. 

It is best to develop the concept for line simplification and to explain the 
need for it from the point of view of GIS (geographical information systems). 
Digital cartography and GIS are developments following the invention of the 
electronic computer. These developments have necessitated automating tasks 
that were previously manual such as map simplification and other transfor
mations between the various representations used for geographical information 
(see [19, 117, 148, 150, 173, 175, 194, 272]). Initially it was thought that the 
implementation of these tasks on a computer would lead to representations 
of geographical data which would be reproduced without error on any device. 
This was found to be optimistic for example by Visvalingam-Whyatt [268] who 
discussed the influence of rounding errors on a version of the Ramer-Douglas-
Peucker [34, 203] algorithm for (straight) line simplification (abbreviated the 
R-D-P algorithm in the sequel). 

The reason for simplification is that details easily visible in a cartographic 
map at a given scale can often not be displayed effectively at a smaller scale 
due to cluttering. When a scale was decreased in manual cartography, line 
simplification was done by a cartographer who would simplify using a pen, 
an erasing tool or both. These tools were employed to bring out important 
features of a map eliminating unwanted detail. The implementation of this 
process on a computer resulted in the development of a number of algorithms 
dealing with various aspects of simplification. Each of the algorithms delivers 
different results. The choice of algorithm depends on the user's experience 
and preference as well as factors such as purpose, database issues versus map 
simplification, and even the geomorphology of the data being simplified. An 
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optimal approach might be to develop an artificial intelligence based algorithm 
using knowledge elicited from skilled cartographers. 

A reasonable requirement could be that the results should be reproducible 
for a given algorithm, It was shown by [268] that even this reasonable goal was 
not easily achieved due to numerical errors. We quote [273] discussing GIS 
data bases: 

A major problem with spatial data is the control of error propaga
tion under spatial operations. Further research is needed on finite 
precision geometry and multiple resolution techniques. 

This problem might taken on greater importance in web environments when 
GIS is distributed and issues of reproducibility and correctness of algorithms 
are becoming essential. 

As a hypothetical example from another area suppose that in a military 
campaign the troops rely on a cartographic database that is distributed to the 
troops in the field over a communications network. Unfortunately, the informa
tion can only be displayed on a low resolution device so that line simplification 
has to be performed. If the simplification parameters for the local displays are 
all the same then the GIS information should be identical. It is easy to envision 
situations where conflicting information would lead to disastrous results. 

Almost all of the problems which are due to rounding errors can be avoided 
in the R-D-P algorithm if variable precision arithmetic is used, cf.[273]. How
ever, the computational costs are then high since the length of the intermediate 
results can increase exponentially. In this paper, based on [223], we propose an 
approach to the rounding error problem in GIS algorithms that achieves the 
same result as variable multiple precision arithmetic at a much lower compu
tational cost. 

The R-D-P algorithm is not uniquely defined since there are a number of 
versions that differ in some of the details of the algorithm and since some of 
the implementation details are left open in all of the published versions. In this 
paper we therefore first define a prototype algorithm that specifies the details 
of implementation in order to be precise and able to guarantee reproducibility 
of the exactly computed result. 

The R-D-P algorithm was chosen since it is widely used and hence a suitable 
vehicle for a discussion of stability, robustness and reproducibility in the field 
of GIS. The choice of the R-D-P algorithm does, however, not imply that we 
maintain that it is the most suitable algorithm for line simplification now and 
in the future. If there is another algorithm that can be shown to be more 
suitable from the GIS point of view then we would maintain that it also should 
be subject to the same demands for stability, robustness and reproducibility as 
we have established for the R-D-P algorithm. 

To deliver the exactly computed result we proceed as follows: The compu
tations of the prototype algorithm are first executed using interval arithmetic. 

�� �� �� �� ��



Exact and Robust Line Simplification 287 

In this manner rounding errors are kept under control and the computations 
produce intervals as results which are guaranteed to include the results of the 
underlying exact, that is, error free computations, cf. [165], [132], [212]. (Any 
other software or hardware which is able to produce guaranteed bounds for 
the numerical errors can also be used as an alternative to interval arithmetic.) 
During the interval arithmetic computation each interval result will be checked 
to see if it is small enough to make a guaranteed decision with respect to the 
flow of the computation. If a decision is not possible then the part computation 
which leads to such an interval is reformulated so that ESSA can be applied. 
The decisions which are obtained with ESSA are then completely correct. The 
logical flow as well as the mathematical underpinnings of the R-D-P algorithm 
are not changed by this reformulation. 

This particular implementation of the R-D-P algorithm is therefore robust, 
rounding error free and produces reproducible results, provided the input data 
is represented exactly. 

A recent paper by Franklin [65] calls for such algorithms. He states that 
α fragile implementation may process small test cases, while failing on large, 
realistic examples, perhaps because a neglected round-off error deep inside the 
code caused a topological inconsistency that, much later was fatal. The robust 
version of the R-D-P algorithm presented in this paper avoids these inconsis
tencies. 

The remainder of this section consists of two parts. That is, Subsec. 8.4.2 
describes a prototype R-D-P algorithm and Subsec. 8.4.3 shows how to re
formulate certain parts of the prototype R-D-P algorithm so that it can be 
handled with ESSA. An interval filter is incorporated which accelerates the 
computation. 

8.4.2 The Ramer-Douglas-Peucker Line Simplification Al
gorithm for Polygons 

Cartographic line simplification is a surprisingly delicate task which has turned 
out to be rather difficult to quantify. A review of some of the algorithms can 
be found in [160] or in [161]. Most of the algorithms compute simple geometric 
primitives for the line (which is generally a polygon, also called a broken line), 
which are then used to decide whether the line should be simplified or not. For 
our purposes we selected the R-D-P algorithm as the vehicle for our discussions 
since it is probably the most popular algorithm due to its simplicity and early 
publication. 

The original R-D-P algorithm was described rather informally [34] where the 
first vertex of a polygon was called an anchor point and where a second vertex 
of the polygon selected according to some rule was called a floater. Several 
interpretations of the algorithm are possible depending on how the floater is 
selected. For example, consider simplifying the polygon in Figure 8.21. 
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Figure 8.21: A non-unique R-D-P simplification 
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Figure 8.22: An e-strip 

Points P, Q, S and Τ are equidistant from the line connecting A and B. 
The anchor point is chosen as A and the remaining points have been chosen 
in turn to be the floater. The procedure procedure described in [34] is then 
followed obtaining a simplified line from A to the floater (using a tolerance 
slightly less than the distance from the line to the floater). The polygon from 
the floater to Β is also simplified in the figure. There are four choices of floater 
and hence there are four different simplified polygons as shown in 8.21. 

Because of the ambiguity in selecting the floater and because of the problems 
that can occur in numerical computations a precise definition of a version of 
the R-D-P was needed. 

We focused on a precise recursive prototype version since one of the aims of 
the paper is to present an algorithm that delivers reproducible results. This is 
clearly not possible unless the computational steps are completely determined 
in the algorithm. 

Let A and Β be two points in the plane. Then a straight line segment 
between A and Β is denoted by AB. If X\, Xi,..., Xn is a sequence of points 
and Ci = XiXi+i, then V = C\ U Ci U . . . U Cn-i is a polygon. 

If Ρ is a point and C a straight line segment then by d(P, C) we mean 
the Hausdorff distance between Ρ and C defined as min ||P — Λ"|| w.r.t. all 
X G C where the norm is the Euclidean standard norm. Furthermore the region 
formed by points X satisfying d(X, C) < e is called an epsilon-strip around C 
or, better, an epsilon-neighborhood of C , cf. Figure 8.22 following Perkal [193]. 

The typical computations in cartography are executed so that questions 
such as "is point Ρ closer to line C than point Q in Figure 8.22"? can be 
answered. The subsequent flow of the algorithm depends strongly on the answer 
to this question. If Ρ and Q are approximately equidistant to C then small 
perturbation in P, Q or C can have a large effect on the final simplification. 
Examples of this are found in [268] where the implementation of the R-D-P 
algorithm for different computer systems is explored. 

Let the polygon V to be simplified be given by the vertices A, Xi,...,Xn, 
B, in this order. Then A and Β are the two endpoints of V, and V = Ci L)Ci U 
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Figure 8.23: Line to be simplified 

. . . U Cn+i where C\ = ΑΧχ, Ci = Xi-\Xi,i = 2,.. .n and Cn+i = XnB, The 
line segment Β = AB is known as the base line or the anchor-float line of the 
polygon [268]. If all points X\,...,Xn lie in an e-strip around B, we say the 
epsilon criterion w.r.t. Β is satisfied. 

The essence of the R-D-P algorithm is that the polygon V = C\ L)C2 U · -. U 
C„+i is deleted and replaced by β as simplification if the points X\,...,Xn 

satisfy the epsilon criterion w.r.t. B. If the epsilon criterion is not satisfied, 
the polygon is divided into two smaller polygons, Vi = C\ U C2 U . . . U Cj and 
Vr = Cj+ι u £ j + 2 U . . .υ£„+ι· The dividing point is selected as a point with 
maximum distance to the anchor line, B, see Figure 8.23. If there is more than 
one with maximum distance to the line then the point with minimum index is 
chosen. The algorithm is now recursively executed for each of the two smaller 
polygons. 

The prototype version of the R-D-P algorithm we present differs slightly 
from the version given in [102] or in [161] when choosing the unique division 
point. The execution of the computational steps of the algorithm are, however, 
completely different in our case, since the computation of distances is avoided 
(real valued) and replaced by comparisons of distances (Boolean valued), which 
can be done rounding error free, cf. Subsec. 8.4.3. The cycles dealt with in 
[268] are not considered since we wanted a precise, but not overly complex 
prototype algorithm which is transparent and easy to describe and discuss. 

ALGORITHM 24 (Ramer-Douglas-Peucker) 
Input: Points Α, Χι,...,Xn, Β and tolerance c. 
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Step 1. Set Β = AB and V = Α Χ Λ U XiX2 U · • • U Xn-iXnXnB. 

Step 2. If η = 0 then ^oto 5. 

Step 3 . Compute j s.t. d(Xj,B) > d(Xi,B),i = l , . . . ,n and d{Xj,B) > 
d{Xi,B),i = \ , . . . , j - \ . 

Step 4. Ifd{Xj,B) < e then replace the polygon V with Β and go to 8. 

Step 5 . LetBL = AX~, VL = AXjJJ U · · · Xj-iXj, BR = XjB, V R = 
XjXj+ι U · · · U X„-iXn U XnB. 

Step 6. Co// iZomer-Doup/as-Peucfcer with input A, X\,..., A j - i , Xj and ep-
silon resulting in straight line segments Ci,..., Ck as output such that 
VL = Ci U · · · U Ck is a polygon with endpoints A and Xj. 

Step 7 . Call Ramer-Douglas-Peucker with input Xj, Xj+i, • • • ,Xn, Β and 
epsilon resulting in straight line segments Ck+ι > - ·, Cm as output such 
that V R = Ck+ι U · · · U Cm is a polygon with endpoints Xj and B. 

Step 9 . Output: Lines C\,...Cm such that V = Ci U · · · U C m is a polygon 
with endpoints A and B. 

Note that the output in Step 8 is not necessarily the result of the complete 
simplification process since it might just be an intermediate result from Step 2 
or from Step 4 in some branch of the recursive process. When this branch is 
terminated then this intermediate result is dealt with by another branch. 

If one reflects for a moment on the flow of the algorithm it is clear that the 
only floating point operations in the algorithm which are subject to rounding 
errors are the evaluations of distances. An unstable calculation of these dis
tances will therefore cause an instability in the determination of the index 
in Step 3 and also for the Boolean statement of whether Xj lies in the e-strip 
around Β or not. It can in each singular case easily be decided by interval arith
metic whether the influence of the rounding errors is significant because of the 
guaranteed error bounds which are part of the interval arithmetic computation: 

For example, let the interval results of the computations when entering Step 
3 be Di for d(Xi, B) for t = 1 , . . . , η and Dj > Di for t φ j . Clearly, for this 
case Xj is the point with maximum distance to B, and no further processing is 
necessary. 

If we have the situation that Di = [10,10.001], D9 = [10.001,10.002] and 
Di < Dg for all t φ 1,9, it cannot be decided whether j = 1 or j = 9 at the 
current state of the computation: Certainly, it is most likely that j = 9, but 
j = 1 would be the result in the rather rare case that d(X\,B)= d{X9,B)= 
10.001. In order to satisfy the claim for robustness and reproducibility, it has 
to be decided which of 1 or 9 is the real dividing index. In this case, a rounding 
error free comparison of the two distances d{X\,B) and d(Xg, B) is necessary. 
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Note, however, it is only one comparison, independent of the number of vertices 
of the polygon. 

We sum up and proceed as follows in order to determine the point Xj of 
Step 3 of Alg. 24 where the polygon is divided: 

1. Determine an interval, say D*, which has the largest lower boundary 
among the inclusions Di, i = 1 , . . . ,n. (This is the same work as deter
mining the largest number out of a set of numbers.) 

2. All the intervals where the upper boundary is (strictly) smaller than the 
lower boundary of D* are removed since they cannot contain Xj. 

3. For the remaining intervals it is suspected that they contain d(Xj,B). 
Generally, only one interval is remaining which then must contain d(Xj,B), 
and Xj and the splitting index j has been found. If several intervals re
main, simple interval arithmetic is no longer helpful, and the distances 
which correspond to these intervals are compared rounding error free with 
ESSA as will be explained below. 

The execution of the e-criterion in Step 4 of Alg. 24 is very simple. Note that 
Step 4 always has to start with Dj even if ESSA had to be used to determine 
3' 

1. If the upper boundary of Dj is smaller or equal to e, the e-criterion is 
guaranteed to be satisfied. 

2. If the lower boundary of Dj is (strictly) larger than e, the e-criterion is 
guaranteed not to be satisfied. 

3. Hence, if e € Dj, no decision is possible so far, and the comparison has 
to be made rounding error free with ESSA. 

How this can be incorporated into the algorithm is explained in the next 
section. 

8.4.3 Exact Computations of the Comparisons 
The comparisons which are listed at the end of the previous section are now 
translated into algorithmic steps that can be processed using ESSA. We start 
with some general facts about the orientation and the area of a triangle and 
relate these to the computational steps required for the algorithm. 

Let points A = (αχ,αν), Β = (bx,bv), C = (cx,cv) and the line segment 
C = AB be given and consider the determinant 

8 

a t bx cx 

= Oy by Cy (8.9) 
1 1 1 
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This determinant can be interpreted in two ways. The first interpretation 
is that s/2 provides the oriented area of the triangle with vertices A, B, and 
C (in this order). The second interpretation is that the sign of s provides the 
orientation of the three points. More precisely, if s > 0 the points A, Β and 
C are ordered counter clockwise, if s = 0 then they lie on a line and if s < 0 
they are ordered clockwise. This is called the orientation test. Equivalently, 
the sign of s determines on which side of C the point C lies. In this case, 
the line segment C is assumed to be directed from A to B. More precisely, if 
s > 0 the point C lies to the left of the line C, if s < 0 the point C lies to 
the right of the line C. If, s = 0 the point C lies exactly on the straight line 
(but not necessarily on the line segment) going through A and B. These tests 
are well-known in computational geometry, see for example Preparata-Shamos 
[198]. One recognizes that we have the same formalism as at the left-turn test 
in Ch. 4. 

We will need the orientation test to find out on which side of the base line 
the polygon points Xi lie which will be needed for determining the sign of s. 
The area of the triangle given by its corners A, B, and Xi will be needed since 
it is proportional to the normal distance from the segment AB to the point Xi. 

As one can see, the computation of the determinant is subject to rounding 
errors even if the entries of the determinant are exactly representable in the 
machine. Hence intermediate results and also the final simplification can be 
falsified. We again emphasize that the purpose of ESSA is to avoid the rounding 
errors. 

In order to use ESSA the determinant (8.9) has to be expanded as a sum. 
We obtain 

s = axby + bxCy + cxay — axcy — bxay — cxby. (8.10) 

If the quantities ax,ay,bx,by,cx,cy are all stored as single precision machine 
numbers the products axby etc. require double precision for their exact rep
resentation and the sign of (8.10) can be computed using a double precision 
version of ESSA. Alternately, each double precision product can be split into 
two single precision parts so that (8.10) is a sum of 12 single precision numbers 
and only a single precision version of ESSA in needed. 

We now need an executable formula for the distance of a point Ρ to the 
anchor line Β = AB, which can be found for example, in [161]. The formula 
provides a decision as to where Ρ lies with respect to the line Β with reference 
to Figure 8.24: 

• d(P, B) = ||P - A||, if Ρ is outside A. 

• d{P,B) = ||P - B||, if Ρ is outside B. 

• d(P,B) = \s\/\\A - B\\, Ρ is inside both A and B. 

The third case of this formula is also valid in the boundary case where A 
or Β is nearest and Ρ — A resp. Ρ — Β is orthogonal to B. 
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Figure 8.24: The three regions 

The cosine of the angle between the vectors Β — A and Ρ — A as well as 
between the vectors A — Β and Ρ — Β gives a criterion to decide which of the 
three cases for the distance formula applies, cf. [161]. 

Ρ is outside Β iff 
(P-A)-(B-A) 
| | P - A I I I I S 

where "·" is the standard inner product in the plane, R2, and the norm is the 
Euclidean norm. Hence, Ρ is outside A iff 

(Px - ax)(bx - ax) + ipy - av){by - a„) < 0. (8.11) 

It is easy to see that (8.11) can be represented exactly as a sum of eight numbers 
in double mantissa length, so that (8.11) can be handled with ESSA. 

Similarly, Ρ is outside Β iff 

(Px - bx)(ax - b x ) + ( p v - bv){ay - b y ) < 0. (8.12) 

Finally, Ρ is inside A and Β iff neither (8.11) nor (8.12) holds. 
With these formulas, it is possible to decide precisely which of the 3 cases 

of the formula for the distance d(P, B) is applicable. Since the distance formula 
is only used for comparisons and its value is never computed, we have to know 
the sign in order to make the distance formula accessible to ESSA. That is, if 
sign a > 0 then |s| = a, and if sign s < 0 then |e| = —a. The sign can first 
be determined with interval arithmetic, and if not successful, with ESSA using 
(8.10). 

If the comparison of distances d(P, B) and d(Q, B) of 2 points Ρ and Q is 
required one proceeds as in the following steps: 
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1. One has to determine, which cases of the distance formulas are valid for 
Ρ and Q. 

2. If the comparison is involved in the cases \\P - A||, \\P - B\\, \\Q — A\\ 
or \\Q — Β|| just raise the norm to the power 2 (then the square roots 
vanish), multiply through, and apply ESSA. 

3. If the comparison is involved in the cases |sp|/||A - B\\ and | S Q | / | | A - B\\ 
where a ρ and sg are the determinants for Ρ and Q, resp., cancel the 
denominators, determine the signs of ap and S Q , replace \ap\ by ±sp 
and | S Q | by ±8Q in order to avoid absolute values, and apply ESSA for 
the comparison. 

4. If one of the first two cases of the distance formula is connected with the 
third case, for example, ||P - A|| with |ag|/||A - 1 ? | | the comparison is 
executed via ||P - A|| 2 | |A - B | | 2 and | S Q | 2 = S Q . These expressions are 
multiplied through and ESSA is applicable. The occurring summands 
are of quadruple mantissa length, but can be split up into summands of 
double or single mantissa length as explained before. 

The comparisons in Step 4 of Alg. 24 are processed analogously. 
The ideas presented above have been implemented in Java and the program 

can be tested at 

h t t p : / / w w w . u c a l g a r y . c a / " r o k n e 
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