

GEOMETRIC COMPUTATIONS WITH INTERVAL
AND NEW ROBUST METHODS

APPLICATIONS IN COMPUTER GRAPHICS,
GIS AND COMPUTATIONAL GEOMETRY

ABOUT OUR AUTHORS

Helmut Ratschek was born in Graz, Austria, in 1940. He
studied mathematics, physics and philosophy at the University
of Graz and obtained a PhD in mathematics in 1966. Since
1968, he has worked in the Department of Mathematics,
University of Dusseldorf, Germany where he has been a
professor since 1973. He has been a visiting professor at
universities in Calgary, Canada, Arlington, Texas, USA and
Rome, Italy. He is also an adjunct professor at the University
of Calgary. His research is in interval analysis, global
optimization and computational geometric algorithms.

Jon Rokne is a professor and the former Head of the Computer
Science Department at the University of Calgary, Canada,
where he has been a faculty member since 1970. His research
has spanned the areas of interval analysis, global optimization
and computer graphics and he has co-authored two books,
several translations and a number of research papers. He has
presented courses and papers at many conferences including
Eurographics, Pacific Graphics and Computer Graphics
International. He has been a visiting professor at the
University of Canterbury, New Zealand (1978), University of
Freiburg, Germany (1980), University of Grenoble, France
(1983, 1984) and University of Karlsruhe, Germany (1984).
He holds a PhD in mathematics from the University of Calgary
(1969).

Geometric Computations with Interval
and New Robust Methods

Applications in Computer Graphics,
GIS and Computational Geometry

Helmut Ratschek,
Universitat Dusseldorf, Germany
and

Jon Rokne,
University of Calgary, Alberta,
Canada

Horwood Publishing
Chichester

HORWOOD PUBLISHING LIMITED
International Publishers in Science and
Technology, Coll House, Westergate,
Chichester, West Sussex, PO20 3QL, England
First published in 2003

COPYRIGHT NOTICE
All Rights Reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the
permission of Horwood Publishing.

© Helmut Ratschek and Jon Rokne 2003

British Library Cataloguing in Publication Data
A catalogue record of this book is available from the British
Library

ISBN 1-898563-97-7

Printed in Great Britain by Antony Rowe Ltd

C o n t e n t s

1 I n t r o d u c t i o n 1
1.1 Errors in Numerical Computations 2
1.2 Geometric Computations 2
1.3 Problems in Geometric Computations Caused by Floating Point

Computation 4
1.4 Approaches to Controlling Errors in Geometric Computations . 8
1.5 The Interval Analysis Approach 9
1.6 Global Interval Aspects 10
1.7 The Exact Sign of Sum Algorithm (ESSA) 10
1.8 Arithmetic Filters 11
1.9 Computer Implementations 12

2 I n t e r v a l A n a l y s i s 1 3
2.1 Introduction 13
2.2 Motivation for Interval Arithmetic 14
2.3 Interval Arithmetic Operations 16
2.4 Implementing Interval Arithmetic 19
2.5 Further Notations 26
2.6 The Meaning of Inclusions for the Range 28
2.7 Inclusion Functions and Natural Interval Extensions 30
2.8 Combinatorial Aspects of Inclusions 32
2.9 Skelboe's Principle 35
2.10 Inner Approximations to the Range of Linear Functions 39
2.11 Interval Philosophy in Geometric Computations 42
2.12 Centered Forms and Other Inclusions 47
2.13 Subdivision for Range Estimation 54
2.14 Summary 59

3 I n t e r v a l N e w t o n M e t h o d s 6 1

ν

vi

3.1 Introduction 61
3.2 The Interval Newton Method 65
3.3 The Hansen-Sengupta Version 68
3.4 The Existence Test 75

4 The Exact Sign of Sum Algorithm (ESSA) 79
4.1 Introduction 79
4.2 The Need for Exact Geometric Computations 80
4.3 The Algorithm 83
4.4 Properties of ESSA 87
4.5 Numerical Results 92
4.6 Merging with Interval Methods, Applications 93
4.7 ESSA and Preprocessing Implementation in C 101

5 Intersection Tests 109
5.1 Introduction 109
5.2 Line Segment Intersections 114
5.3 Box-Plane Intersection Testing 123

5.3.1 Which of the 3 Approaches is the Best? 129
5.4 Rectangle-Triangle Intersection Testing 130

5.4.1 Interval Barycentric Coordinates 131
5.4.2 The Geometry of Test 1 133
5.4.3 An Algorithm for Test 1 138
5.4.4 Numerical Examples Using Test 1 140
5.4.5 An Alternative Test 142

5.5 Box-Tetrahedron Intersection Testing 147
5.5.1 Three-Dimensional Interval Barycentric Coordinates . . 150
5.5.2 The Algorithm 152
5.5.3 Examples 155

5.6 Ellipse-Rectangle Intersection Testing 157
5.6.1 Analytical Tools Needed 158
5.6.2 The Algorithm 160
5.6.3 Optional Inclusion Tests 163
5.6.4 Complexity and Rounding Errors 167

5.7 Intersection Between Rectangle and Explicitly Defined Curve . 168
5.8 Box-Sphere Intersection Test 174

5.8.1 Introduction 174
5.8.2 Midpoint and Radius as Sphere Parameters 175
5.8.3 Four Peripheral Points as Sphere Parameters 178
5.8.4 Algorithm 182

vii

5.8.5 Numerical Examples 182

6 The SCCI-Hybrid Method for 2D-Curve Tracing 185
6.1 Introduction 185
6.2 The Parts of the SCCI-Hybrid Method 189
6.3 Examples 212

7 Interval Versions of Bernstein Polynomials, Bezier Curves and
the de Casteljau Algorithm 219
7.1 Introduction 219
7.2 Plane Curves and Bernstein Polynomials 220
7.3 Interval Polynomials and Interval Bernstein Polynomials 226
7.4 Real and Interval Bezier Curves 230
7.5 Interval Version of the de Casteljau Algorithm 234

8 Robust Computations of Selected Discrete Problems 241
8.1 Introduction 241
8.2 Convex-Hull Computations in 2D 242

8.2.1 Introduction 242
8.2.2 A Prototype Graham Scan Version 244
8.2.3 The Exact and Optimal Convex Hull Algorithm 245
8.2.4 Numerical Examples 248
8.2.5 A More Practical Version of the Algorithm 259

8.3 Exact Computation of Delaunay and Power Triangulations . . 264
8.3.1 Introduction 264
8.3.2 Definitions and Methods for Computing Voronoi Diagrams267
8.3.3 Methods for Constructing Delaunay and Power Triangu

lations 269
8.3.4 Exact Computation of the CCW Orientation Test . . . 272
8.3.5 Exact Computation of the INCIRCLE Test 273
8.3.6 Complexity Analysis for the Primitives 275
8.3.7 The Main Scheme of the Incremental Algorithm 276
8.3.8 Test Results 280

8.4 Exact and Robust Line Simplification 284
8 4.1 Introduction 284
8.4.2 The Ramer-Douglas-Peucker Line Simplification Algo

rithm for Polygons 287
8.4.3 Exact Computations of the Comparisons 292

viii

Lis t o f F i g u r e s

1.1 Going-in and going-out transformations 6

2.1 Line-box intersection problem 45

2.2 Sub-box rejection 55

3.1 Solution set and inclusions 63

5.1 Intersection of two axis-parallel rectangles 113

5.2 Intersecting segments 116
5.3 The three cases of linesegment intersection 118
5.4 Close to degenerate configuration of segments 120
5.5 Dependence of wrong and inconclusive results on the perturbation 121
5.6 Dependence of wrong and inconclusive results on the perturbation 122
5.7 Box-plane intersection 126
5.8 The four possible rectangle-triangle configurations 130
5.9 Partitioning by one of the barycentric coordinates 132
5.10 A counterexample to intuition 133
5.11 The bounding rectangle possibilities 134
5.12 The geometry of the proof 138
5.13 Rectangle triangle intersection examples 141
5.14 The requirement of Step 5 143
5.15 The requirement of Step 6 143
5.16 fc, k' and fc" are visible from r 144
5.17 The two cases for location of t in Step 7 144
5.18 Slope relationships 145
5.19 fc above t and fc below t 146
5.20 The bounding box and smallest axis-parallel box 148
5.21 Box-tetrahedron test 156
5.22 Rectangle 159
5.23 The initial easy cases of intersection1 163

ix

5.24 The remaining cases when mE & Tl and (x0,y0) & Ε 164
5.25 Cases for the Ε C Tl test 166
5.26 Intersection testing of curve and rectangle 168
5.27 Box-sphere configuration 176
5.28 Box partly intersecting sphere 183
5.29 Box outside sphere 184
5.30 Box included in sphere 184

6.1 Sample configurations 194
6.2 Impossible configurations 194
6.3 Possible configurations when 0 G Fx {Χ, Y), 0#Fy(X,Y) . . . 196
6.4 Impossible configurations when 0eFx(X,Y), 0#FV{X,Y) . . 196
6.5 Possible configurations when 0 G FX(X,Y), 0 G FV(X,Y) . . . 200
6.6 Plotting cells Ζ 201
6.7 Cone containing contour 202
6.8 Possible cones 204
6.9 The general case for a cone 205
6.10 Swapping for left-to-right trend 208
6.11 Two curve pieces 211
6.12 Two close co-centric circles 215
6.13 A cross with a singular point, small cell width 215
6.14 Plotting of a curve with a triple point 216
6.15 Plotting of a figure with an approximate triple point 217
6.16 Plotting of a curve crossing point 218
6.17 Plotting of a circle touching another circle 218

7.1 Bezier curve of degree 3 231
7.2 Changed Bezier curve of degree 3 233
7.3 Convex hull of control points 233
7.4 Convex combinations 235
7.5 Interval convex combinations 236
7.6 Two-dimensional interval 237
7.7 An interval curve 238

8.1 Graphics for Table 8.1 (O'Rourke's example) 250
8.2 Graphics for well-conditioned example with 20 points 251
8.3 Graphics for well-conditioned example with 100 points 252
8.4 Graphics for well-conditioned example with 1000 points 253
8.5 Graphics for random ill-conditioned example with 20 points . . 254
8.6 Graphics for random ill-conditioned example with 100 points . 255

xi

8.7 Graphics for random ill-conditioned example with 1000 points . 256
8.8 Graphics for random ill-conditioned example with 20 not ma

chine representable points 257
8.9 Graphics for random ill-conditioned example with 100 not ma

chine representable points 258
8.10 Graphics for random ill-conditioned example with 1000 not ma

chine representable points 259
8.11 Rectangle hull of 5 262
8.12 The four subrectangles 262
8.13 Stair in Ri 263
8.14 The four stairs 263
8.15 Power diagram 270
8.16 Flipping the edges 279
8.17 Time ratio vs. perturbation 283
8.18 Percentage of wrong edges vs. perturbation 283
8.19 Time ratio vs. number of points 284
8.20 Percentage of wrong edges vs. number of points 285
8.21 A non-unique R-D-P simplification 288
8.22 An e-strip 289
8.23 Line to be simplified 290
8.24 The three regions 294

xii

Lis t of T a b l e s
2.1 Quotients of widths of inclusions 52

5.1 Test results for parallel segment configuration 121
5.2 Test results for perpendicular segment configuration 122

8.1 Data from computing with O'Rourke's example as input 249
8.2 Data from well-conditioned example with 20 points 251
8.3 Data from well-conditioned example with 100 points 252
8.4 Data from well-conditioned example with 1000 points 253
8.5 Data from random ill-conditioned example with 20 points . . . 254
8.6 Data from random ill-conditioned example with 100 points . . 255
8.7 Data from random ill-conditioned example with 1000 points . . 256
8.8 Data from random ill-conditioned example with 20 not machine

representable points 257
8.9 Data from random ill-conditioned example with 100 not machine

representable points 258
8.10 Data from random ill-conditioned example with 1000 not ma

chine representable points 259
8.11 Total number of operations 276
8.12 Algorithm performance for perturbation values on grid 281
8.13 Algorithm performance for perturbation values on square . . . 282

xiii

xiv

Preface
This teaching and research text for undergraduate and postgraduate stu

dents and researchers will familiarize readers with interval arithmetic and re
lated tools for gaining reliable and validated results and logically correct deci
sions for a variety of geometric computations.

The aim of this monograph is to make the reader familiar with interval
arithmetic and related tools for gaining reliable and validated results and logi
cally correct decisions for a variety of geometric computations.

In parallel it is demonstrated how interval arithmetic can be used to cre
ate simple constructions and structures in the mathematical treatment and
computational preparation of the basic issues of geometrical computations.

The results are validated since computations executed with interval arith
metic enable an automatic control of rounding errors and to provide bounds for
them. Hence, if the result of an interval computation says two given rectangles
intersect then the interval doctrine guarantees that they in fact intersect, and
that this result has not been falsified by rounding errors.

A further advantage of interval arithmetic is the ability to represent and to
deal not only with points, that is, real numbers, but also with sets of reals such
as intervals, rectangles, parallelepipeds, balls, or simplices. This means that
many geometric situations, that need some effort to express in the environment
of reals, can be simply expressed in an interval arithmetic environment. For
example, let A and Β be two axes-parallel rectangles. Then, it is quite simple
from a pure mathematician's point of view to investigate whether the two
rectangles intersect or not. But if a programmer wants to write a code in some
programming language like C, Fortran, or Pascal, he will discover that a good
deal of thinking is necessary to find the right comparisons of all the components
of the 8 vertices in order to get a consistent and complete procedure for this
theoretically easy problem. In contrast to this situation, the same problem
posed in interval arithmetic is very simple: The two rectangles intersect if and
only if the null point 0 lies in the difference of the two rectangles, that is,
0 e A — B, where A and Β are interpreted as two-dimensional intervals.

Another important helpful set-theoretic feature of interval analysis is the
possibility to construct approximations of the range of a function in a compu
tationally very simple manner. One just has to call up the function expression,
for example, f(x) and take the domain of the function, say X as variable.
This results in an approximating interval f(X) which contains the range of /
over X. Since many of the function expressions which occur in geometrical
computations are not too involved, the approximation frequently gives the ex
act range. The ability to determine approximations of the range is a valuable
means for the development of search procedures and, connected with these,
subdivision strategies for an arbitrarily precise localization of points or areas
with a required property. Such techniques can be used at finding zeros of sys
tems, extremum points of functions, intersection points of geometric figures,

XV

etc.
It is known that complicated geometrical constructions can, in the main,

be built upon simpler constructions. The simplest of these are usually called
geometrical primitives. It is, therefore, in general, sufficient to study the ap
plication of interval arithmetic to such primitives. A famous example is the
so-called left-turn test which decides whether a given point in the plane lies on
the left, on the right or on a given directed line. Independent of how degener
ate the situation is or how small the distances of the point to the line is or the
distance of the points that define the line is (even if it is machine accuracy), a
wrong answer is never given. However, due to the influence of rounding errors
there are extreme situations where the interval arithmetic computation renders
an inconclusive result (but never a wrong result, and most important, it can
be clearly indicated by the program if an inconclusive result occurs). In order
that the tests work also for these rare cases, that is, to make the programs com
plete and consistent, an exceptional algorithm called ESSA has been developed
which always (!) determines the sign of a sum of machine numbers errorfree
without using variable mantissa length or any hardware tools.

Summing up, our intention in writing this monograph was primarily to
demonstrate a few numerical key points with a variety of possible applications
in the fields of computational geometry, computer graphics and solid modelling.
Hence we aim to stimulate activities in interval applications rather than to
provide an exhaustive survey of all possible constructions.

As usual, the book begins with an introduction which covers the utility and
helpfulness of interval analysis in dealing with stability and reliability problems
in computational geometry. Then an extensive discussion of interval arithmetic
and interval analysis as well as its implementation on a machine is initiated.
No previous related experience is necessary. Emphasized are the two main
directions, the error analysis and the set-theoretic use of interval arithmetic.
The famous interval Newton method is also included which enables the proof
of existence of zeros of systems of equations and localize them together with
validated error bounds.

As already mentioned there is a small percentage of degenerate situations
where interval tools are too crude for giving a decisive Boolean or arithmetic
result. For these cases ESSA (Exact Sign of a Sum Algorithm) saves the com
pleteness and correctness of many tests. It is developed in Ch. 4. ESSA is
especially useful for degenerate constellations at left-turn tests, intersection
tests with various geometric objects, geographic information systems, convex
hull computations, etc.

Some basic issues relating to geometric computations are considered. Since
the applications of ESSA combined with interval arithmetic are relatively new
in this field, several proofs of facts are also added since these tools make it nec
essary to rethink and to reformulate various basically well-known geometrical
facts, problems, constructive proofs and solutions. These basic themes consist

xvi

of a number of intersection tests (such as line segment vs. line segment, box
vs. plane, rectangle vs. triangle, box vs. tetrahedron, ellipse vs. rectangle,
rectangle vs. explicitly given curve, box vs. spheres) and a hybrid method for
tracing implicitly defined 2D curves where this method particularly addresses
curves around singularities, for instance, forks or ill-conditioned curve parts.

Then we added an issue of rather theoretical nature which has several in
teresting practical consequences. It is the interval representation of Bernstein
polynomials, Bezier curves and the de Casteljau algorithm. One should not
misunderstand this formulation and believe that the just mentioned represen
tation means nothing more than the replacement of reals or real variables by
intervals or interval variables. The crux of this section is to show that only
certain reformulations of the specific definitions and theorems make it possible
to make the step from reals to intervals successful.

Another main part of interval and ESSA applications is the investigation
of complex algorithms for modelling and plotting convex hulls of arbitrary 2D
finite point sets (we also mean arbitrarily ill-conditioned sets) and to establish
simple methods to find the hulls errorfree if the points of the sets are machine
numbers and to find the smallest machine-representable convex hull if the given
set has points which are not machine representable.

The errorfree numerical execution of Delaunay and power triangulations,
which is the next issue, will then already be a routine exercise involving already
familiar primitives.

Finally, the monograph concludes with an exact and reproducible line sim
plification algorithm, which is frequently used in geographic information sys
tems. Such an algorithm enables to simplify a polygon with a dense number of
vertices (think of Norway's shore, for instance) in order to get a more visible
polygon which is approximating the former one. The replacement shall take
into account that the "geographic character" of the polygon is maintained, for
example if the geographic map has to be shrunk.

Readership: Students and researchers in the fields of engineering, geog
raphy computer graphics, solid modelling, computer aided design and others
interested in validated geometric computations.

Level of the readers' knowledge for an easy understanding: one year calculus
of last year highschool or first year university level.

Personal comment on this book from R. E. Moore, the progenitor of interval
arithmetic:

It is always a pleasure to see a new book by Helmut Ratschek and
Jon Rokne. Their two, widely cited, previous books Computer
Methods for the Range of Functions (Ellis Horwood/John Wiley,
1984) and New Computer Methods for Global Optimization (El
lis Horwood/John Wiley, 1988) are recognized as classics, for their

xvii

content as well as their clarity of exposition.

Ramon Moore

A c k n o w l e d g e m e n t s . Thanks are due to David Hankinson and Chris
Bone, who assisted with the interval arithmetic implementation, to Karin
Zacharias who implemented interval geometric primitives, to Georg Macken-
brock who wrote the codes and computed numerical examples for ESSA, the
SCCI-hybrid method, and the convex hull algorithm, to Ania Lopez who also
computed examples for the SCCI-hybrid method, to Pavol Federl who wrote
the applet for the internet implementation of the convex hull algorithm, to
Lynn Tetreault who wrote the applet for internet implementation of the line
simplification algorithm, to Jennifer Walker who assisted with the Latex for
the book and to the National Sciences and Research Council of Canada for
financial support.

xviii

Chapter 1

I n t r o d u c t i o n

This monograph introduces the reader to the interval arithmetic and related
tools for a variety of fields collectively grouped under the umbrella of geometric
computations.

There are two main tools.

• The first tool is the interval arithmetic. On the one hand, it monitors and
controls numerical errors so that the results of geometric computations
are reliable and logically correct. On the other hand, it employs set
theoretic properties of intervals together with subdivision techniques to
simply represent the range of values of geometric functions over relatively
large domains exactly or, at least to estimate it as sharp as necessary.

• The second tool is the development of ESS A. It is an algorithm which
determines the sign of a sum of machine numbers errorfree. It is the
background for executing several geometric primitives such as the left-
turn-test errorfree.

As far as we know, the usefulness of interval arithmetic for computer graph
ics was first discovered by Mudur-Koparkar [174]. Following their work a num
ber of researchers realized that it was a tool that could easily be applied to
many problems encountered in computer graphics, CAD and other areas where
robust geometric computations are required. For example, a third of the ex
cellent book by Snyder [254] is devoted to interval techniques. ESSA was first
presented in Ratschek-Rokne [218] and it had impressive applications to geo
metrical computations as shown in this book.

This introductory chapter first expands on the necessity for error control
in floating point computations, especially in geometric computations. It then
gives a survey of the two main tools, that is, interval arithmetic techniques and
ESSA, how they fit together and supplement each other, and how they can be
brought together and employed for the geometric computations described in

1

�� �� �� �� ��

2 Production

this book.
We remind the reader that our aim with this book is not to treat a special

area of computer graphics or to establish the state of the art for interval ap
plications to geometric computations. The intention is rather to demonstrate
the variety of possible applications in the fields of computational geometry,
computer graphics and solid modeling. Hence we aim to stimulate activities
in interval applications for geometric computations as opposed to providing an
exhaustive survey of all possible applications.

1.1 Errors in Numerical Computations
It has been long realized that in order to make reasonable statements about
numerical computations it is also necessary to include an analysis of the nu
merical errors in the computations. These errors can arise from a variety of
sources, such as input data, which are not known precisely or representable ex
actly on the machine in use, or from iterative or approximate methods (Newton
algorithm, Simpson rule etc.), or from rounding errors, etc.

The latter type of error is focused on in this monograph. The effect of the
individual elementary errors can build up and they can eventually overwhelm
the desired result even in a perfectly well formed computational procedure.
It is also possible that computations that are normally correct can produce
completely erroneous values when the real result is close to (often unknown)
singularities. The latter problem can occur with even very simple computa
tional problems, such as solving for the roots of quadratic equation. Normal
input data to a routine for solving the roots of a quadratic equations will gen
erally result in calculations which are correct to as many figures as is possible
to represent in the computational device. Particular input data can, however,
generate results with arbitrarily few correct figures in the result [57, 58].

In this monograph we will apply interval arithmetic to bound and control
the results of numerical computations, in particular the errors in numerical
computations that occur in fields employing geometric information. Such an
error control is an unavoidable preparation in order to be able to furnish reliable
and logically guaranteed statements.

1.2 Geometric Computations
Over the last 25 years a number of areas of research and applications have
developed where numerical computations which deal with geometric data are
included and where results are interpreted as geometric objects or statements
about geometric objects. As is normally the case, the algorithms for these nu
merical computations have been established with the assumption that both the
input data and intermediate results are real quantities and that the operations

�� �� �� �� ��

Geometric Computations 3

are those defined for real numbers. This assumption is reasonable in order to
develop algorithms for geometric computations, but it is far from the truth
when the algorithms are implemented. As stated by Forrest [56]:

Geometric algorithms are notorious in practice for numerical insta
bility. Many working modellers are far from robust for numerical
reasons. It seems that implementors seldom remember any of the
numerical analysis they have learned when it comes to writing ge
ometric code, but the root causes of many of the problems lie in
elementary numerical ill-conditioning.

We agree with the notion that some of the problems can be traced to elemen
tary ill-conditioning, but there are also other fundamental problems such as
cracking that are more difficult to deal with. (Cracking is a phenomenon which
occurs when 2D surfaces are approximated by a collection of surfaces with geo
metric or mathematical simpler shape such as planar patches. If these surfaces
approximate the surface optimally in a certain sense then the underlying mesh
might not be uniform which means that the patches need not fit together at
the edges. Under these conditions cracks might occur in the approximating
surface.) Both types of problems will be discussed in this monograph and some
solutions will be presented.

Computer graphics is probably the most common area using geometric com
putations. Here geometrical constructs are displayed on computer terminals,
screens of workstations and other output devices. Two stages can in many
cases be identified in this process. The first stage consists of the computations
for the actual geometric constructs and the second stage consists of quantizing
the result to the (often extremely coarse) output resolution. The second stage
is dealt with extensively in textbooks in computer graphics, for example Foley
[54]. Interval tools are rarely applied at this stage and we therefore only con
sider the first stage in this monograph where geometric constructs that include
artificially generated three-dimensional scenes are manipulated, projected, ro
tated, scaled, and deformed.

An area closely related to computer graphics is geometric modelling where
models of solids are displayed on computer terminals and other output devices
and where they are rotated and scaled as required. Both geometric modelling
and computer graphics are part of CAD/CAM (computer aided design / com
puter aided machining), cf. Zeid [280]). Another area is computational geometry
which considers geometric problems in η dimensions (typically η is equal to 2
and 3) and where the aim is to develop efficient algorithms for the problems.
Examples include finding the convex hull of a set of points, finding the inter
section between two convex hulls, computing minimum distances between sets
of points, and so on.

Other areas using geometric computations are for example geography (mainly
in geographical information systems, abreviated as GIS), astronomy, civil and
surveying engineering.

�� �� �� �� ��

4 Production

The commonality between these areas is that they deal with objects and
point sets in 2, 3 and more dimensions. Furthermore, computations are exe
cuted that determine relationships between the points and the objects. In a
very rough sense we can describe the commonality by saying that the input is
generally continuous and the output is combinatorial.

Almost all computations on geometric objects is done using digital comput
ing devices. These devices can not store and manipulate the set of real numbers,
but rather a subset known as the floating point numbers. This means that a
problem of discretization occurs, albeit at a very fine level. This problem is
that if two real numbers are given such that there is no floating point number
between them, then these two numbers must be represented by either the same
floating point number or two adjacent floating point numbers. Since we know
there is an infinite number of real numbers between any two real numbers, this
means that an infinity of real numbers has to be represented by two floating
point numbers. This causes problems even though a typical computing device
can represent a relatively large number of floating point numbers.

This problem occurs at each stage of a computation. The data for the
elementary operations in a computation are all floating point numbers, but
the results are not which means that they have to be approximated by floating
point numbers. The final result of a computation is therefore an approximation
to the result that would have been computed if the computations were exact,
i.e. performed with real numbers.

In [99] floating point computations are described with the following analogy:

Doing floating-point computations is like moving piles of sand around.
Every time you move a pile you loose a little sand and you pick up
a little dirt.

One of the aims of this book is to discuss some tools for minimizing both the
loss of sand and the accumulation of dirt.

1.3 Problems in Geometric Computations Caused
by Floating Point Computation

A host of problems arise, when using floating point numbers in geometric
computations. In the excellent article [107], the problems of accuracy in geo
metric computations with floating point numbers are discussed and related to
the question of robustness of these computations. It is not quite simple to say
what robustness is since several approaches to this concept can be found in
the literature. (The same holds for other notations such as stable, well-posed,
well-conditioned, etc. which are well-defined in numerical analysis, but which
are used in different - and not always precise - manners in the areas covered
by geometric computations.) Fortunately we do not need a precise definition,

�� �� �� �� ��

Problems Caused by Floating Point Computation 5

since we do not perform a quantitative rounding error analysis. We only wish
to connect some kind of well-behavior of an algorithm with the attribute ro
bust and to hint at a short selection of explanations: For example by robust
algorithms Li-Milenkovic [147] understand algorithms "whose correctness is not
spoiled by round-off errors". Fortune [59] goes one step further: "An algorithm
is robust if it always produces an output that is correct for some perturbation
of its input, it is stable if the perturbation is small".

To quote [118]:

Everyone who works in CAD/CAM, to say nothing of solid mod
elling knows that there is a problem with robustness. It is usually
perceived to be a question of choosing tolerances carefully enough
to make different parts of a system work reliably together. How
ever, the problem is not just one of traditional numerical analysis,
because of the strong coupling of geometry and topology. Topo
logical data - what is connected to what - are discrete "yes" or
"no" decisions. Geometrical data defining the physical locations of
points, curves, and surfaces are almost universally treated as float
ing point numbers. Robustness requires that topological inferences
drawn from possibly ill-conditioned numerical operations on the ge
ometrical data must be internally consistent, in the sense that they
describe an object that can exist as a solid in R3.

For example, if three points are given in the plane, then the question can
arise whether these points lie on a straight line or not. This seemingly simple
problem can be the cause of some confusion, if the further computations depend
on the truth or falsity of the answer to the question. Fixing two points and
selecting a coordinate system allows us to compute the equation of a line. Since
the computation is carried out within the set of floating point numbers the
result is represented by floating point numbers. If the computed coordinates
of the third point are far enough away from the line, and if the computations
are carried out properly then it is reasonable to conclude that the three points
are not on a straight line. If the coordinates of the third point are computed
to be on the line or very close to the line, then the results are not conclusive
due to the inaccuracies introduced by the floating point approximations.

In this particular example the accuracy of the computation is related to
the question of whether the computation that the three points are on a line is
correct for a given set of input data. Clearly, this computation is not robust
in floating point arithmetic since the accuracy of the computation is poor for
points that lie on a line or which are close to lying on a line. Such points
may indeed be computed as lying on the line or to the left of the line when in
fact they are to the right (see also [204]). One learns from this example that
errors in geometric computations can result in inconsistencies in the model
analysis. Similarly, small perturbations of the input data may also lead to an
inconsistency in the topological analysis which can occur if it is investigated

�� �� �� �� ��

Figure 1.1: Going-in and going-out transformations

whether a line touches the edge of an object or not. For further such examples
see Hoffmann [107].

A slightly more complicated example was given by Dobkin and Silver [32].
They suggested that one should choose a pentagon and then perform so-called
going-in and going-out transformations. By the going-in transformation they
meant the pentagon formed by the intersection of the chords between non-
adjacent vertices of the pentagon. By the going-out transformation they meant
the pentagon formed from the vertices that are the intersections of the lines
containing the edges of the pentagon, see Figure 1.1. Note that the original
pentagon is the going-in [respectively -out] transformation of the going-out
[respectively -in] transformation of that pentagon.

In this example fairly large positional errors can be demonstrated even
after a few going-in and going-out iterations if the computations are executed
on a computer. This example is, of course, a little more complex than the
previous examples since it involves a number of intersections of two lines. Such
intersections require the solution of 2 χ 2 systems of equations (see also [68]).
The example of the bad behavior of the solution of a 2 χ 2 system of equations
was also considered in the article by Forsythe [58].

Robustness in geometric computations is also considered on the web page
[277] with the title Numerical non-robustness and geometric computations. Def-

�� �� �� �� ��

Problems Caused by Floating Point Computation 7

initions for some of the terms discussed above are provided in the following
form:

• N u m e r i c a l n o n - r o b u s t n e s s is the informal property of computer pro
grams to behave unpredictably, and often catastrophically, depending on
the numerical values of its input parameters.

• In most numerical computation, numerical quantities are approximated
and as such, q u a n t i t a t i v e e r r o r s are expected and usually benign. How
ever, such quantitative errors can lead to drastic errors that are known
as "catastrophic errors" or what we prefer to call q u a l i t a t i v e e r r o r s .
Such errors occur when a program enters some unanticipated state with
no easy or graceful means of recovery. Colloquially, we say the program
"crashed".

• Non-robustness is especially notorious in so-called "geometric" algorithms.
But what makes a computation "geometric"? It is not the simple pres
ence of numerical data alone. It turns out, an adequate explanation of
"geometric computation" will also lead to an appropriate solution ap
proach.

• We identify geometric computation as involving numerical data L that
are intimately tied to combinatorial structures G under some c o n s i s t e n t
c o n s t r a i n t s . Informally then, a g e o m e t r i c s t r u c t u r e is a pair (G, L)
with such constraints.

• EXAMPLE: Suppose {G, L) represents the convex hull of a set of planar
points. Here G may be viewed as a graph that represents a cycle, G =
(vi,V2, ...,vn,vi). L may be regarded as an assignment of the vertices
Vi to points pi in the plane. The consistency requirement here is that
these points pi must be in convex position, and be adjacent in the order
indicated by the graph.

• Suppose V is a perturbation of the true numerical data L. We may say
that the perturbation is o n l y q u a n t i t a t i v e as long as (G, L') remains
consistent. Otherwise, the perturbation has introduced q u a l i t a t i v e e r
r o r s and {G,L') has become inconsistent. Non-robustness of geometric
algorithms arises from inconsistencies because all algorithms implicitly
rely on such consistency properties.

An example where the effect of errors can be disastrous is given by the
rendering of animated sequences such as sunsets behind mountains at various
times of the year. It might happen that the rendering algorithm works well
for the initial frames whereas the rendering of later frames might encounter
unexpected behavior. This might result in a complete re-rendering of the ani
mation.

�� �� �� �� ��

8 Production

Even when rendering still-frames the problem can occur. Changes in the
scene can give rise to undesired side-effects that necessitate code tuning and
rewriting to restore the scene to an acceptable quality.

1.4 Approaches to Controlling Errors in Geo
metric Computations

Several methods have been suggested for dealing with the problems of errors
in geometric computations. Some of these methods are discussed in the survey
article by Hoffmann [107].

The first approach suggested by Hoffmann is to use symbolic representation.
Here the computations are carried out as symbolic computations as far as
possible. A number of rules are given for them; these are as follows (he uses
the three-dimensional setting):

Dl: All lines and points must be declared in advance as triples of variables
in order that no two lines and no points so declared are equal.

D2: If a point Ρ is incident to a line L, then this fact is explicitly stated as
L(P). If two lines L\ and Li intersect in the declared point P, then this fact
is expressed explicitly by the two incident statements, L\(P) and Li(P).

D3: No other incidences exist among the declared points and lines except
those explicitly stated.

It is unfortunate that this approach leads to exponential complexity of com
putation as the number of input elements increase. Even for simple problems
a large amount of computations have to be executed.

Another approach is a perturbation approach, analogous to backward error
analysis in numerical analysis (see [271]) where the approach to geometric com
putation consists of computing the exact result to a slightly perturbed input.
The argument is that the input data is not necessarily exact to begin with, in
which case altering it slightly might be appropriate. The monograph by Knuth
[137] treats a number of computational geometry problems in this manner.
This perturbation approach is also known as epsilon geometry (see for example
the thesis by Salesin [237]). The disadvantage with this approach is that the
results may still not be correct under all possible conditions. For example, if
one has to deal with 4 coplanar points (such as 4 box corners of one side of a
box), then the coplanarity is lost if one of the points is perturbed out of the
plane defined by the other three points.

A further approach is to scale the input data so that they can be expressed
as integers and then use integer arithmetic. Some of the problems inherent
in this approach, mainly the rapid growth of the length of the integers, are
discussed in [60].

�� �� �� �� ��

The Interval Analysis Approach 9

1.5 The Interval Analysis Approach
The interval analysis approach to error control and management presented
in this book has been used extensively in other numerically oriented fields
(especially numerical analysis and global optimization).

The motivation for the use of this approach to numerical computations came
from the desire to control the errors induced by the elementary floating-point
operations, the basic arithmetic processing steps of a modern computer.

Some of the fundamental properties of interval computations were already
known (Young [278], Warmus [270] and Sunaga [262]) when R. E. Moore de
veloped the modern theory of interval analysis via his thesis [164] and his first
monograph Interval Analysis [165]. Since then there have been a number of
monographs on the subject, for example Alefeld-Herzberger [6], Bauch et al.
[16], Hansen [91], Kalmykov et al. [121], Moore [166, 169], Neumaier [179],
Ratschek-Rokne [212, 213]. Each of these books presents a different point of
view of interval analysis. Many international conferences have also been held
devoted to this subject. The first international journal devoted to this subject
was "Interval Computations", founded in 1992 by V.M. Nesterov. The name of
the journal was changed to "Reliable Computing" [226] in 1995 and it is now
published by Kluwer Academic Publishers.

In investigating the interval analytic approach to numerical computations
one is also led to develop algorithms tailored to interval spaces. These algo
rithms can be fundamentally different from the real-space algorithms for the
same problem. Some of the developments in this book will be directed to tak
ing advantage of these algorithms in the geometric context. We mention in
particular the methods for outer approximations of the range. These methods,
first developed by Moore [165] are surveyed in the monograph [212] and they
can be very effective tools for a variety of geometric problems especially when
they are combined with subdivision techniques.

The application of interval arithmetic and interval analysis will not cure all
numerical and combinatorial ills that can occur in practical geometric compu
tations. In general, the results will belong to one of the following two types:

it is certain that the configuration is correct (the point is not on
the line segment, the line intersects the region, etc.)

or

within the precision of the underlying floating point arithmetic and
the computational procedure it is not possible to decide whether
the configuration is correct or not (the point may or may not be
on the line segment, the line may or may not intersect the region,
etc.).

In either of the above cases there is more information than what is provided
by the standard floating point computations for the same problem since in the

�� �� �� �� ��

10 Introduction

first case the result is certain and in the second case an indication is given that
the computation might not be correct.

1.6 Global Interval Aspects
The original intent of interval arithmetic and interval analysis was to monitor
and control almost all kinds of errors that arose in numerical computations,
especially those that arose in floating point computations as described in the
previous sections. It turned out that interval analysis had important appli
cations in the global sense where the tools could be used to derive properties
of functions over large domains. These applications are based on outer esti
mates of the range (mentioned above) combined with subdivision methods for
improving the estimates. In the monograph [213] this idea is applied to global
optimization and in Snyder [254] we find some applications to solid modelling,
mainly in curve and surface design. In this monograph these ideas are carried
further, cf. Ch. 5. In many cases it is even possible to not only obtain an
outer approximation of the range but the range itself, even if the function is
multivariate. An interesting variety of geometric computation problems can be
solved by cultivating the underlying techniques, becoming an important tool,
especially when solving intersection problems, cf. Ch. 5. A few illustrative ex
amples of this kind are also discussed extensively in Sec. 2.10. These examples
are important since they open the door to an understanding of the interval
philosophy. This book will open a new horizon for geometric computations if
one has understood the philosophy.

1.7 The Exact Sign of Sum Algorithm (ESSA)
Many geometric algorithms are dependent on the sign of a simple expression
like a finite sum. Examples of such algorithms are left-turn test, orientation
questions, Boolean algorithms (point in circle vs. not in circle), etc. Imple
menting such algorithms in fixed length floating point arithmetic can lead to
inaccurate or wrong geometric configurations due to falsification of the com
putation by rounding errors. Interval analysis techniques can remove some of
the inaccuracies, however, some cases are left that have to be dealt with using
exact techniques.

Because of this an algorithm called ESSA [221] which determines the sign
of a sum of real quantities errorfree is discussed.

The algorithm is especially designed for computations involving geometry
where rounding error free algorithms are particularly desirable due to the strong
influence of rounding errors on logical decisions as mentioned above.

In order to meet the condition of being rounding-error-free, the algorithm
is so constructed that it processes data that is already in a binary form. Con-

�� �� �� �� ��

Arithmetic Filters 11

version errors are therefore avoided. The quantities dealt with are

normalized binary floating point numbers of a fixed mantissa length
(in short, machine numbers).

It should be noted that an extensive literature exists on the computation
of the sum of a set of floating-point numbers and on the relationship of this
computation to the stability of numerical and geometric computations [45, 104,
200]. Most of this literature does not mention the restricted problem of the
determination of the sign of such a sum.

The algorithm will determine the sign of a sum of floating-point numbers
exactly provided the input data consists of machine numbers.

The features of the algorithm are:
(i) Only computation with simple mantissa length is required.

(ii) No splitting of mantissas or other mantissa manipulations are re
quired, one only needs to know the exponent part of the floating
numbers.

(iii) It is almost never necessary to compute the sum (except when the
sum is zero). It is only necessary to compute as many partial sums
and arrangements as are required to decide what the sign is. Ex
tensive test series with randomly generated summands indicate that
already 5% of the summands are in most cases sufficient to decide
the sign of the sum after some preprocessing.

(iv) If the summands are machine numbers, the computed sign is always
the exact sign, since the computation is rounding-error-free.

(v) No variable length fixed point accumulator is necessary in order to
cover the field of possible partial sums.

(vi) Exponential overflow and underflow control is not part of the algo
rithm.

1.8 Arithmetic Filters
The computational cost of any exact arithmetic computation tends to be high.
One way of reducing this cost is provided by ESSA discussed above, where
only the essential information is calculated when calculating the sign of a sum.
Another way is to use error bounding techniques such as a Wilkinson type
analysis (see [271]), interval arithmetic or other tools to estimate the error in a
computation. If it can be shown that the estimated error in the computation
using floating point arithmetic does not lead to incorrect geometric configura
tions in a computation then exact arithmetic can be avoided. The tools used
to accomplish this are generically called arithmetic filters.

�� �� �� �� ��

12 introduction

Since our main aim is to discuss the application of interval tools in geometric
computations we focus on the use of interval arithmetic arithmetic filters. A
more general view is found in the thesis by Pion [196].

In the ensuing chapters the interval arithmetic filters will be used extensively
prior to ESSA due to the lower computational cost of the filters.

1.9 Computer Implementations
In the book we have included the basic interval routines and ESSA imple
mented in the Sun Sparc C++ . The C++ language was chosen due to the
current popularity of C and its derivatives among computer graphics profes
sionals and because it allowed us to define geometric constructs as objects in
the language. The language also implements parameter overload thus simplify
ing the definition of the elementary interval arithmetic operations. Many good
implementations can be found on the internet. See also a description of the
interval library C-XSC in [132]. An interval realization in Pascal is given in
[133]. For a Fortran 77 interval package called INTLIB see [131]. It can also be
used in Fortran 90. Other Fortran 90 interval packages are [269], [128]. Inter
val libraries for C++ are PROFIL [135] and a library family in [111]. Another
package with variable precision interval arithmetics is described in [43].

�� �� �� �� ��

Chapter 2

I n t e r v a l A n a l y s i s

2.1 Introduction

In this chapter the basic tools and techniques from interval analysis used in
geometric computations are introduced. The global aspect, which was only
touched in Sec. 1.6, is treated extensively. First, interval arithmetic is moti
vated and justified in Sec. 2.2. In Sec. 2.3 the interval arithmetic operations
and some basic rules and properties are introduced including infinite interval
arithmetic. The computer implementation of interval arithmetic is then dis
cussed in detail, including C++ programs in Sec. 2.4. In Sec. 2.5 the notion of
interval arithmetic is extended to matrix and vector interval arithmetic. Sec.
2.6 demonstrates the usefulness of computing inclusions to the range of a func
tion over an interval. This leads into the concept of inclusion functions which
are introduced in 2.7. Further details of inclusion functions are established in
Sec. 2.7 to 2.12. In particular, centered forms are introduced as unsurpassable
means for estimating the range of functions, and two special centered forms
are recommended; these are the mean value forms and the Taylor forms. These
forms can be understood and applied without too much theoretical background.
In Sec. 2.11, a few important and typical examples are given to show how the
interval concept and geometric computations fit together. They can be seen as
a key for understanding the whole book. In Sec. 2.13 subdivision is introduced
as a tool for improving the inclusions for the range. Sec. 2.14 summarizes the
important recommendations of the chapter.

Although this chapter illuminates many important aspects of interval anal
ysis it does not cover the whole area. Furthermore, proofs of most statements
have been omitted. More thorough introductions to the area of interval analy
sis can therefore be found, for example, in Moore [169], Alefeld-Herzberger [6],
Bauch et al. [16], Shokin [248], Nazarenko et al. [177], Kalmykov et al. [121],
etc.

13

�� �� �� �� ��

14 interval Analysis

2.2 Motivation for Interval Arithmetic
There are two main reasons for using interval arithmetic in numerical compu
tations. These are:

• A. all kinds of errors can be controlled, especially rounding errors, trun
cation errors, etc.

• B. infinite data sets can be processed.

These two reasons are now discussed in some detail:

A. Present-day computers mainly employ an arithmetic called fixed length
floating point arithmetic or short, floating point arithmetic for calculations
in engineering and the natural sciences. In this arithmetic real numbers are
approximated by a subset of the real numbers called the machine representable
numbers (abbreviated: machine numbers or floating point numbers when dis
cussing implementation details). Because of this representation two types of
errors are generated. The first type of error, which is frequently called the
conversion error, occurs when a real valued input data item is approximated
by a machine number and vice versa, when a machine number is transformed
to a decimal number which is required for the output of a calculation. The sec
ond type of error called rounding error is caused by intermediate results being
approximated by machine numbers. Both types of errors are often combined
under the term rounding errors.

Interval arithmetic provides a tool for estimating and controlling these er
rors automatically. Instead of approximating a real value a; by a machine num
ber, the usually unknown real value χ is approximated by an interval X having
machine number upper and lower boundaries. The interval X contains the
value x. The width of this interval may be used as measure for the quality of
the approximation. The calculations therefore have to be executed using inter
vals instead of real numbers and hence the real arithmetic have to be replaced
by interval arithmetic. When computing with the usual machine numbers χ
there is no direct estimate of the error | x - x |. The computation with including
intervals, however, provides the following estimate for the absolute error

where mid X denotes the midpoint of the interval X and w(X) denotes the
width of X. An estimate for the relative error is,

I χ - mid X |< w{X)/2

χ — mid X w(X)
- 2min | X \

if
χ

where | Χ \= {| χ |: χ e X).
Let us consider an example. The real number 1/3 cannot be represented by

a machine number (unless the machine uses base 3, etc.). It may, however, be

�� �� �� �� ��

Motivation for Interval Arithmetic 15

enclosed in the machine representable interval A = [0.33, 0.34] if we assume
that the machine numbers are representable by two digit decimal numbers
(without an exponent part). If we now want to multiply 1/3 by a real number
b which we know lies in Β = [—0.01, 0.02] then we seek the smallest interval
X which

(a) contains 6/3,

(b) depends only on the intervals A and B, and does not depend on 1/3 and
b,

(c) has machine numbers as boundaries.

These requirements are realized by two steps,

(i) operations for intervals are defined which satisfy (a) and (b),

(ii) the application of certain rounding procedures to these operations yields
(c).

By (i), an interval arithmetic is defined, and by (ii) a machine interval arith
metic is defined.

B . An example of the second type where an intermediate result is approx
imated by a machine interval, mainly due to lack of information, is now con
sidered.

We apply the meanvalue formula to obtain a local approximation of a con
tinuously differentiable function / : R -> R (R denotes the set of reals) near a
point ι 6 R,

f(x + h) = f(x) + fWh. (2.1)

For simplicity, it is assumed that h > 0. Then ξ G [χ, χ + h] =: X. How
can the information given by (2.1) be represented on a computer? How can
f(x + h) be evaluated on the computer via the right side of (2.1) if χ and h are
given? Obviously, ξ is not assigned a numerical value which would be necessary
if we wish to compute /'(£) automatically on a computer. How can (2.1) be
manipulated so that it can be used for further numerical manipulation? For
example (2.1) might have to be multiplied by a number. The answer is quite
simple: Use interval arithmetic and compute

F(x,h) :=f(x)+f'(X)h

as will be defined in the sequel. Then F(x,h) will be an interval, i.e. repre
sentable on the computer, and we will know that f(x + h) G F(x, h) where
f(x + h) is unknown and F(x, h) is known.

Such principles have many interesting applications in numerical analysis
and geometric computations. Examples are the computational verification of

�� �� �� �� ��

16 Interval Analysis

the existence or the uniqueness of solutions of equations in compact domains,
cf. Moore [167, 168], strategies for finding safe starting regions for iterative
methods, cf. Moore-Jones [172], etc. One particular geometric application of
such iterative methods is to the computation of the intersection of a ray and a
surface, see [100]. The reader is especially encouraged to study the examples
in Sec. 2.10. They develop the so-called global aspect of intervals, and they
are a key to understanding large parts of this monograph.

A comfortable side effect of the use of interval arithmetic is that when a
theoretical interval algorithm is implemented using machine intervals via the so-
called outward rounding, the rounding errors are completely under control and
cannot falsify the results, cf. Sec. 2.4. This means that geometric algorithms
implemented using interval arithmetic will be robust in the sense discussed in
the introduction.

2.3 Interval Arithmetic Operations
In this section the basic operations on intervals are defined and some of the
properties of interval arithmetic are given. The differences between real arith
metic and interval arithmetic are emphasized and an arithmetic of infinite
intervals is also introduced.

Let J be the set of real compact intervals [a, b], a,b G R (these are the ones
normally considered). Operations in I satisfying the requirements (a) and (b)
of Sec. 2.2 are then defined by the expression

A*B = {a*b:aeA,beB} for Α,Β € I (2.2)

where the symbol * stands for +, - , ·, and / , and where, for the moment, A/Β
is only defined if 0 £ B.

Definition (2.2) is motivated by the fact that the intervals A and Β include
some exact values, α respectively β, of the calculation. The values α and β are
generally not known. The only information which is usually available consists
of the including intervals A and B, i.e., a € Α, β 6 Β. From (2.2) it follows
that

a * β € A * Β (2.3)

which is called the inclusion principle of interval arithmetic This means that
the (generally unknown) sum, difference, product, and quotient of the two
reals is contained in the (known) sum, difference, product, respectively in the
quotient of the including intervals. Moreover, A * Β is the smallest known set
that contains the real number α * β. Moore [164] proved that A * Β G I if
0#B.

It is emphasized that the real and the corresponding interval operations
are denoted by the same symbols. So-called point intervals, that is intervals
consisting of exactly one point, [a, a], are denoted by a. Expressions like aA,

�� �� �� �� ��

interval Arithmetic Operations 17

ο + A, A/a, (-l)A, etc. for a G R, A G / are therefore denned. The expression
(-l)A is written as -A.

Definition (2.2) is useless in practical calculations since it involves infinite
sets. Moore [164] proved that (2.2) is equivalent to the following constructive
rules,

[a, b] + [c, d] = [a + c,b + d],
[a, b]-[c, d] = [a - d, b - cj,
[a, b] · [c, d] = [min(ac,ad, be, bd), m&x(ac,ad, be, bd)],
[a, b)/[c, d] = [a, b]-[l/d, l /c] i fO*[C > d].

Note that (2.4) shows that subtraction and division in I are not the inverse
operations of addition and multiplication respectively as is the case in R. For
example,

[0, 1] - [0, 1] = [-1, 1],
[1,2]/[1, 2] = [1/2,2].

This property is one of the main differences between interval arithmetic and real
arithmetic. Another main difference is given by the fact that the distributive
law of real arithmetic does not carry over to interval arithmetic in general.
Only the so-called subdistributive law,

A(B + C) C AB + AC for A, B, C G I (2.5)

holds in J. For example,

[0, 1][1 - 1] = 0,
[0, 1]1 - [0, 1]1 = [-1, 1].

It follows from this that the order of operations in a formula or an expression
becomes important. It can be thought of as an extension of the fact that
the numerical properties of different expressions for a given function can vary
widely, see for example [57, 58].

The above two deviations from real arithmetic are the main reasons why real
algorithms can not be translated directly into interval arithmetic. Instead new
algorithms and new ideas have to be provided in order to take full advantage
of interval arithmetic and interval analysis.

The distributive law is valid in some special cases, for example,

a{B + C) = aB + aC if a G R and B,C G J.

The following properties follow directly from (2.2): Let A,B,C,D,e I and *
be any interval operation then

A + B = B + A,
A + {B + C) = (A + B) + C,
AB = Β A, (2.6)
A(BC) = (AB)C,
A C B, C C D implies A*C C Β * D (ϊί Β * D is defined).

�� �� �� �� ��

18 Interval Analysis

The last property of (2.6) is the very important inclusion isotonicity of
interval operations. This property is essential both for the efficient implemen
tation of interval arithmetic on a computer (see Sec. 2.4) and for the used of
interval arithmetic together with subdivisions to obtain convergent algorithms.

An extension of the interval arithmetic operations defined above to un
bounded intervals is used in this chapter and it is therefore denned here. Ale-
feld [4] was the first to use infinite intervals in Newton methods. The following
formulas are due to Hansen [90]:

Let 0 G [c, d] and c < d, then

[a, b]/[c, d] =
[b/c, +oo) if b < 0 and d = 0,
(-co, b/d] U [b/c, + 0 0) if b < 0,c < 0, and d > 0,
(- 0 0 , b/d] if 6 < 0 and c = 0,
(-co, a/c] if ο > 0 and d = 0, (2.7)
(- 0 0 , a/c] U [a/d, + 0 0) if α > 0,c < 0, and d > 0,
[a/d, + 0 0) if α > 0 and c = 0,
(- 0 0 , + 0 0) if a < 0 and b > 0,

and furthermore [a, 6]/0 = (— 0 0 , 0 0) .
These formulas are not applicable to every problem, but they are appropri

ate for solving linear equations in connection with the interval Newton method.
There is also no need for implementing the formulas (2.7) explicitly on the ma
chine since they are finally intersected with a bounded interval such that the
result is always either a bounded interval, a pair of bounded intervals, or the
empty set.

It is hardly possible to deal with larger interval arithmetic calculations
unless formulas and rules are available for common properties of intervals. For
a good collection of such formulas and their proofs the reader is referred to
Alefeld-Herzberger [6] and Neumaier [179]. Examples of such formulas are,
where w{[c, d]) = d — c and mid ([c, d]) = (c + d)/2:

w(aA ±bB) = I α I w(A)+ \ b \ w{B), , χ

(aA ± bB) = mid (A)o ± mid (B)b y '

for a, b G R, A, Β G I. If A is symmetric, that is, A = [—a, a] for some a > 0,
and if Β = [c, d] then

AB = Amax(|c | , |d |) , 1

** - { ΛΑ';λτλ ™
w(AB) = 2amax(|c|, |d|), J

etc.
We also need symbols a V b, a V δ V c, a V A, or A V Β for a, b, c G R and

A,Β G J to denote the smallest interval that contains a,b resp. a,b,c resp.
a, A, resp. A, B.

�� �� �� �� ��

Implementing Interval Arithmetic 19

2.4 Implementing Interval Arithmetic
Let us return to the requirements (c) or (ii) of Sec. 2.3, that is, that the end-
points of our intervals must be machine numbers (i.e. floating point numbers).
This leads to a special topic called machine interval arithmetic. It can be con
sidered as an approximation to interval arithmetic on computer systems leading
to the practical use of interval arithmetic.

Machine interval arithmetic is based on the inclusion isotonicity of the inter
val operations in the following manner: Let us again assume that α, β are the
unknown exact values at any stage of the calculation, and that only including
intervals are known, α € Α, β € Β. Then A , Β might not be representable on
the machine. Therefore A and Β are replaced by the smallest machine intervals
that contain A and B ,

A C A M , B C B M

where we denote the replacement of A by A Μ and where a machine interval is
an interval which has left and right endpoints that are machine numbers. From
(2.6) it follows that

A * B C AM *BM-

The interval AM * BM need not be a machine interval and it is therefore ap
proximated by (A M *BM)M which is representable on the machine. This leads
to the inclusion principle of machine interval arithmetic:

a € Α, β e Β implies α* β € (AM * B M) M - (2-10)

Thus, the basic principle of interval arithmetic is retained in machine interval
arithmetic, that is, the exact unknown result is contained in the corresponding
known interval, and rounding errors are under control.

We sum up: When a concrete problem has to be solved then our procedure
is as follows:

the theory is done in interval arithmetic;

the calculation is done in machine interval arithmetic;

the inclusion principle (2.10) provides the transition from interval arith
metic to machine interval arithmetic.

The practical implementation of a machine interval arithmetic is now dis
cussed. We provide sample programs that facilitate the implementation of
interval arithmetic on some common computer systems used extensively in ge
ometric computations. These sample programs may also be modified relatively
easily for the use on other computer systems with other languages.

Almost all modern computers use floating point numbers of the form

mbe

�� �� �� �� ��

20 interval Analysis

where TO, 6 and e are the mantissa, base and exponent, respectively, and where
both TO and e are represented by a fixed number of digits in the base b. This
representation is a consequence of the fixed size of bits, bytes and words in a
computer, with words commonly being the smallest addressable unit.

Although there are already two meanings of the word "rounding" in common
usage, cf. Sec. 2.2, we have to accept a third meaning when considering specific
machine behavior. We already mentioned that the exact arithmetic operations
are performed on floating point numbers the results are in general not floating
point numbers due to the fixed mantissa length restriction. The result therefore
has to be assigned to a number representable as a floating point number. If
the closest floating point number is selected then the process is also called
rounding (in the proper sense). If the floating point number is selected by
dropping excess lower order digits then the process is called iruncait'on. Most
common floating point implementations allow a choice between several modes
of assigning floating point results. In the sequel we assume that the method
of assignments follow the IEEE standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Std. 754-1985 [112], see also [113]) as implemented for the Sparc
series C compilers via the system function

i n t i e e e _ f l a g s (a c t i o n , m o d e , i n , o u t)
c h a r * a c t i o n , *mode, * i n , **out

The function call

i e e e _ f l a g s (" s e t " , " d i r e c t i o n " , " t o z e r o " , t o u t)

will set the rounding mode to "tozero", that is, the truncation mode, which is
the preferred choice for interval arithmetic implementations as will be discussed
below.

In order to gain a better understanding of the implementation of A M when
A is given we briefly compare rounding to truncating. Let c be a real number.
If c is represented as a decimal number and then truncated to a floating point
number, a number ct is obtained. If the nearest floating point number is chosen
then the rounded result tv is obtained. Clearly

c-ct < € if c > 0,
Ct - c < e if c < 0,

\cr-c\ < e/2

where c = l«ip = luip(c) is one unit in the last place of C { . It can also easily
be shown that |cr - c| < |ct - c| which means that rounding is preferable to
truncation in numerical computations. In implementing interval arithmetic,

�� �� �� �� ��

implementing Interval Arithmetic 21

however, where all intervals A has to be replaced by machine intervals A M ,
rounding in the proper sense is useless, since the condition A C AM has to be
met. The transition from A to A M is also called outward rounding which can
be executed by directed rounding or by utilizing the truncation mode. We use
the latter way in developing the machine interval arithmetic.

In the following the skeleton of an implementation of a double precision (64
bit) class interval is given in C++. The routines are described and presented
in a natural order, with the basic components being introduced first followed
by the interval class and interval arithmetic.

It should also be noted that some of the examples in the latter sections were
executed using single precision (32 bit) floating point numbers in order that
the effect of the floating point errors would be more easily displayed. The use
of single precision interval arithmetic will be explicitly mentioned in each case.

The following C++ code adds a one to the last bit of a double floating point
number which implements the next.floating-point-number operation required to
implement the machine interval arithmetic.

/ *

T h i s r o u t i n e a d d s 1 t o t h e l a s t d i g i t o f a d o u b l e d a t a
i t e m w h i c h i s h e r e a s s u m e d t o h a v e 8 b y t e s w h e r e

s e e e e e e e eeeemmmm mmmmnimmm mmitimmmmm (4 l e a d i n g b y t e s)
mTnTmnminmm imTrnimmimtmi mmmrmmmiim πιπ)ϊΐιΐϊΐπιπ)ϊϊΐπι (4 t r a i l i n g b y t e s)

8 = 8 i g n o f n u m b e r
e = e x p o n e n t o f n u m b e r
(n o t e t h a t t h e e x p o n e n t 0 1 1 1 1 1 1 1 1 1 1 i s a n e x p o n e n t
o f t h e r e p r e s e n t a t i o n o f 0)
m = m a n t i s s a b i t s w i t h a s s u m e d l e a d i n g 1

T h e a l g o r i t h m w o r k s b y a d d i n g o n e t o t h e l a s t t w o b y t e s
o f t h e m a n t i s s a (d u e t o t h e i n t e g e r a r i t h m e t i c u s e d) .
I f t h e r e s u l t o f t h i s a d d i t i o n i s z e r o t h e n i t m u s t
o v e r f l o w t o t h e n e x t t w o b y t e s .
I f t h e m a n t i s s a b i t s a r e e x h a u s t e d t h e n t h e e x p o n e n t
w i l l b e a u t o m a t i c a l l y i n c r e m e n t e d a n d t h e m a n t i s s a w i l l
b e s e t t o a l l z e r o s .

No c h e c k i s made t o s e e i f t h e e x p o n e n t o v e r f l o w s . N e g a t i v e
n u m b e r s w i l l t u r n i n t o t h e n e x t l a r g e r n e g a t i v e n u m b e r .

T h i s r o u t i n e a s s u m e s t h a t t h e r e a r e 8 b y t e s i n a d o u b l e
d a t a i t e m a n d t h a t t h e r e a r e 4 b y t e s i n a n u n s i g n e d i n t e g e r .

�� �� �� �� ��

22 Interval Analysis

*/

double add_one(double bound)
/* routine to add 1 to the last digit of a floating point number */

{
unsigned int *msip, *lsip;
/* most and least significant parts of the number (msip and lsip) * /

msip = (unsigned int *)ftbound;
/* the address of msip */

lsip = msip + 1;
/ * the address of lsip * /

*lsip += 1;
/* add one to the least significant portion of the number */

if (*lsip == 0) *msip += 1;
/* if lsip overflows then add 1 to msip */

return(bound);
}

For simplicity a routine

setmode.

is included:

void setmode_()
{
char *out;

ieee_flags("set", "direction","tozero",ftout);
}

Together with the statement

extern "C" ί
int ieee_flags(char *, char *, char *in, char **);

�� �� �� �� ��

Implementing Interval Arithmetic 23

}

the routine sets the mode to "truncation".
The basic interval operations denned by equation 2.4 are now implemented

in the class interval as given below.

/*
The basic arithmetic operations are embedded in the class
interval. In each case the pair of double data items
representing the interval [lo.hi] is checked via the routine
check_bounds. This routine accesses add_one whenever

lo<0
or

hi>0.
In both cases the next double representable item is
calculated in add_one and the result is returned to the
calling operator. In this manner i t is guaranteed that the
machine interval result will contain the interval result
that would have been computed using infinite (real)
interval arithmetic, i . e . inclusion

isotonicity\index{inclusion isotonicity}
is maintained.
*/

/•defining the class interval*/

class interval {
double lo.hi;

public:

/•accessing the bound of an interval*/

interval(double lo = 0, double hi = 0) {
this->lo = lo;
this->hi = hi;
};

/•an interval printing ut i l i ty */

void print() {

�� �� �� �� ��

24 Interval Analysis

printf("['/.31x, */.31x] \ n \ lo, hi);
};

/•checking lower and upper bounds adding 1 if necessary*/

friend interval check_bounds(interval a) {
i f (a . lo < 0) {
a.lo = add_one(a.lo);

}
i f (a.hi > 0){

a.hi = add_one(a.hi);
}
return(a);

}

/•interval addition*/

friend interval operator+(interval a, interval b){
return(check_bounds(interval(a.lo+b.lo,a.hi+b.hi)));
};

/•interval subtraction*/

friend interval operator-(interval a, interval b){
return(check_bounds(interval(a.lo-b.hi,a.hi-b.lo)));
};

/•interval multiplication^/

friend interval operator•(interval a, interval b){
double ac,ad,bc,bd;
ac=a.lo • b.lo;
ad=a.lo • b.hi;
bc=a.hi • b.lo;
bd=a.hi • b.hi;
return(check_bounds(interval(MIN(ac,ad,be,bd),

MAX(ac,ad,bc,bd))));
};

/•interval division^/

friend interval operator/(interval a, interval b){
double ac,ad,bc,bd;
i f (b.lo == 0.0 II b.hi == 0.0){

�� �� �� �� ��

Implementing Interval Arithmetic 25

cout « form("\n bad interval for division");
}
ac=a.lo / b.lo;
ad=a.lo / b.hi;
bc=a.hi / b.lo;
bd=a.hi / b.hi;
return(check_bounds(interval(MIN(ac,ad,be,bd),

MAX(ac,ad.be,bd))));
>;

/•extract lower and upper bound ut i l i t i e s* /

friend double lower_bound(interval a) {
return(a.lo);

};
friend double upper_bound(interval a){

return(a.hi);
};
};

A few system calls and some definitions are needed to complete the interval
package:

#define min(a, b) (((a) < (b)) ? (a) : (b))
#define MIN(a, b, c, d) min(min(min(a, b), c) , d)
#define max(a, b) (((a) > (b)) ? (a) : (b))
#define MAX(a, b, c, d) max(max(max(a, b), c) , d)

#include <stdio.h>
#include <stream.h>
#include <sys/ieeefp.h>

The routines for interval multiplication and interval division can be made
more efficient by considering 9 cases for each depending on the signs of the
result. For both interval multiplication and interval division 8 of the cases
only require 2 multiplications resp. divisions. Only one case requires the full 4
multiplications resp. divisions. These cases are described in for example [169].
In the routines presented above this was not done for the sake of clarity.

In [254] and in [241], pp. 160-161, it is suggested that the round-to+oo
mode be used for the upper bound and round-to-oo mode be used to compute
the lower bound if the arithmetic conforms to the IEEE standards for floating

�� �� �� �� ��

http://ad.be

26 Interval Analysis

point arithmetic discussed above. This would in general result in a higher
operation count unless the above division into cases is implemented. It is also
conceptually easier to deal with only one truncation mode for a given numerical
(i.e. interval) computation.

Further increases in the execution speed of the interval routines would be
achieved if the routines were implemented at the chip or microcode level, see
also [261].

There are several commercial and public domain software systems and soft
ware packages in which machine interval arithmetic is implemented, for exam
ple TRIPLEX-ALGOL-60, ALGOL 68, C-XSC, PASCAL-SC, PASCAL-XSC,
FORTRAN-SC, FORTRAN-XSC, MODULA-SC or ACRITH for some IBM
computers, ARITHMOS for some Siemens computers, etc. For a basic discus
sion of such languages see Kulisch-Miranker [145].

The advantage of scientific programming languages, i.e. those that have a
letter string "sc" in their name, is that not only the arithmetic operations are
executed via maximum accuracy, also called machine exact, but also vector and
matrix operations. An interesting report about computer systems that provide
the "scientific" concept on chips or in microcode is given in Kulisch [144].

2.5 Further Notations
Interval arithmetic can be extended to most spaces considered in numerical
computations. For each extension new results have to be derived and new
and interesting properties might be found. In this section the idea of interval
arithmetic is extended to m-dimensional vectors and matrices in a natural
manner. The question of the solution of linear interval equations in m-space is
left to the next chapter.

If A G I then we also write A = [IbA, ubA] denoting the lower and upper
boundaries of A by IbA and ubA. If D C R then 1(D) = {Υ : Y G I, Y C D).
If Β G I then A < Β and A < Β means that ubA < lb-B resp. ubA <\bB.

The set of real m-dimensional vectors is denoted by Rm and the set of
m-dimensional interval vectors by Im.

If A = (A i , . . . , A m) G Im then A is commonly interpreted as a right
parallelepiped Αι χ Αι χ . . . χ Am. The vector of left endpoints of A is denoted
by IbA = (IbAi,... , lbA m) and the vector of right endpoints is denoted by
ubA = (ubAi,... ,ubA m) . Interval vectors are also called intervals when it is
clear from the context whether real intervals or interval vectors are intended.
A box is also a frequently used synonym for an m-dimensional interval vector,
a particularly appropriate notation in 3D computer graphics.

If A = (ΑχAm) G Im then the width of A is defined to be

w(A) = max {w(Ai) : i = 1 , . . . , m}

�� �� �� �� ��

Further Notations 27

and the midpoint of A to be

mid A = (mid A\,..., mid Am).

The set of η χ m real matrices is denoted by R n x m and the set o f n x m
interval matrices by J n x m . If A = (A{j) G / n x m then

mid A = (mid A 0) G R n x m

is the midpoint of A.
If G Im or A, 5 e J n X m then AC Β means that A< C Bj for ι =

l , . . . ,m or Ay C By for t = Ι , . , . , η ; j = l , . . . ,m. Similarly, if χ G B m ,
A G Im, or if χ G Rn*m,A G J n x m then

χ G A

means x< G Aj for i = 1 , . . . , m or x,j G Ay for i = 1 , . . . , n; j = 1 , . . . , m. For
instance, mid A G A holds.

Similarly, if Α, Β G 7 m then

A < Β or A < Β

shall mean A* < Bj for ι = 1 , . . . , m, or Aj < Bj for i = 1 , . . . , m, respectively.
Note that A < Β does not mean that A = Β or A < Β holds as is the case
with inequalities in R.

The interval arithmetic operations are extended to interval vector and in
terval matrix operations in the usual manner:

a(A y) = (aAtj) for a G R, (A 0) G I n x m ,
(A ^ i i B y) = (A y ± B y) for (Α^),(Β ϋ) G I"*"»,

lb
(A«)(B«) = for (A 0) G / n x f c , (B w) e J * x m .

This definition includes the arithmetic for interval vectors (rows as well as
columns) by setting η = 1 or m = 1.

If A, B, C, D are interval vectors or interval matrices and if * denotes one
of the operations +, — or · then

ACC, BCD implies Α* Β C C * D. (2.11)

Property (2.11) is the extended form of the inclusion isotonicity of the interval
arithmetic operations.

For D C Rm we denote by 1(D) the set of all boxes Y G Im with Y CD.
For example, if X G Im, and thus X C Rm, the set of all subboxes Y of

�� �� �� �� ��

28 interval Analysis

X is just I(X). In this connection we also say that Y is an interval variable
over I(X) which shall mean that Y can take each box of I(X) as value. This
terminology is mainly used when functions F : I(X) -> / etc. are considered.

An interesting functional is χ : I -t [— 1, 1] denned by χ[0, 0] = — 1 and, if
[a, b] φ 0, by

1 ' 1 \ b/a otherwise.

χ characterizes the degree of symmetry of intervals. For instance, χ A = - 1
means that A is symmetric, i.e. A = —A, and χΑ = 1 means that A is a
nonzero point interval and hence completely nonsymmetric. Thus, χ admits
the geometric interpretation that, for intervals A and B,

A is more symmetric than Β iff χ A < χΒ.

χ is an indispensable tool for dealing with interval products. For example, if
A, Β G I is given then there exists an X G J with AX = Β iff χ A < χΒ
(Ratschek [207]). Or, if δΑ = mid {\a\ : a G A} and A i , . . . , A n G I then
(Ratschek-Rokne [217])

τϋ(Λ,· . ·Α η) = \Αι\--·\Αη\-(δΑι)---(δΑη)
if χ Α < > 0 (ί = 1, . . . ,η) ,

ιυ(Αι···Α„) = |Αι | · · · |Α„_ι | ι ι;Α η

if χΑη < χΑί (i = 1 , . . . ,η - 1) and χΑ„ < 0.
(2.12)

(Note that all possible cases for A i , . . . , A n are exhausted by the two formulas.)
The χ-functional also allows a splitting of intervals which can be convenient

for product considerations:
Let σΑ = 1 if mid (A) > 0, otherwise set σΑ = — 1. Then each interval A

can be represented by
A = (σΑ)|Α|[χΑ, 1] (2.13)

where the "signum" of A, the modulus of A, and the symmetry character of A
are involved. More important is that the product of two intervals take on an
easy form with (2.13), i.e.

AB = (σΑ){σΒ)\Α\\Β\[(χΑ){χΒ), 1] if #A,0#B, 1
= (σΑ)(σΒ)\Α\\Β\[ηύη(χΑ,χΒ), 1] otherwise . J v '

This formula is needed in Sec. 2.8.

2.6 The Meaning of Inclusions for the Range
Computing the range of a function is important for many numerical problems.
Exact computations of the range are not possible in general, however, important

�� �� �� �� ��

The meaning of Inclusions for the Range 29

information can be gained from computations of inclusions. In this and the
following section efficient methods for the computation of an inclusion for a
function over a closed compact domain is therefore discussed as well as some
applications of the methods to geometric computations.

The main application of outer estimates of the range of a function over a
particular domain is to test whether a particular constraint is satisfied for the
range or not. Suppose a function f(x) and a region (i.e. interval or box) X is
given and suppose the constraint is f(x) φ 0 over X. If we compute an inclusion
F(X) such that f(x) G F{X) for any χ G X with the property that 0 £ F{X)
then it follows that /(χ) Φ 0 for any χ £ X. If, however, 0 G F(X) then the
result is inconclusive, i.e. we can not tell whether f(x) φ 0 for any χ G X or
not. This discussion illustrates two points for inclusion functions:

• If a property for sets 5 of the form "S does not contain a certain ob
ject" required for the range is satisfied by an inclusion for the range then
the inclusion computation provides a positive answer to the test for the
property, that is, the range does not contain this object,

• if the property required is not satisfied by the inclusion then the result is
uncertain.

It is therefore important to calculate inclusions for the range of a function that
have a small overestimation of the range in order to increase the likelihood of
obtaining a positive answer to a test for such a property.

There are three main methods for improving an inclusion for the range of
a function:

• Devise improved inclusions by algebraic and analytic means. Typical
examples are mean value forms, centered forms and Taylor forms, use of
monotonicity knowledge of the function,

• subdivide the domain then compute inclusions for the range over each
subdomain and compute the bounds of the union,

• compute the global maximum and minimum of the function by optimiza
tion methods.

In the next section we provide methods for obtaining improved inclusions
for the range using algebraic and analytic techniques. In the last section the
very important idea of subdivision to improve the inclusions is discussed. The
computation of the maximum and mimimum value over the domain of a func
tion will provide the best inclusion. This computation is expensive and it is
part of the topic of global optimization which was dealt with in [213].

The importance of the knowledge of inclusions of the range in interval anal
ysis was first discussed in Moore [165] in 1966. He also introduced the idea of
the centered form which will be developed later. In the ensuing two decades a

�� �� �� �� ��

30 Interval Analysis

number of techniques and algorithms based on the centered form were devel
oped. They were collected and presented in the monograph [212]. More recent
work on centered forms is found in for example [2, 235, 14, 149].

In computer graphics the application of inclusions for the range of functions
occur in contour and surface tracing, ray tracing and generally intersection of
surfaces defined parametrically as well as in proximity tests.

2.7 Inclusion Functions and Natural Interval Ex
tensions

The main tool in the treatment of geometric problems using interval arithmetic
are inclusion functions. In this section the concept of an inclusion function is
therefore introduced together with the idea of the natural interval extension.
Some further properties are also given.

Let D C Rm and / : D -> R. Let furthermore • / (F) = {f(x) : x € Y} be
the range of / over Y 6 1(D). A function F : 1(D) -> I is called an inclusion
function for / if

Π/(Υ) ς F(Y) for any Y G 1(D). (2.15)

Inclusion functions for vector-valued or matrix-valued functions are defined
analogously. The inclusion condition (2.15) must in this case be satisfied com
ponentwise.

It turns out that interval analysis provides a natural framework for con
structing inclusion functions recursively for a large class of functions.

In order to outline this class of functions it is assumed that some funda
mental functions are available for which inclusion functions are already known.
This assumption is verified by existing computer languages for interval com
putations. These languages have pre-declared functions g (examples are sin,
cos, etc.) available. For these functions it is also assumed that pre-declared
inclusion functions G satisfying the above conditions (2.15) are given. If the
functions G are not given then they are easy to construct since their mono
tonicity intervals are generally known, such that even G(Y) = &g(Y) will hold,
in general. It is also easy to realize these inclusion functions G on a computer
such that (2.15) is not violated. In this case the influence of rounding errors is
kept under control by computing

(G(YM))M instead of G(Y),

cf. Sec. 2.5.
Let f : D —τ R, DC Rm be a programmable function, that is, a function

which may be described as an explicit expression without use of logical or
conditional statements (such as "if ... then", "while", etc.) in the following
manner: Each function value f(x),x € D, can be written down as an expression

�� �� �� �� ��

Inclusion Functions 31

(also denoted by f(x)) which is independent of the value of χ and such that
this expression consists only of

(1) the variable or arguments χ (or their components x i , . . - , x m))

(2) real numbers (coefficients, constants),

(3) the four arithmetic operations in R,

(4) the pre-declared functions g,

(5) auxiliary symbols (parentheses, brackets, commas, etc.).

Let Y G 1(D) then the natural interval extension of / to Y is defined as
that expression which is obtained from the expression f(x) by replacing each
occurrence of the variable χ by the box Y, the arithmetic operations of R by
the corresponding interval arithmetic operations, and each occurrence of a pre-
declared function g by the corresponding inclusion function G. This definition
is due to Moore [165]. The natural interval extension of f(x) to Y is denoted
by f(Y) and is understood as an expression, that is, a string of some specified
symbols. The function value which is obtained by evaluating this expression is
also denoted by f(Y).

It follows from the definition of an expression, from the inclusion isotonicity
of the interval operations, (2.6), and from the properties of the pre-declared
inclusions, i.e. the G's, to be inclusion functions (see (2.15)) that

χ G Y implies f(x) G f(Y). (2.16)

Since property (2.16) is the key to almost all interval arithmetic applications
and results, it is called the fundamental property of interval arithmetic.

If / : D -> R, D C Rm is programmable and can be described by a function
expression as characterized above then the interval function F : 1(D) -¥ I
defined by F(Y) = f(Y) is an inclusion function for / . More importantly we
have here an effective constructive means to find an inclusion function F for a
real programmable function / using the tool of natural interval extensions.

The reader preferring a more precise presentation is referred to Ratschek—
Rokne [212].

E x a m p l e . If f(x) = xi sin(x2) — X3 for χ G R3 and if SIN is the pre-
declared interval function for sin then f(Y) = Y\ SIN(r2) — Y3 is the natural
interval extension of / to Y G I3.

It is one of the large curiosities of interval arithmetic that different expres
sions for one and the same function / lead to interval expressions which are
also different as functions:

�� �� �� �� ��

32 Interval Analysis

Example. If fi(x) = χ - χ2 and / 2(x) = x(l - x) then f\(x) and / 2(x)
are different as expressions, but equal as functions. Further, f\{Y) and /2(F)
are also different as functions, i.e., if Y = [0, 1] then fi(Y) = Y - Y2 =
[-1, l],f2{Y) = Y(l -Y) = [0, 1]. For comparison, Df(Y) = [0, 1/4].

It is therefore a very important and challenging problem to find expressions
for a given function that lead to the best possible natural interval extensions,
that is, f(Y) shall approximate • f(Y) as well as possible. Part of the solution
to this problem can be found in Ratschek-Rokne [212].

For construction of inclusion functions of programmable functions contain
ing logical connectives see Ratschek-Rokne [213]

A measure of the quality of an inclusion function F for / is the excess-width,

w(F(Y)) - w(nf(Y)) for Y G 1(D),

introduced by Moore [165]. A measure for the asymptotic decrease of the
excess-width as w(Y) decreases is the so-called order (also: convergence order)
of F, due to Moore [165]: An inclusion function F of / : D R,D C Rm is
called of (convergence) order α > 0 if

w(F(Y)) - w(Df(Y)) = 0(w(Y)a)

as w(Y) -τ 0, that is, if there exists a constant c > 0 such that

w(F(Y)) - w(0f(Y)) < cw(Y)a for Y G 1(D).

In order to obtain fast computational results it is important to choose inclusion
functions having as high an order a as possible. A detailed investigation of
the order of inclusion functions is given in Ratschek-Rokne [212]. A similarly
looking concept, which is however independent of the order, is the idea of a
Lipschitz function. Let D C Rm be bounded and F : 1(D) -> J*. Then F is
called Lipschitz if there exists a real number Κ (Lipschitz constant) such that

w(F(Y)) < Kw(Y) for Y G 1(D).

The Lipschitz property delivers us a frequently used criterion for the meanvalue
form which is a special inclusion function being of convergence order 2, cf. Sec.
2.9.

2.8 Combinatorial Aspects of Inclusions
It was noted in the previous section that if f(x) was an expression for a pro
grammable function / in the variables χ = (xi,...,xn) then the natural interval
extension was f(X) which resulted from replacing all occurrences of the real
variables by interval variables, all occurrences of transcendental functions by

�� �� �� �� ��

Combinatorial Aspects of Inclusions 33

inclusions and all operations by interval operations. A very important property
of f(X) was the fundamental property of interval arithmetic

Df(X) C f(X). (2.17)

A further property was inclusion isotonicity expressed as

AC Β implies /(A) C f(B).

It was also noted earlier that interval arithmetic differs from real arithmetic in
two important aspects

1. only the subdistributive law holds, i.e.

A(B + C) C AB + AC for A,B,C£l, (2.18)

2. subtraction and division are not the inverse operations of addition and
multiplication. For example

[0,1]-[0,1] = [-1,1],

[1,2]/[1,2] = [1/2,2].

Because of these differences it follows that the order of operations is important
for interval arithmetic. As an example, we have the following 2x2 determinant
which will be evaluated in three algebraically equivalent ways:

Di(ai,a2,biM) =

£> 2 (αι,α2,6 1 ,6 2) =

αϊ bi

α2 &2

αϊ δι
α2 62

= αι&2 - α 2 6ι,

= αι(&2 - δι) + δι(αι - α2),

Ι?3(αι,α2,δι,δ2) =
αϊ δι
α2 δ2

= δί(αι - α2) + α2(δ2 - δι).

(2.19)

(2.20)

(2.21)

The natural interval extensions of these formulas are different. Let Ai = [—1,1],
A 2 = [0,2], Βχ = [0,1] and B2 = [-1,1]. When Au B{, i = 1,2 replaces α4, δ4,
t = 1,2 in the above formulas we obtain

A([-U] , [0 ,2] , [0 , l] , [- l , l]) = [-3,1],
£> 2([-l,l],[0,2],[0,l],[-l,l]) = [-5,5],
£> 3([-l,l],[0,2],[0,l],[-l,l]) = [-7,5].

Another example, which is a typical feature of the set theoretic definition of
interval equations and narrowly connected with the determination of inclusion
functions for polynomials, is the interval arithmetic power evaluation. Interval
arithmetic distinguishes between the simple and the extended power evaluation.

�� �� �� �� ��

34 Interval Analysis

The simple version of the power evaluation (also called power evaluation by
simple arithmetic) is defined by

A0 = 1 and An = A •... · A(n times) if > 1

for intervals A. The extended version of the power evaluation (also called power
evaluation by extended arithmetic) is defined by

An = {an : a G A} if η > 0.

We also get explicit formulas for the simple as well as for the extended
power evaluation.

Let A = [a, b] and η > 1. Then

i n _ / a"V&"if0 iM,
Λ ~ \ 0 V ο" V bn if 0 G A.

The formula follows directly from the definition of the extended power evalua
tion and the monotonicity of the power function on the positive and negative
real halfaxes.

In case of the simple power evaluation we get

f a"V&"if0fiM, (2 2 3)

\ (σ Α) η _ 1 | Α | η _ 1 Α if 0 G A.

The formula in case 0 £ A follows directly from the multiplication rules for
intervals applied recursively. The formula in case 0 G A follows from (2.13).

For instance, one can see from (2.23) that if A = [a, b], then

An = Abn~l H0eA,aA = 1,
An = Ααη~ι ifOG Α,σΑ = - 1 .

Or, if A is symmetric, i.e. A = [—a, a], then

An = [-an,an],

Λ ~ \ [0, α"] if η
is odd,
is even.

The following two examples explain the need for two kinds of power evalu
ation: If x, y G A then A 2 is the smallest interval that contains xy (w.r.t. the
information given, that is x, y G A) If χ G A then A 2 is the smallest interval
that contains x2 (w.r.t. the information given, i.e. χ € A) . Hence, if we for
example need inclusions for the polynomial

p(x) = x\{2 + x 2 x 3) + x\{2 + xix 3) + xl(2 + xix 2), x G R3

�� �� �� �� ��

Skelboe's Principle 35

for Xi,X2,X3 G A, A G I, then the natural interval inclusion

p(A) = 3A2(2 + A2)

is one possible inclusion. But, in general, a narrower inclusion will be gained
with extended arithmetic, that is, by the inclusion

P(A) = 3A2(2 + A).

If, for instance, A = [-1, 2], then A2 - [-2, 4], A2 = [0, 4], and one obtains

p(A) = [-36, 72] and P{A) = [0, 72],

where, accidentally, P(A) is already the range of ρ over the box Α χ A χ A,
that is, DP(A) = P(A).

These few examples show the importance of choosing a good formula for
the evaluation of an inclusion for the range. Theoretical investigations in this
area are found in [235, 14, 149, 217]. The selection of the form that results in
the narrowest inclusion is a difficult problem since there is an infinite number
of possible forms. In this monograph we focus on the practical aspects of the
computation of the forms as they apply to geometric computations.

2.9 Skelboe's Principle
If a programmable function is given and if it is possible to find an expression
for the function in a well defined form or if some monotonicity properties are
known, then there are ways of determining the range more or less directly. This
is, in short, Skelboe's principle, which we will present here in a very developed
form. Since the principle can be applied to several problems in geometric
computations we provide a complete proof of the principle here.

The notation α V 6 is again used for the interval with endpoints a and b
(especially if one does not know whether α < b or b < a) for a, b G R. Similarly,
if A, Β G I, we write A V Β for the smallest interval that contains A and B.

Let us first consider monotone continuous functions / . If / is a function in
only one variable then the result is evident, i.e. the range is found immediately
as

•/([a, b]) = f{a)Vf{b)

if defined. If a function / (x i , . . . , x m) is defined for Xj G Xi G I (i = 1 , . . . ,m)
we say that / is monotone in the variable x* if for each choice of values Cj G Xi
(i = 1 , . . . , k — 1, k + 1 , . . . m) the function

9(xk) = / (c i , . . . c f c_i, χ*, C j t + i , . . . , c m)

is monotone. The basis for using monotonicity properties is found in the fol
lowing theorem which is due to Skelboe [250].

�� �� �� �� ��

36 Interval Analysis

T H E O R E M 1 Let the continuous function f(xi,. • • ,xm) be defined for Xi G
Xi (i = 1 , . . . ,m) and monotone in xi (without restricting the generality). If
Xi = [a, b] and if the function gc is defined for any c 6 Xi by gc(x2 , - . - , i m) =
/ (c , x 2 , . . . , x m) forxi ζ Xi (i = 2,...,m), then

• / (X i , . . . ,Xm) = Vga(X2, ...,Xm)V Dgb(X2,.. .,Xm).

Proof. Assume y = / (c i , . . . , c m) for some Cj G Xi [i = l , . . . ,m). Since
a < Ci < b and using the monotonicity we either obtain

ffa(C2,--.,Cm) < / (C i , . . . , C m) < 5ft(c 2 , . . . ,C m)

or the opposite chain (the inequalities reversed), and the value y lies in the in
terval hulls ga(c2,... ,c m) \Zgb(c2,..., cm) C ga(X2, Xm)V9b(X2, · · ·, Xm)-
The continuity of / is used to find a term f{ci,...,Cm) which lies between the
given values f(a, da,. • •, dm) and f(b, ei,..., em) in order to prove the inclusion
in the opposite direction. •

If this theorem is applied repeatedly then it can be generalized to functions
that are monotone in several variables.

Therefore, if it is required to determine the range of the function ex/(x2+y)
for χ G X = [—1, 1] and y G [3, 4], then it is sufficient to determine the interval
hull of the ranges of the functions 93(1) = ex/(x2 + 3) and </4(x) = ex/(x2 + 4)
for χ G X. The ranges Og3(X) and Og4(X) can easily be calculated since 03
and #4 are monotone (their derivatives are positive!).

T H E O R E M 2 If a continuous function f is representable in the form

/ (x i , . . . , x m) = g (x l , . . . , x m _ i) *h(xm) (2.24)

for Xi G Xi (i = 1 , . . . , m) and * G { + , —, ·, / } , where h is a monotone function,
then

• / (Χ χ ,...,Xm) = Dg(Xi,..., Xm_i) . Dh(Xm).

Proof. Since x m is separated out in (2.24), the interval hull given in Theorem
1 has the desired form. •

The advantage of the two theorems is that the range determination is re
duced to a range determination for a function with fewer variables plus the
trivial range determination of the monotone function h. The theorems can also
be used if one can only find inclusions for ga or g. Then the formulas can be
applied to obtain inclusions for / .

Since each occurrence of a variable in which the function is monotone en
ables the reduction of the number of variables in the range computation, it is
suggested to manipulate the expression for / in such manner that Theorem 2
can be used as often as possible, cf. the following example from Skelboe [250],
Moore [166]. Let

}{x,y,z) = *^-ζ for χ G X = [1, 2],y G Y = [5, 10], and ζ G Ζ = [2, 3],
χ-y

�� �� �� �� ��

Skelboe's Principle 37

then an optimal arrangement of / is

f(x>y'z)=(l+uyhdz

such that the range is determined directly by

If / is a function in the two variables (for simplicity) χ G X and y G Y then
it may happen that / is monotone in y but that / is not representable in the
form (2.24), for example the function f(x,y) = e (l ~ 1) v (x + 1). Then the use
of Theorem 1 is again recommended.

Another classical theorem (Skelboe [250]) involves arithmetic expressions
in which each variable occurs at most once and of power at most 1. Hence,
(xi +X2) /x3 is such an expression, but (xiX2+X3)/(xi -au) or (1+x 2) are not.
It is obvious that such expressions are monotone with respect to each variable.

THEOREM 3 Let f(x\,...,xm) be an arithmetic expression in which each
variable occurs only once and of power at most 1. Then

af(Xu...,Xm)=f(Xl,...,Xm)for Xu...,Xm<El

if defined.

Proof. One only has to show that f{X\Xm) C Of{Xi,..., Xm)- Since
each variable occurs only once, there exist reals c< G Xi such that

» = / (c i , . . . , c m) G Df(Xu...,Xm).D

We can generalize this principle essentially by admitting power operations
and (continuous) transcendental functions. The variables are only allowed to
occur once. Two further conditions must be satisfied when determining the
natural interval extension:

(i) Each occurring power is to be evaluated with extended interval arith
metic,

(ii) the natural interval extensions of the transcendental functions must be
equal to their range (related to the current domain).

Condition (ii) is always satisfiable for the common standard transitive functions
such as sqrt, log, In, sin, cos, exp, etc.

THEOREM 4 Let an expression f{x), χ G Rm be given for a programmable
function f which may contain arithmetic operations, continuous transcendental
functions and powers. If the box X G Im lies in the domain of f and if the
above mentioned conditions (i), (ii) are satisfied then

Uf{Xl,...,Xm)=f{Xl,...,Xm).

�� �� �� �� ��

38 Interval Analysis

Proof. The proof is the same as for the previous theorem. The existence of
the argument c G X follows from the property that a programmable function is
defined recursively {such that mathematical induction can be applied) and that
for each step of the recursion the natural interval extension gives the range. It
then follows that the current range is obtained from requirements (i) and (ii)
for powers and transcendental functions and from the definitions of the interval
arithmetic operations. •

Example 1. The range of the function

f(x,y,z) = cos3 y/\x3z + cos(l/exp(y4 - 1))|

over arbitrary intervals Χ, Υ, Ζ € I is obtained by the natural interval extension

f(X, Υ, Z) = cos 3 y |X 3 Z + cos(l/exp(y 4 - 1))|

where condition (ii) must be considered.

Example 2. If f(x,y,z) = ez(x + y)/(x - y) with X = [1, 2], Y = [5, 10],
and Ζ = [log2, log3] then f(X,Y,Z) = [-108, -12]/9. If / is represented by
the expression

Mx,y,z) = ez(l+ 2)
χ/ν-1

then Theorem 4 can again be used and it yields

Df(X,Y,Z) = fy(X,Y,Z) = [-63, -22]/9.

Example 3. f(x,y,z) = xyex~v sinz and X = Υ = Ζ = [1,10] and if / is
represented as f(x,y,z) = (xex)(ye~v)sinx, then the first two parenthesised
factors are monotone over X = Y and Theorem 2 can be applied twice yielding
nf(X,Y,Z) = [ε , Ι Ο ε ^ ^ - ^ , β - η μ ί , Ι] = [-10e9,10e9].

It is often assumed that the numerical costs of using derivatives are high.
Derivative based methods are therefore avoided if possible. If, however, auto
matic differentiation or Krawczyk's slope arithmetic, see for example Krawczyk
[140], Rail [201], Ratschek-Rokne [212] or Griewank-Corliss [83] is available
then the number of arithmetic operations in the evaluation of the derivative is
0(n). The next theorem requires the partial derivative Dif of / w.r.t. Χχ to
obtain an inclusion which can be derived directly from Theorem 1.

THEOREM 5 (Monotonicity). J/0 £ Dif(X) for some i andXi = [IbA^ubXi
then f is strictly monotone in the i-th variable and

Df(X) C / (Χι , . . . , \bX i y . . . ,X n) V ί{Χχ,...,ubXi,..., Χη).Ώ

�� �� �� �� ��

Inner Approximations 39

If the boxes are getting smaller, one has frequently monotonicity in all
variables (think of contour tracing, for instance), which can easily be discovered
by checking the natural interval extension of the partial derivatives. If, for
example, η = 3 and Dif(X) > 0, D2f(Y) < 0, and D3f(Z) > 0, then

Of(X,Y,Z) = [/(lbX,uby,lbZ), /(ubX,lbr,ubZ)].

2.10 Inner Approximations to the Range of Lin
ear Functions

With a few exceptions, almost the whole rounding error related research in in
terval arithmetic is based on outward rounding. It is as good as self-evident that
each interval software package uses outward rounding for the interval arithmetic
operations. The reason is clear historically since the computed interval result
is required to contain the unknown exact result, cf. Sec. 2.2. The outward
rounding has almost become a doctrine among the users of interval mathemat
ics. Hence, as one began to develop approximations of the range of functions,
one arrived at outer approximations. This was, on the one hand, manifested by
the mean value form, where when starting at the classical meanvalue formula

f(x) = f(c) + (x- c)/'(£) with ξ G χ V c

the inclusion
/(*) e /(c) + (x - c)f\X)

was obtained and, for the range Of(X), the outer approximation

f(c) + (X-c)f'(X),

cf. Sec, 2.2 and 2.11 was computed. On the other hand, there were early
applications of outer approximations such as

Df(X)Cf(c) + (X-c)f'(X)

or
nf(X) c f(X)

to subdivision or exhaustion methods, cf. Moore [165], where areas are removed
that cannot contain function values. In the next section we will see that inner
approximations of the range are almost more important than outer approxima
tions. The reason for this is the following standard conclusion which we will
find several times in the sequel.

Let A be an inner approximation of some range Uf{X) and Β an outer
approximation. Then clearly

A C Df(X) C B.

�� �� �� �� ��

40 Interval Analysis

Imagine that Of(X) is not known. What can A and Β contribute to explore
Uf(X)l The information gained from Β is the implication

\ΐ w $ Β then w # Df(X),

and the information gained from A is

if w G A then w G • / (X) .

We see that Β is related to the complement of Of(X) while A is important for
the affirmative case that a number w is, in fact, a function value.

How can we get inner inclusions of the range when working with an inter
val arithmetic which is outwardly oriented? There is no simple answer which
would cover the general case: One has first to elaborate formulas for the inner
inclusion, that covers the mathematical background of the approximation, cf.
Krawczyk [139], Markov [163]. Secondly, one needs an inward rounding, which
certainly could be constructed with directed rounding devices as is the case in
scientific computation languages, for instance, C-XSC. The average user inter
ested mainly in geometrical computation might not be prepared to implement
it.

It is already troublesome to find inner inclusions for the simple case of a
linear function where the exact range is available. We therefore include this
separate section which provides formulas whose evaluation approximates the
range of linear functions from the inside.

Let φ(χ, y) = αχ+by+c be a linear function with coefficients o, 6, c G R. We
derive formulas for an inner approximation of the range of ψ over a rectangle
X xY G I 2 . Since conversion errors can occur, we also allow the coefficients
to vary over intervals. This means that the subsequent formulas can also be
applied if o, 6 and c result from preceding computations as will frequently be
the case (for example, in Sec. 5.8, "Box-Sphere Intersection"). The intervals X
and Y axe already assumed to be machine intervals. If this is not the case, then
they are shrunk to machine intervals when the input procedure of the data set
is executed.

Let X = [χι,χ2], Y = [y i , y 2] , rad X = w{X)/2, rad Y = w(Y)/2 and
α = ψ(mid X, mid Y). Since each variable occurs only once in the expression
defining <p(x,y), the range can be obtained as natural interval extension,

Πψ(Χ, Υ) = ψ{Χ, Υ) = aX + bY + c.

A meanvalue development around the midpoint of Χ χ Y gives

Οφ(Χ,Υ) = α + φ(Χ,Υ)-α
= a + φ(Χ - mid Χ, Y - mid Y)
= a + a(X — mid X) + b(Y - mid Y)
= a + [-\a\ rad X - \b\ rad Y,

\a\ rad X + \b\ rad Y]. (2.25)

�� �� �� �� ��

loner Approximations 4 1

The influence of rounding errors and the consideration of inward rounding
can be investigated easily in formula (2.25):

Instead of the coefficients, we allow including machine intervals as param
eters,

α € [01,02], 6 G [61,62] and c G [ci,c2].

The following algorithm computes an inner approximation of the range of φ
over Χ χ Y if a standard machine interval arithmetic is used for the execution
of the steps.

ALGORITHM 1 (For functions in 2 variables)

Step 1 . Compute [0:1,0:2] := [01,02] mid X + [61,62] mid Y + [ci,C2].

Step 2 . Compute [ui,u2] := δ([αι,α2]) rod X + δ ([61,62]) rod Y.

Step 3 . Compute

[tSi,u>i] := a 2 - w i ,
[u)2,u>2] := ai + « 1 .

Step 4. If u>\ < u>2 then [w\,W2] C Οφ(Χ,Υ). Otherwise no inner approxi
mation is available.

Note that mid X, rad X, • • • will in general be intervals.
The correctness of this algorithm becomes evident if one realizes that an

inner approximation of [at\, Q2] and an inner approximation of the interval part
in (2.25) are necessary in order to get one of Ώφ(Χ, Y). Since it is unlikely that
an inner approximation of [αϊ, a2] is found, a\ is used as left approximation
of a 2 , and « 2 as right approximation of 0 1 . This has the same effect provided
w\ <W2- In order to get an inner approximation of the interval part in (2.25),
one has to choose values out of the intervals [αϊ, 02] and [61,62] so, that the
interval width is as small as possible. This is achieved with ί([αι,α2]) and
^([61,62])·

For later applications, we present the algorithm for functions in 3 variables
as well.

Let φ(χ, y, z) — ax + by + cz + d and let the coefficients vary in intervals,

a G [oi,o2], 6 G [61,62], c G [ci,c2] and d G [di,d2]

and let Χ χ Υ χ Ζ G I3 be a box. The half width of an interval is again denoted
by "rad".

The following algorithm computes an inner approximation of θφ(Χ, Υ, Z)
provided Χ, Υ, Ζ are machine intervals and the arithmetic operations are ex
ecuted with a usual machine interval arithmetic. If they are not, let the box
shrink to the largest machine representable box.

�� �� �� �� ��

42 Interval Analysis

A L G O R I T H M 2 (For functions in 3 variables)

Step 1. Compute

[an,<*2] : = [αι,a2] mid X + [bi,62] mid Y + [ci,c2] mid Ζ +[di, d2].

Step 2. Compute

[uuu2]:= δ ([aua2]) rad X + <5([&i,6 2]) rad V + <S([c i ,c 2]) rad Z .

Step 3 . Compute

[wi,wi] : = a 2 - u i ,

[«;2,«)2] : = a i + U\.

Step 4. 7/ u>i < w2 then [wi, w2] C •y>(X, Y, Z). Otherwise no inner approx
imation is available.

Remark. One could imagine another conceptually very simple way to
determine an inner approximation of the range. It would consist of evaluating
the functions at the 4 corners of the rectangle (or 8 corners of the box) with
machine interval arithmetic, and to derive the inner approximation from this
information. An algorithmic description of such a procedure is, already in the
case of 2 variables, more involved than the algorithm. The reason is that the
computation might have to be split up into cases in order to figure out which
of the corners are to be used for the inner approximation, especially, if α or 6
contains zero.

2.11 Interval Philosophy in Geometric Compu
tations

In this section, we apply the results of 2.9 to a few simple standard principles of
geometric computations in order to demonstrate how the global interval aspect
and geometrical ideas fit together. One will see that a slightly unusual kind
of thinking in terms of set theoretic concepts is necessary for understanding
the interval ideas as applied to geometric concepts. This type of thinking is
applicable to geometrical objects that can be represented by intervals. (Not
only intervals, rectangles and boxes, but also balls and simplices belong to this
class.) The set theoretic aspects are now implemented by point-like compu
tations. The term "point-like" indicates that it does not matter whether a
continuous function f(x, y) is called up at a point (a, 6) 6 R2 yielding a point
/ (a ,6) or at an interval pair (Α,Β) e I2 yielding an interval f(A,B). This
means that there is no real computational difference between invoking f(a, b)

�� �� �� �� ��

Interval Philosophy in Geometric Computations 43

or f(A, B) if an interval software package is used, since (a, 6) as well as (A, B)
are both arguments for / . This relationship between /(a, b) and f(A, B) opens
up new vistas for geometrical thinking, which has nothing in common with the
interval arithmetic rounding error control philosophy. In order to introduce
this to the reader who might not be familiar with this kind of thinking, we give
a thorough and broad discussion of only a few but important examples in this
section. However, these examples already express the crux of the philosophy.
Let us turn to the first example.

Example 1. In Sec. 2.8 we considered a simple determinant

D(au 0 2 , 6 1 , 6 2) = £

and we compared three different expressions for the expansion of the determi
nant which led to natural interval extensions of different widths. The simplest
expression was

-Di (0 1 , 0 2 , 6 1 , 6 2) = 0162 - o 2 6i .

Later we need the collection of values of D for all αϊ € Ai, 02 G A2 , 61 G Bi,
62 G B2, that is, just the range of D over Αι χ A2 χ B\ χ B2. In order to
get this range we apply the theorem to D\ and interpret the elements O j , bi as
variables over the domains Ai and Bi, respectively (i=l,2). Since each variable
occurs once, the natural interval extension of D\ gives the range

OD(Ai,A2,Bi,B2) = Di(Ai,A2,Bi,B2)

by Skelboe's principle.

Example 2 . A simple example in the plane is given by the computation to
test whether the line defined by the two points Pi = (αι,δι) and P2 = (02 ,62)
passes or does not pass through the rectangle Tl = (X, Y) with Χ, Y G I.

Again the solution to this problem can be found by a range computation
in the following manner: For each point Q = (x,y) G R2 three possibilities
exist: Q lies on one side of the line through Pi, P2 or Q lies to the other side
of the line, or Q lies on the line. Consider the oriented triangle Τ with vertices
Pi, P2 , Q (the orientation being decided by this order). Then the oriented area
of Τ is defined as

αϊ 61 1
a2 b2 1 .
x y 1

Note that |D(Pi,P2,Q)| coincides with the well-known formula for the (unori-
ented) area of Τ as can be found in any formula collection. Now, for all points
Q G R2 lying on one side of the line, D has the same sign, for all Q lying on

D{PUP2,Q) = \

�� �� �� �� ��

44 Interval Analysis

the other side of the line D has the opposite sign, and D is zero if Q lies on
the line. This gives rise to the following criterion:

If a Q G TI exists such that D(Pi,P2,Q) = 0 (saying that Q is on the
line) then the line meets the rectangle, and the converse. Equivalently, the line
passes through the rectangle iff 0 G 0£>(Pi, P 2 l 71). Note that DD(Pi, P 2 , TZ) is
the range of the determinant function over a continuum, and that the question
posed can be completely answered just by checking whether zero is in the range
or not!

In order to determine the range, one just has to find an appropriate expres
sion such that the theory can be applied. First of all one has to find out what
the "variables" are. Obviously, in this case they are χ and y since they vary
over X and Y, respectively. The other symbols, a< and b,, are constants in the
expression, since they are the coordinates which fixes the line.

It is clear that the usual expression for the determinant,

αι&2 + b\x + a2y - 02X — i>io2 - o,\y

does not satisfy Skelboe's principles directly. However, we can write down a
different expression such that each variable occurs just once, namely

D4{PUP2,Q) = (| , (α 2 - β ι) + * (6 ι -bi)+ o i f e - a ^) / 2 . (2.26)

By Theorem 3, the natural interval extension of D4 gives the range,

OD(PuP2,Tl) = D4(Pi,P2,U). (2.27)

We note that we have used exact arithmetic and exact interval arithmetic to
describe and to solve the given geometric situation. It is usual to do this when
one thinks geometrically and mathematically. If, however, the computations
are executed on a computer then due to the outward rounding, one gets an
outer approximation

DM = Di(PuP2,K)M

of OD{Pi,P2,H), i.e. DM D OD. Depending on the purpose of the com
putation, one can frequently identify the cases 0 G OD and 0 £ OD with
0 G D m and 0 0 D m , respectively. But if one wants guaranteed answers to the
intersection question, one only has the conclusion

O&Dm imples 0 £ •£>

that is, the line does not pass through the rectangle. The case 0 G D m does
not allow any guaranteed decision since

0 G OD as well as 0 £ OD

are consistent with 0 G D m - The only way out is the construction of an inner
approximation Dj of OD as described in Sec. 2.10. Now one can differentiate
between the relations

0 G ODi and 0 g •£>/.

�� �� �� �� ��

Interval Philosophy in Geometric Computations 45

(3 , 4)

Figure 2.1: Line-box intersection problem

In the first case, 0 € OD is guaranteed because of Dj C •£). In the second case,
no guaranteed decision is possible as long as one keeps the current accuracy
and the methods chosen for getting D\ and D M - One need not worry too much
about this uncertainty since the the area DM \ Dj will be very tiny in general,
such that the probability is small that the case 0 G DM \ Dj happens. If one,
however, relies on a decision, one can repeat the calculation with double or
multiple precision, but still has a small chance of remaining an unknown area.
One also can change the method applied completely and switch to a couple of
left-turn tests (cf. the next example), that can be executed exactly with the
high performance method ESSA, cf. Ch. 4. The test had then the following
form: If the four corners of the rectangle lie strictly to the left of the line
directed from P\ to P2 or if the four corners lie strictly to the right of this line,
then the line does not pass through the rectangle.

A particular example is given by the values shown in Figure 2.1 where
X = [1,3] and Y = [3,4]. This means that 2DA{PuP2,n) = [3,4](5 - 2) +
[1,3](2 - 3) + 2 χ 3 - 5 χ 2 = [2,8]. Since 0 £ D4{Pi,P2,K) it follows that the
line through Pi and P2 does not intersect TZ.

Example 3. The determinant D{P\,P2,Q) is closely connected with the
so-called left-turn test, which is one of the most important primitives in 2D
computational geometry. It is, for instance, needed in algorithms for determin
ing the convex hull of a finite number of points in the plane, cf. Sec. 8.2.

The left-turn test decides, for 3 given points in the plane, say Pi, P2 Φ Pi

�� �� �� �� ��

46 interval Analysis

and Q, whether Q lies left of the line through Pi and P 2 , where the line is
oriented from Pi to P 2 (that is, one looks from Pi in direction P 2 , which makes
the property "left of" meaningful). Now, Q lies to the left of the line from Pi
to P 2 iff the triangle, say T, with vertices Pi, P 2 and Q is surrounded counter
clockwise when passing through the vertices in the order Pi, P 2 , Q, Pi. In this
case, the triangle is said to be positively oriented (by convention) and the area
of Τ is positive, i.e.

D(Pl,P2,Q)>0.

Clearly, if Q is on the line, the 3 points Pi, P 2 and Q are colinear, and the
determinant becomes zero. If Q is to the right of the line, then P 2 is to the left
of the line from Pi to Q, and hence, D{P\,Q,P2) > 0. Swapping the 2 lines
in the determinant shows that D(Pi,P2,Q) = -D{PX,Q,P2) > 0 Thus, the
left-turn test can also be used to check, whether the point Q lies on the line or
to the right of the line.

Instead of the point Q we can again consider a rectangle V, arguing as in
Example 2, which means that we have again derived that,

Κ lies completely to the left to the line through P x and P 2 when the line is
oriented from Pi to P 2 , iff

DD(PuP2,n) = £>4(Pi,P2,ft) > 0.

This criterion is confirmed by Fig. 2.1 reflecting the example and the above
discussion.

Example 4. It is interesting to note that the frame of the 2D test, whether
a line passes through a rectangle or not (Example 2), cannot be transformed to
a 3D test, whether a line in R3 passes through a box or not. The reason is that
an appropriate determinant that could be the base of some range determination
as in Example 2, is missing.

It is, however, possible to reduce the 3D case to several 2D tests, cf. Haines
[99]. The line is defined as a parametric ray

P(t) = Po + tPd

with P 0 = (xo,Vo,zo) and Pd = (xd,yd, zd). The box is defined to be Β =
(Χ, Υ, Z) with Χ, Υ, Ζ G I. The procedure is then to check the 2D line-rectangle
intersections using (2.26) with the generating points P(0) and P(l) in the
projections into the xj/-plane, the yz-plane and the zx-plane. The ray does not
intersect the box iff any of the three following 2D tests fails: The computations
reduce to checking if

0 G 2(xd(-yd -Y) + yd(xo - X)) >n the xy-plane,
0 e 2(yd(-zd - Z) + zd(y0 - Y)) in the yz-plane,
0 G 2(zd(-xd - X) + xd(z0 - Z)) in the zx-plane.

�� �� �� �� ��

Centered Forms and Other Inclusions 47

A numerical example given by Haines [99] is

PQ = (0,4,2), Pd = (0.218, -0.436,0.873)

with the box being Β - ([-1,3], [2,3], [1,3]). The results are

in the xj/-plane [-1.744,2.180] contains 0,
in the yz-plane [0.874,4.364] does not contain 0,
in the zx-plane [—2.182,5.674] contains 0.

The computation could be terminated after having verified that 0 was not in
the projection of the box in the yz-plane.

2.12 Centered Forms and Other Inclusions
Among the many ways to construct inclusion functions the so-called centered
forms play an important role since they are inclusion functions of order 2. The
idea of a centered form was first given in Moore's original book Interval Analysis
which appeared in 1966 [165]. He noted that if functions were developed in a
certain manner then the result gave in general narrower inclusions than many
other possible inclusions. Explicit formulas were found for polynomials by
Hansen [88], for rational functions [209] and for multivariate rational functions
[210]. A general definition of centered forms was given by Krawczyk-Nickel
[142] in 1982.

When Moore [165] computed inclusions for the range of example functions
using the natural interval extensions of various algebraically equivalent formu
lations of a given function he also noticed that he often got narrower results
if the function was developed in a certain manner around the midpoint of the
domain interval. Moore [165] discussed this phenomenon in some detail and he
also compared the results with other methods for including the range.

In 1973 Goldstein-Richman [74] confirmed the results of Moore's [165] ex
periments.

Historically, the basic feature of any centered form for f(x) was that f(x)
was rewritten as

/(*) = /(c) + s(x)

for a given c, which was most often the center of the domain in which / was to
be developed. If s(x) is further developed as

s(x) = (x - c)g(x)

then the forms have a certain second order convergence property as will be
made clear later. The approach was therefore to write /(x) as

/(x) = /(c) + (x - c)g(x)

�� �� �� �� ��

48 Interval Analysis

and then to evaluate the natural interval extension of the resulting expression
over X as

F(X) = f(c) + (X-c)g(X).

From the fundamental principle of interval analysis it followed immediately
that

Df(X) C F(X).

It took a surprising amount of time before explicit definitions of g were
found for functions other than polynomials (Ratschek [210]). It also turned
out that the explicit definitions that were found were too complicated to be
useful. For instance, if / was a rational function, / = p/q, and if the maximum
degree of the the polynomials ρ and q was n, then all partial derivatives of ρ
and q up to the order η were required for an explicit definition of g.

The so-called meanvalue form was commonly used as an inclusion function
of order two. This is nothing more than a natural interval extension of the
well-known meanvalue formula. More general Taylor forms were introduced by
[202]. These forms were also inclusion functions of order two being the interval
extension of the Taylor expansion of the function / .

Both the meanvalue form and the Taylor form did not fit into the historical
setting by Moore discussed above.

It was left to Krawczyk-Nickel [142] to find an ingenious and precise def
inition of a general centered form, which not only covered Moore's historical
form, but also the meanvalue form, the Taylor form and various other inclusion
functions of order two. The general definition is, however, too complicated to
be included in this monograph. Hence we treat the meanvalue form and the
Taylor form separately and we refer the interested reader to Ratschek-Rokne
[212].

We therefore introduce:

1. The meanvalue form.

2. The Taylor form of second order.

We first give a formal definition of the meanvalue form. Let / : D -t R, D C
Rm (as before m is usually 2 or 3 in geometric computations) be differentiable
and let F' : 1(D) -¥ Im be an inclusion function for the gradient, / ' . Then
Τχ : 1(D) -> I defined by

Ti(Y) = f(c) + (Y- c)TF'(Y) for Y e 1(D) (2.28)

where c = mid (Y) or also some other point of Y is called the meanvalue form
function (or shorter: meanvalue form) of / , cf. Moore [165, 169]. Frequently,
F'(Y) can be computed via natural interval extensions of /'(£) (see below) or
via an automatic differentiation arithmetic, or via similar techniques that avoid

�� �� �� �� ��

Centered Forms and Other L·clusions 49

explicit differentiation, see for example [83]. Because of the meanvalue formula
of analysis we have, if Y G 1(D) is given, for χ G Y,

f(x) = /(c) + (x - off (ξ) G /(c) + (Y - c)TF'(Y)

where ξ is a point on the line segment connecting χ and c. Since this formula
holds for any χ G Y it is thus obvious that Of(Y) C Ti(Y). Therefore the
meanvalue form is an inclusion function for / . Its importance arises from its
second order property which is obtained with a low computational effort:

T H E O R E M β (Krawczyk-Nickel [142]). If F' is Lipschitz then the mean-
value form T\ satisfies:

w(Ti(Y))-w(Df(Y)) = 0(w(Y)2).

This theorem states that the meanvalue form converges to the range with a
second order convergence as the width of the domain interval tends to zero.
Later we will simply refer to this as the second order convergence property.
This property is extremely useful for subdivision methods when the widths of
the patches are reduced. An extensive proof of this theorem can be found in
Ratschek-Rokne [212].

Example. Let f{x) = χ - χ2 be defined on D = {χ : χ > 1} C R. (D
instead of R is chosen for simplicity in order to avoid different cases.) An
inclusion function for / ' (x) = 1 - 2 x is

F'(Y) = 1 - 2Y for Y G 1(D)

(natural interval extension of /') and is Lipschitz. The meanvalue form of / is
then

Ti(Y) = (c - c2) + (Y - c)(l - 2Y) for Y € 1(D),

where c = mid Y. The natural interval extension of f(x) to Y is

f(Y) = Y-Y2 for Ye 1(D).

Finally,
af(y) = [y-V2,x- x2] for Y = [x, y] G 1(D)

since / is monotonically decreasing in D. Let us look at the widths of the
inclusion functions:

«>(°/00) = x - x 2 - (» - y 2) = j / 2 - x 2 - (y - x)
= w(Y)(y + x-l).

Using (2 . 8) , (2 .13) and the fact that

|1 - 2Y\ = max{| 1 - 2 x |, | 1 - 2y |} = 2y - 1

�� �� �� �� ��

50 Interval Analysis

for Y = [x, y] € 1(D) we get

ιν(Ά(Υ)) = w[(Y-c)(l-2Y)}
= w(Y -c)\\-2Y\
= w(Y - c)(2y - 1)
= u.(y)(2y - 1).

The width of the natural interval extension is

w(f(Y)) = w(Y) + w(Y2) by (2.8)
= ω(Κ) + \Y\2 - (6Y)2 by (2.13)
= (y - χ) + (y2 - χ2)

= w(Y)(y + x + l).

The width of the range is

v(Pf(Y))) =x-x2-(y-y2)= w(Y)(x + y - 1).

Therefore,

w^Y)) - w(Of(Y))) = w(Y)(2y - χ - y) = w(Y)2 = 0(w(Y)2),

and
w(f(Y))-w(Df(Y))) = 2w(Y) = 0(w(Y)).

One recognizes that T\ is of order 2 and that /(Υ) is of order 1.
A short calculation shows that

w(Tl(Y))<w(f(Y)) iff«;(y)<2,

which means that the meanvalue form is superior for smaller intervals Y. This
is consistent with the fact that the meanvalue form is of convergence order 2,
but the natural interval extension is only of order 1.

From this example it is clear that it is not always wise to take a meanvalue
form - especially for boxes Y with larger width - since its excess-width tends
quadratically to oo as VJ(Y) —• oo whereas the excess-width of the natural
interval extension tends only linearly to oo. This situation is typical for the
whole area of inclusion functions such that meanvalue forms as well as Taylor
forms, which will be defined below, should only be used if w(Y) < l/(2m). This
is an average recommendation and results from our own numerical experience.

Remark 1. One obtains, in general, meanvalue forms with smaller widths
if slopes instead of F'(Y) are used in (2.28). The interested reader is referred
to Alefeld-Herzberger [6], Krawczyk [140], Ratschek-Rokne [212].

Remark 2. The quality of the chosen centered form, for instance the
meanvalue form, depends on the shape of the function being included such

�� �� �� �� ��

Centered Forms and Other Inclusions 51

that for special functions special centered forms are superior, cf. for example
Alefeld-Rokne [7], Rokne [233].

Let f : D -¥ R,D C Rm be twice differentiable, and let F" : 1(D) - + i r a x r a

be an inclusion function for the Hessian matrix /". Then T2 :1(D) I defined
by

T2(Y) = f(c) + (Y-c)Tf'(c)
+ \(Y -c)TF"(Y)(Y -c) for y e 1(D),

where c = m(Y) or any other point in Y, is called a Taylor form function (or
shorter: Taylor form) for / of second order. Because of the Taylor formula
of analysis, T2 is an inclusion function for / . We say that F" is bounded if a
matrix C € J m x m exists such that F"(Y) C C for all Y € 1(D).

T H E O R E M 7 (Ratschek-Rokne [212]) If f is twice differentiable, and if f"
has a bounded inclusion function F" then the Taylor form function, T2, is of
convergence order two. •

If m is large then it is better to avoid the explicit evaluation of F"(Y)
because of the many arithmetic operations one has to perform in order to
obtain T2(Y). For such a recursive computation the automatic differentiation
arithmetic is appropriate as well, cf. Rail [201], Griewank-Corliss [83].

Table 2.1 is intended to show how the different approximations to the range
behave as the width of the domain changes. We consider the function f(x) =
(x2 - 2x + 2)ex over intervals XT = [1 - r, 1 + r], r > 0. (It was decided to
make the intervals dependent on one parameter such that the results could be
displayed in a transparent manner.) We compare the range, Of(Xr), with the
natural interval extension of the function as defined above, f(Xr) — (X2 ~
2Xr + 2)ex", a nested form, fn(Xr) = (Xr(Xr - 2) + 2)eXr, the meanvalue
form, and the Taylor form of second order. Table 2.1 presents the quotient of
the width of a form through the width of the range together with a last column
indicating the best form of the 4 for that value of r. The results indicate that
the overestimation of the range by one of the forms (depending on the range)
is surprisingly small. Indeed, Table 1 shows that for any area a reasonable
form can be found, and that especially for large intervals the natural interval
extension of the original function is an excellent choice.

A large number of other centered forms are possible. We only mention
one further possibility for rational functions that does not require the explicit
computation of derivatives [233]. We let

η m

f(x) = p(x)/q(x) = £ atfl £ bix* (2.29)
i=0 »=0

be a rational function and k = max(n,m). The polynomials p(x) and q(x) are
now developed using Horner's rule at c such that

p(x) = p(c) + s(x)(x - c),

�� �� �� �� ��

Interval Analysis

Γ nat/rge nest/rge mvf/rge Tayl/rge Best
0.0020 5.0001 3.0000 1.0060 1.0015 Taylor
0.0040 5.0000 3.0000 1.0120 1.0030 <t

0.0060 4.9999 3.0000 1.0181 1.0045 ii
0.0080 4.9998 2.9999 1.0241 1.0060 ti
0.0100 4.9997 2.9999 1.0302 1.0076 α

0.0200 4.9989 2.9995 1.0609 1.0152 α

0.0400 4.9957 2.9979 1.1236 1.0310 α

0.0600 4.9904 2.9952 1.1881 1.0473 tt

0.0800 4.9830 2.9915 1.2542 1.0641 it
0.1000 4.9736 2.9868 1.3218 1.0816 tl
0.2000 4.8973 2.9486 1.6800 1.1792 tt
0.4000 5.0096 2.8151 2.4547 1.4356 u
0.6000 5.0506 2.6430 3.2324 1.7839 u
0.8000 4.8896 2.4692 3.9606 2.2215 it
2.0000 3.4634 2.4448 7.3343 6.2222 nested
4.0000 2.4126 2.3537 11.7687 16.4847 natural
6.0000 1.9730 2.2703 15.8920 30.6496
8.0000 1.7385 2.2154 19.9385 48.7386 tt

10.0000 1.5941 2.1782 23.9604 70.7921 u

15.0000 1.3982 2.1239 33.9823 143.3628 tt

20.0000 1.2993 2.0948 43.9900 240.8978 tt

25.0000 1.2396 2.0767 53.9936 363.4185 tt

30.0000 1.1998 2.0644 63.9956 510.9323 tt

Table 2.1: Quotients of widths of inclusions

�� �� �� �� ��

Centered Forms and Other Inclusions 53

q(x) = q(c) + t(x){x - c)

and where the values p(c), q(c) and the coefficients s< and U of

n - 1

t = 0

m - 1

i=0

are calculated explicitly as part of the Horner process.
If we now write f(x) as

f(x) = f(c) + (x-c)r^ (2.30)

then r(x) has to obey the relation

r(x)(x -c)= p(x) - f(c)q(x).

Using the above representation for p(x) and q(x) we get

r(x)(x - c) = p(c) + a(x)(x - c) - f(c)(q(c) + t(x)(x - c))

and finally

fc-l / k \ *-i
r(x) = *(*) - t(x)f(c) = Σ [Σ (aj - Mbitf-'-1 x* = J^r^

i=o y=t+i / »=o
where the undefined coefficients o,j or bj are set to zero. Algorithmically we
have rj = s< - tif(c), i = 1 , . . . , k - 1 where s< and ti were calculated by the
Horner process. The natural interval extension of (2.30) therefore provides an
outer estimate of Of(X) and it is part of the class of centered forms formed by
Moore's definition.

Example. Let p(x) = 4x + 4x2 - x3 - x 5 and q(x) = 2 + 2x + 2x2 + 3x 3

and let X = [1,1 + c]. Then

€ inclusion using (2.30) width inclusion using (2.29) width
0.1
0.01
0.001
0.0001

[0.58662, 0.67666]
[0.65987, 0.66676]
[0.66599, 0.66667]
[0.66660, 0.66667]

0.09004
0.00689
0.00068
0.00067

[0.47663, 0.80444]
[0.64677, 0.68004]
[0.66467, 0.66800]
[0.66647, 0.66680]

0.32781
0.03327
0.00333
0.00033

Alander [2] provides further examples of estimating the range of rational func
tions using the forms given in [210].

»=0 \j=«+l
m— 1 / m

() = Σ Σ h i ^ 1 1 x i =
i=0 \J=»+1

�� �� �� �� ��

54 Interval Analysis

2.13 Subdivision for Range Estimation
It was noted in Sec. 2.6 that the main purpose in estimating the range in
geometric computations was to test whether a given condition was satisfied or
not. For a given function f(x) and an interval X it might be the case that the
result is inconclusive, i.e. the test required the determination of f(x) Φ 0 for
any χ G X, but the result was 0 G F(X). It was also noted that one way to
improve the possibility of a conclusive result was to subdivide X recursively
rejecting subintervals Y for which 0 £ F(Y) until X was exhausted.

The following algorithm provides a skeleton for the more general problem
of computing an outer and inner estimate of the range of a function /(x) over
an interval X. A second algorithm will be given for a computation of an outer
estimate of the zero set of / . Both algorithms only assume the existence of
an inclusion function F for / . However, they will only work in a reasonable
manner if w(F(Y)) - w(Df(Y)) 0 as w(Y) -> 0, cf. [213].

A L G O R I T H M 3 (After Moore-Skelboe)

S t e p 1. Set Y :=X.

S t e p 2 . Set Ζ := F(Y), set W := Z, set Q := Z.

S t e p 3 . Initialize list L = ((Y, W)). Set Z = W.

S t e p 4 . Choose a coordinate direction k.

S t e p 5 Bisect Y normal to the coordinate direction k obtaining boxes Vi, V2

such thatY = Vi U V2.

S t e p 6. Calculate Zi := F(Vi),Z2 := F(V2).

S t e p 7 . Remove (Y, W) from the list L.

S t e p 8. Fori = 1,2 if Z{ £ Q thensetQ := [miniubZj.lbQ^maxObZj,ubQ)].
and enter (Vi, Zi) onto the list.

S t e p 9 . Calculate Ζ := {\J Zi\(Yi,Z{) G L } .

S t e p 1 0 . / / termination criteria hold, then go to 13.

S t e p 1 1 . Denote the first pair of the list by (Y, W).

S t e p 1 2 . Go to 4.

S t e p 1 3 . End

�� �� �� �� ��

Subdivision for Range Estimation 55

Figure 2.2: Sub-box rejection

The rejection of boxes in Step 8 is a two-sided version of the rejection step
in the algorithm in [250].

If the inclusion function F is inclusion isotone, that is, Y C Ζ implies
F(Y) C F(Z) for K , Z e 1(D), then the intersection in step 9 can be dropped.
Practically, one will avoid the formation of the union in each iteration, but one
will always keep track of the smallest value lbZ< and the largest value ubZ,
during the computation. A schematical description of one step of the algorithm
is shown in Figure 2.2. This figure assumes that in Step 4 of the algorithm the
list of boxes consisted of the boxes Y i , . . . , Ye, Y- The figures then shows the
situation after the box Y has been subdivided into boxes Vi, V2 just prior to
Step 8 of the algorithm. The current inclusion for the range over X is Ζ and Q
represents the interior portion of the range which cannot contain the endpoints
of the range. In this example it is clear that Vi will not be added to the list L
since the endpoints of the range cannot be in Vi.

There are three points deliberately left open in the above algorithm:

(A) The choice of coordinate direction A; in Step 5 and the type of subdivision
in Step 6.

(B) The recursion termination in Step 10 is not specified.

(C) The order in which the elements are entered onto the list is not specified
in Step 8.

�� �� �� �� ��

56 Interval Analysis

These points are now discussed in detail.

(A) A number of strategies for choosing the next coordinate direction are
available. They range from simple selection procedures such as a circular choice
of coordinate direction (see [169]) to quite expensive computations involving
Jacobians for functions having the required smoothness properties (see for ex
ample [214]). Each strategy has its own merits depending on the type function
computed and the required accuracy. Some of the other strategies are:

1. Bisecting the side of maximum length. This might not be an optimal
strategy. Consider eliminating domains of the function

f(x) =χι + 10 1 0 x 2 - l , i € [0,10]2

using the above algorithm. For any X = (Xi,X2) it is clear that sub
dividing Xi will have little effect on the range of values obtained from
the natural interval extension of / whereas recursive bisection of X2 will
eventually result in the elimination of a subbox.

2. Another strategy was given in [214] where the widths sum

Wi = η>[/(Υ')] + w[f(Y")}

is minimized w.r.t. i = 1 , . . . ,n where Υ1, Y" denotes the halves of Y
that occur if the i-th edge of Y is bisected.

3. Other bisection recipes are given in Kearfott [125], Csendes [28], Csendes-
Ratz [29], [246], Ratschan [205] and Nataraj-Sheela [176].

(B) The algorithm has to have a termination criterion. A number of pos
sibilities for such criteria exist some of which are:

1. The standard criterion will be that the computation shall terminate, if,
given some e > 0 as input parameter for the absolute approximation error

l b Q - l b Z < e
and

ubZ - ubQ < e.

Since Q C Of(X) C Z, the range is included from the inside as well as
from the outside with e tolerance.

2. The computations terminate after a fixed number of steps if no success
is achieved, that is, if Ζ does not shrink and Q does not grow.

3. The computations terminate when all boxes Yi are smaller than a certain
tolerance (this strategy is linked to how the elements are entered onto
the list in (C)).

�� �� �� �� ��

Subdivision for Range Estimation 57

4. The computations terminate when the intervals Zi are all smaller than a
given width (also linked to the list ordering in (C)).

(C) The ordering of the boxes on the list is important and depends on the
purpose and on the side conditions of the computation. Some of the choices
are:

1. A simple choice is to order the boxes by last in first out. This results
in short lists since the newly generated boxes are worked through im
mediately. There is no convergence guarantee that Q or Ζ tend to the
range.

2. Another choice is that the widest box is chosen for the bisection. There
is no additional ordering effort necessary since the eldest boxes are the
ones with largest width. If the inclusion function satisfies w(F(Y)) -> 0
as w(Y) -> 0, then Q and Ζ tend to the range.

3. The choice of the next box might be determined by two factors: the width
of the box and the extremeness of its range. That is, a widest box Y such
that lbY = \bZ or ubY" = ubZ of Ζ in Step 9 is chosen for bisection (see
Skelboe [250]).

4. One of the boxes corresponding to the extreme points of Ζ and Q is
chosen. The algorithm circulates among the boxes forming the 4 possible
endpoints.

Each of the above choices generate new algorithms with different proper
ties both with respect to expected speed as well as convergence. An initial
choice might be (A)(1), (B)(1) and (C)(2), however, this should be modified
depending on the function and depending on the use of the result in succeeding
computations. If / satisfies certain differentiability conditions then it is possi
ble to enhance the algorithm with other tools. Examples of such tools are the
monotonicity property discussed in 2.10 which is expected to be more success
ful the smaller the box widths are (just consider the trivial one dimensional
case of computing the range of y = x2 over [—1,1] where monotonicity will
occur after only one subdivision) and interval Newton iterations which will be
discussed in the next chapter.

The second algorithm aims to shrink the domain, X, of / to an outer
estimate of the zero set of / in X. (Instead of zero, any other real number can
be taken.) This algorithm is slightly different from the previous algorithm in
that it aims to reject parts of the domain guaranteed not to contain zero as
fast as possible.

This type of algorithm is used if X is rather large or if the zero set is not a
discrete set or if it is an involved set such that the application of local methods
like Newton's method does not serve any purpose. Typical applications of such
algorithms are in contour tracing of implicitly defined surfaces or curves. (This

�� �� �� �� ��

58 Interval Analysis

topic will be treated extensively in Ch. 6.) As an example of this, we consider
the problem of embedding the curve defined by f(x, y) = x2 + 3xy+j/ 2 - 1 0 = 0
in the plane, in a working area. This working area will be a collection of smaller
rectangles which are prepared for a more effective processing of representing or
drawing the curve (continuation methods, simplex methods, linearization, ev.
Newton's method, etc.) The output of the algorithm is either that 0 £ • f(X)
or a list of boxes of width smaller than e > 0 that contain the zero set.

A L G O R I T H M 4 (Estimating the zero set ofF)

Step 1. Set Υ := X.

Step 2. Set Ζ := F(Y), set W := Z.

Step 3. IfOtf F(X) then output "zero not contained in • / (Χ) " and go to 14.

Step 4. Initialize list L := ((Y,W)).

Step 5. Choose a coordinate direction k.

Step β. Bisect Y normal to the coordinate direction k obtaining boxes V\, V2

such thatY = Vi U V2.

Step 7. Calculate Zx := F(Vi),Z2 := F(V2).

Step 8. Remove {Y,W) from the list L.

Step 9. For i = 1,2 if 0e Ζ* then enter {VuZi) onto the list.

Step 10. IfL = 0 then output "zero not contained in ^f(X)" and go to 14-

Step 11 . / / the widths of all the boxes on the list are smaller than e then go
to 14.

Step 1 1 . Denote the first pair of the list whose underlying box has width
smaller than e by (Y, W).

Step 13. Go to 5.

Step 14. End

It is interesting to note that when the computation is executed on a ma
chine and the output is "0 £ • f{X)n then it is guaranteed that the result is
correct (provided the machine interval arithmetic is implemented correctly and
provided the program is otherwise correct). This means that any logical deci
sion that depends on the correctness of the above computation is correct and
that anomalous results cannot occur.

In this algorithm the details of

(A) the choice of coordinate direction k in Step 5,

�� �� �� �� ��

Summary 59

(Β) the recursion termination in Step 11, and

(C) the order in which the elements are entered onto the list in Step 9,

are again left open. The choices are quite similar to what discussed for the
previous algorithm except for the list order. In (C) we therefore recommend
that the list be ordered by increasing min{|lbF(Zj)|, |ubF(Zj)|}, expecting the
largest success in deleting subintervai when the boundary of the range over a
subintervai is closest to zero.

Ab initio one would expect that the ordering of the list is redundant, and
that the algorithm would function quite well by simply exhausting parts of the
domain in any order, for example, subdivide a given piece until it is rejected
and then treat the next piece and so on. This is in fact not the optimal strategy
since a termination criterion is present. The simple exhausting strategy would
result in a potentially quite unbalanced list of boxes when the algorithm was
unsuccessful with large boxes that might have been easily rejected remaining
on the list. Further processing would then be less effective.

2.14 Summary
In this chapter we introduced interval arithmetic both theoretically and in
a practical implementation. A number of fundamental properties of interval
arithmetic were discussed. Finally, we discussed the important concept of in
clusion functions in some detail. This discussion is now summarized below.

There are two main kinds of inclusion functions which can easily be con
structed:

(1) Natural interval extensions,

(2) Centered forms:

(a) Meanvalue forms,
(b) Taylor forms (of second order).

Natural interval extensions may be used in general even if / is not differ
entiable. Their use is recommended if the domain Y is "larger", that is, if

> 1/2 or w(Y) > l/(2m) where m is the number of variables of / .
Meanvalue forms may be used if / is differentiable, if / ' has an inclusion

function F' which is Lipschitz, and if w(Y) < \.
Meanvalue forms involving generalized gradients may be used if it cannot

be decided from the outset whether / is differentiable or only generalized dif
ferentiable, and if w(Y) < \. Such an indeterminate situation occurs, for
example, if /(x) = max(/i(x),/2(x)) with / i , / 2 G C1. Then the differentia
bility properties of / at χ cannot be determined before /i(x) and / 2(x) are
evaluated.

�� �� �� �� ��

60 interval Analysis

This undecided situation does not cause any disturbance when programming
the code. One just sets F' as an inclusion function for the generalized gradient.
If / is finally (locally) differentiable in Y, then the generalized gradient shrinks
to the gradient and F' is an inclusion of the gradient over Y, see Ratschek
[211].

Taylor forms may only be used if a direct computation of the meanvalue
form is not possible or if the Hessian inclusion F"(Y) is already available and
can be incorporated without difficulties. / has to be twice differentiable, / "
must have a bounded inclusion function F" and w(Y) should not be larger
than l/m. The main advantage of a Taylor form is that the boundedness is
the only side condition and that it is easy to prove in contrast to the Lipschitz
condition required for the meanvalue form.

The above inclusion functions might all be used in the subdivision algo
rithms in Sec. 2.12.

�� �� �� �� ��

Chapter 3

I n t e r v a l N e w t o n M e t h o d s

3.1 Introduction

Many geometric computations involve non-linear equations. These equations
arise most often when defining non-linear surfaces. Intersecting such surfaces
in computer aided design (see [78, 108]) or raytracing surfaces in computer
graphics (see [266]) are a couple of examples where the manipulation of the
surfaces result in the computation of the zeroes of the non-linear functions.

Computing the zeroes of non-linear functions (in one or more variables) is
an active area in numerical analysis and several monographs have been written
surveying the state of the art (see for example [191] for an excellent survey up
to the date of publication).

In the interval setting some effective methods based on a generalization
of Newton's method have been developed. These methods, known globally
as interval Newton methods, are now discussed here focusing on a particular
practical realization.

The interval Newton method was introduced by Moore [165]. It is an excel
lent method for determining all zeroes of a continuously differentiable function
φ : Χ - τ Rm where X e J m . The interval Newton method combines global
reliability with the excellent local behavior commonly known from non-interval
Newton methods. Refinements and further discussions of the method are due
to Krawczyk [138], Nickel [181], Hansen[89], Hansen-Sengupta [96], Hansen-
Greenberg [94], Alefeld-Herzberger [6], Krawczyk [141], Neumaier [179], Kear-
fott [127] and many others.

Before the method is specified we have to define what is meant by solving a
system of linear interval equations since these occur as an integral part of the
interval Newton method. An unfortunate notation is widely used to describe
such equations since it uses the notation of interval arithmetic in a doubtful
manner. This can lead to misunderstandings. I.e., let A € J m x m , Β € Im then

61

�� �� �� �� ��

62 Interval Newton Methods

the solution of the linear interval equation (with respect to χ or X)

Ax = Β or AX - Β

is not an interval vector Xq that satisfies the equation, A X q = B, as one would
expect. The solution is defined as the set

X = {x G Rm : ax = b for some α G A, b G B).

The historical reason for this definition, which may appear rather cumber
some, is that A and Β are thought of as a matrix resp. a vector which are
enhanced by small errors or equipped with data perturbations. Hence any
point matrix of A could be the true matrix of the system and any point vec
tor of Β could be the true right hand side of the system. An interval solution
that keeps the philosophy of always containing the true (but unknown) solution
therefore has to include all those combinations that occur in the definition.

Similarly, if c G Rm, then the solution of the linear interval equation

A(x - c) = Β or A(X - c) = Β

with respect to χ or X is defined to be the set

X:=c + Y:= {c + y:y£Y}

where Y is the solution of the interval equation Ay = B.
For example, the solution of the linear interval equation

[1, 2}x = [1, 2] (3.1)

is X = [1/2, 2] (which in this case can be found by setting X = [1, 2]/[l, 2]
according to the definition of interval division). If we multiply, for comparison,
[1, 2] and X we get

[1, 2]X = [1, 2][l/2, 2] = [1/2, 4]

which is an inclusion for the righthand side of (3.1).
In higher dimensions matters only get worse which can easily be seen by

considering the system

/ [2,4] [- 1 , Π - 3 , 3] \ f 3 2)
{[-1,1] [2-4]) X - \ [0,0] (3 2)

In order to describe this set the tools of interval analysis have to be augmented
by the tools and techniques of linear programming.

The solution set of (3.2), obtained in [179], is shown in Fig. 3.1. The
interest, from the point of view of interval analysis, is to find the smallest
interval vector that contains the solution set. Applying Cramer's rule formally

�� �� �� �� ��

Introduction 63

C r a m e r ' s r u l e

Figure 3.1: Solution set and inclusions

to (3.2), that is, we adapt Cramer's rule for solving systems of linear equations
and admit interval entries in the vectors instead of real entries, results in an
inclusion Xc = ([—4, 4],[—1, 1])T. Further, the smallest box including the
solution is Xs = ([-2, 2],[-l, 1])T (see for example [179] for how to compute
Xs for this example). The inclusion Xc computed by Cramer's rule and the
smallest box X§ including the solution set are also shown in Fig. 3.1.

We also note that

AXC = ([-17.0, 17.0], [-8.0, 8.0])T and AXS = ([-9.0, 9.0],[-6.0, 6.0])T.

Clearly, Β C AXs C AXc, however, even in the case of AXs we have w(AXs —
B) = 12 which shows that AXs is quite far from B.

The above examples show that the solution set is not a box in general and
that even the smallest box including the solution set can be quite far from the
solution set. It is therefore the aim of interval arithmetic solution methods to
find a box which contains the solution set and which is as small as possible.

Below we will clarify why the solution set of a system of linear equations
need not be an interval vector. Although we can not deal with the whole theory
of the computation of solutions to linear interval equations in this monograph,
since it would lead us too far from our aims, we can provide a reasonable
discussion showing why the solution set can only be expected to be included
when computing with interval tools.

The main reason is that simple matrix operations already lead out of the
interval domain even if they would be executed optimally as is the case with
the interval arithmetic operations. Let us go back to the interval product. Let

�� �� �� �� ��

64 Interval Newton Methods

Α,Β €l, then
AB = {ab : α € A,b £ B}. (3.3)

The right hand side can be interpreted as the range of the function f(x, y) = xy
over Α χ B. Since each variable occurs only once, we can apply Theorem 3
saying that the range is equal to the natural interval extension.

The situation changes if we consider matrix products. Let A = (Aij) and
Β = (By) be two m x m matrices with interval entries .Ay and By. The
product was defined in formal analogy to the product of matrices over R, that
is

AB = (Cik)i,k=l,...,m

where
tn

This definition guarantees that the fundamental principle of interval arithmetic
is valid for matrix products.

The definition can, however, no longer be interpreted as as the range of the
underlying real matrix products as was the case with the simple product of two
intervals, such as

{AB : Αζ Α,Β £ Β}, (3.4)

cf. the right hand side of (3.3). The set (3.4) is the range of the function

f(x,y)=xy, x,yGRmxm

for χ G A, y e B. Skelboe's principle is no longer applicable, since, if m > 2,
the variables, which are xy, j/y occur several times if the product were to be
written out as a matrix of arithmetic expressions. Simple examples show that
it is not possible to avoid it:

In order to make the example as transparent as possible, we chose the
product of a real 2 x 2 matrix and an interval vector,

-(-!!!). "-('-i-1')-
The regular product definition gives

whereas a product definition via (3.4) gives

�� �� �� �� ��

The foterval Newton Method 65

which is not an interval vector, but is sufficient to include all possible matrix-
vector products for the example such that the fundamental principle of interval
arithmetic would be valid for this set.

If one compares the two sets, one recognizes that the second set is just a
diagonal of the first set AB which is a square.

Let us finally return to the solution set of a linear system of interval equa
tions. Clearly each interval arithmetic method for solving such a system must
be an interval extension of a method for solving non-interval systems of equa
tions (since these are the special case of point matrices for which the interval
method must remain valid). This implies that matrix operations are involved
which will lead to the overestimates shown in the above example.

Further discussions on interval linear equations are found in Hansen [92,93],
Ning-Kearfott [186], Neumaier [180], Shary [245] and Rohn [231, 230].

3.2 The Interval Newton Method
In the following we develop the interval Newton algorithm for determining the
zeros of φ : X -> Rm in X e J™. Whereas one step of the non-interval Newton
iteration procedure consists of computing a zero of the system of equations
linearized about the current iterate to find the new iterate, the interval Newton
method computes an including interval system for the linearizations of the
equations about a point over the current iteration interval (or an inclusion to
these equations) then solves this system in an including manner for the next
iterate. This means that the algorithm is not a direct generalization of the
scalar Newton algorithm. It is therefore developed from first principles here.

Let x,y G X and φ = (φι,...,φτη)τ be expanded componentwise by the
meanvalue formula at x,

<Kv) = 4>(x) + - *),

where
Ασ) = (νφί(σ1),..., V < M o - m)) T

for a matrix σ = (σι,..., om), σ< G Rm and G χ V y. We define

J(Y), Yei'X)

a bit outside our usual convention as the natural interval extension of J to YM,
that is, each σ< is replaced by Y, i = 1 , . . . ,m. From the definition of J(o) we
obtain

j(Y) = MY),

such that J(Y) is nothing but a natural interval extension of the Jacobian
matrix 3φ{χ) to Y. Note that J(a) is not a Jacobian matrix. If y = ξ is any
zero of φ in X then

J(a)(x - ξ) = φ(χ).

�� �� �� �� ��

66 Interval Newton Methods

This equation leads to interval Newton methods, in the the same manner as
we get non-interval Newton methods in the non-interval case, cf. the iteration
statement given below.

The following prototype is nothing more than a very rough sketch of New
ton's method for a first discussion. It will be refined in Sec. 3.3. The norm in
Step 2 can be any norm and Φ is an inclusion function for φ.

A L G O R I T H M 5 (The Interval Newton Algorithm - first sketch)

Step 1. SetX0 := X.

Step 2. For η = 0,1,2,...

(i) choose x„ € X„,

(ii) determine a superbox Zn+\ of the solution Yn+i of the linear interval
equation with respect to Y

^Χη)(χη-Υ) = φ(χη), (3.5)

(Hi) set

Xn+i •= Zn+i ΠΛ"„, (3.6)

(iv) if | |Φ(Χ η +ι)| | < e (or use any other suitable criterion) go to 3.

Step 3 . End.

Interval Newton methods are distinguished by the particular choice of the
superbox Zn+\- For example, if Z„+i is the box hull of Yn+i, that is, the
smallest box containing Yn+i, then the method is called the interval Newton
method (in the proper sense). If Zn+i is obtained by using interval Gauss-
Seidel steps combined with preconditioning as will be explained in the next
section, then the method is named after Hansen-Sengupta [95]. Krawczyk's
[138] method and Hansen-Greenberg's [94] methods are also widely used. Con
vergence properties exist under certain assumptions. The following general
properties are useful for understanding the principle of application of the algo
rithm, see Moore [165, 167], Alefeld-Herzberger [6], Neumaier [179]:

Basic Properties of the Interval Newton Algorithm

1. If a zero, ξ, of φ exists in X then ξ G Xn for all n. This means that no
zero is ever lost! This implies that:

2. If Xn is empty for some η then φ has no zeros in X.

�� �� �� �� ��

The interval Newton Method 67

3. If Zn+i is obtained by Gauss-Seidel or Gauss elimination suppressing the
intersection step (3.6) or its variations (3.10), (3.12) or (3.11) (with or
without preconditioning) then

(i) if Z„+i C X N for some η then φ has a zero in X ,
(ii) Zn+\ C int X N for some η then φ has a unique zero in X (where int

means topological interior).

4. Under certain conditions one obtains

w(Xn+1)<a(w(XN))2

for some constant a > 0.

Point 3(i) of the basic properties gives rise to develop an

Existence test (first sketch). Execute only one sweep of the interval
Newton algorithm, i. e. only the sweep η = 0, drop or leave the preconditioning
and replace the steps 2(iii) and 2(iv) of the above sketched algorithm by the
step

2.(Hi') if Z\ C X 0 then Z\ contains a zero of φ X q ,

Although it is likely that the existence test is valid for almost all reasonable
variants of interval Newton methods its validity has been proven for only a few
special versions, for example, the Hansen-Sengupta version [96].

Remarks. There are a great variety of possible improvements and refine
ments to the interval Newton algorithms. We do not incorporate all of the
details of these improvements since we want to keep the essentials of the the
ory transparent. Nevertheless, we mention a few of the possibilities so that the
reader can get an idea of what directions they take.

(i) Use of slopes. The interval Newton algorithm remains valid if the Ja
cobian J(x„) in (3.5) is replaced by the slope matrix or an inclusion of
the slope matrix. I.e., the interval in the i-th line and j-th row of such a
slope matrix could be an inclusion of the set of slopes

Φί(Χ}) ~ Φί(Χηί) γ

where Xj, xnj and X n j are the j-th coordinates of x, xn and X N , respec
tively.
Since the slope matrix is included in the Jacobian matrix, J(xn), the
convergence of the interval Newton algorithm will be faster if the slope
matrix is used. The related theory can be found in Neumaier [179], p.
202.

�� �� �� �� ��

68 Interval Newton Methods

(ii) Use of Lipschitz matrices. If one has to deal with functions φ that are
not necessarily smooth then it might still be possible to apply the interval
Newton algorithms if so-called Lipschitz matrices can be found for φ.
These Lipschitz matrices then replace replace J{xn) in (3.5). The reader
is referred to Neumaier [179], p. 175. Other methods for non-smooth
systems can be found in Kearfott [129].

(iii) An interval Newton variant of Oliveira [189]. When creating the New
ton iteration step, Oliveira uses a second order Taylor development of φ.
This results in a variant of (3.5), where J(x„) is replaced with expres
sions in J(xn), which is a point matrix, and interval extensions of the
second derivative of φ over Xn. Improvements of the Newton algorithm
performance could be expected if the dimension of φ is not too high and
if the box Xn is sufficiently small.

Fomia [55] goes one step further. If a φ only consists of polynomials,
he uses higher order Taylor expansions of φ. This has the effect that
the higher derivatives of the polynomial vanish if the degree of the poly
nomials is lower than the order of the Taylor expansion, and that the
non-vanishing polynomial derivatives need to be evaluated on point ar
guments only.

(iv) Boundary based interval Newton variants [249]. This variant does not
use the midpoint xn or any other point xn of Xn as developing point
of the Newton step. Instead facets of Xn are looked for that satisfy
0 G Φ(Ρ). The knowledge of such facets give information on how to chose
the formula for the particular Newton step appropriately.

The next section discusses a very effective practical realization of the New
ton algorithm which will in the end lead to a list of boxes whose union will
contain all the solutions of the equations. Such a list occurs by splitting pro
cesses which are part of this realization.

As an example of why splitting may be beneficial consider the equation
system (3.2) where it is clear that the list of boxes ([-2, -1] , [-1 , 1])T,
([-1, l],[-0.5, 0.5])T, ([1, 2],[-l, 1])T provides a better inclusion than the
optimal single box ([-2, 2],[-l, 1])T.

3.3 The Hansen-Sengupta Version
The Hansen-Sengupta [95] version is a very promising variant where the linear
system occurring in the Newton iteration step is solved by

(A) a preconditioning step,

(B) relaxation steps (Gauss-Seidel).

�� �� �� �� ��

The Hansen-Sengupta Version 69

Since we discuss just one iteration of the Hansen-Sengupta variant in the
sequel we suppress the indices η when writing down the formulas that occur in
the n-th iteration. That is, we write

J(X)(x -Y) = φ(χ) (3.7)

instead of
J(Xn)(Xn -Y) = φ(Χη)

and, accordingly, we search for a superset Ζ of the solution set of (3.7), where
X, J(X),x and φ(χ) are given. The solution set of (3.7) is also denoted by Y.
If we want to refer to the former, original box X, we are more likely to avoid
misunderstandings if we speak of the initial box Xo, reminding us that the box
ΛΌ was defined as the original box X.

(A) The preconditioning step

It was argued in Hansen-Smith [97] that the system (3.7) was best solved
by premultiplying it by an approximate inverse of mid (J(X)) where a non-
interval floating point arithmetic is satisfactory both for the inversion and the
pre-multiplication.

If the approximate inverse is Β then we obtain

BJ{X)(x -Y) = Βφ{χ)

or
M(x -Y) = b (3.8)

where Μ = BJ(X) and δ = Βφ(χ). In this manner the system has been
modified to a system that is almost diagonally dominant provided the widths
of the Jacobian entries are not too large.

Such systems are also amenable to Gauss-Seidel type iterations because of
the likely diagonal dominance. This will be discussed below.

It is obvious that the solution set of (3.8) contains the solution set of (3.7)
such that no solution is lost in the above transformation. The only thing we
have to do now is to solve the linear interval equation (3.8).

In cases where the inverse midpoint preconditioning as described above
yields poor results one should try to determine optimum preconditioners by
solving the easy linear programming problems given by Kearfott [125].

(B) The relaxation step (Interval Gauss-Seidel step)

We know that all zeros of φ lying in X (where this X abbreviates the
former Xn), are contained in the solution set of (3.8). The relaxation step tries
to shrink X. It can, however, happen that when X is made smaller it is split
into two or more disjoint boxes, containing all solutions in question. In order to

�� �� �� �� ��

70 Interval Newton Methods

avoid an exponential increase of the number of subboxes the further steps are
applied to the hull of the subboxes in such cases. A splitting into two subboxes
is only done when the current iteration of the corresponding Newton method
is finished.

The relaxation procedure for linear interval equations was developed in
Hansen-Sengupta [96]. It consists of the application of the well-known non-
interval Gauss-Seidel iteration procedure (see for example Conte-de Boor [27])
in an interval context (see also the discussion of related methods in Alefeld—
Herzberger [6]). Single steps (iterations) of this relaxation procedure are here
used to solve the preconditioned set of equations (3.8) and it is expected that
the procedure will be efficient since the coefficient matrix Μ will in most cases
contain the identity matrix I due to its construction as BJ(X), although this
is not guaranteed since we only required that Β should be an approximate
inverse of mid (J(X)). It should also be noted that the matrix Μ is kept
constant throughout one relaxation step (i.e. Μ = BJ(X)) whereas the vector
X is updated.

In one relaxation step the equation M(x — Y) = b is solved for the i-th
component Yi obtaining a superset of Yi by using the known inclusions Xj for
Yj, J #*i

m

Zi = Xi + M„H £ Μφ, - Xj) - bi) (3.9)
.7=1

where Xj, etc., denotes the j-ih component of x, etc. This interval is immedi
ately used to intersect and update the i-th component Xi,

Xi := Xi Π Zi (3.10)

subsuming step 2.(iii) of the interval Newton algorithm.
This calculation is performed for all i, 1 < t < m, first for the indices where

0 £ Ma and then for the remaining indices where 0 6 M«. This strategy
results from the observation that the updating of (3.10) with components Xi
where 0 £ M« improves (makes smaller) all the components Zj via formula
(3.9). This does however not hold for components Xi with 0 G M«.

If the intersection (3.10) is empty for some i then it follows from the prop
erties cited in the last section that there is no solution in the current box X.
This intersection has to be suppressed if the interval Newton iterations are used
for the existence verification of solutions.

When the intersection is not empty then the computation continues with
the next component and the updated Χ[β.

�� �� �� �� ��

The Hansen-Sengupta Version 71

If 0 e Mu and if
m

0 6 £ Μ 0 (* , - Χ ,) - δ <

then we set Zj = (—οο,οο). In this case the intersection (3.10) does not result
in a narrowing of Xi; hence no useful information is obtained.

If
m

0? Σ Mijixj-Xj)-^

and 0 € Mu then Z< consists of two non-overlapping semi-infinite intervals
separated by an open set (gap) according to the extended interval arithmetic
division given in (2.7). The intersection Zj Π Xi may now be empty or consist
of one or two intervals. In the first two cases the computation proceeds as for
the case 0 £ Mu.

If the intersection results in two intervals then the box may be split normal
to this coordinate direction. It might be impractical when the box is split
with respect to several coordinate directions, thus resulting in a proliferation
of subboxes as mentioned before. A splitting is therefore only done once during
the iteration, i.e. vertical to the direction of the largest gap or two largest gaps
at the end of the iteration. In practice one has to keep track of both a gap and
the index of the coordinate where it occurs.

The gaps are also not used right away; they are saved until the other tech
niques have been employed to narrow the current box. Also the gap and its
index may be deleted if it is outside the current box.

As a simple numerical example of the Gauss-Seidel process we subject (3.2)
to one Gauss-Seidel step starting with the vector X = ([—4, 4], [—2, 2]) and
χ = ([0.0], [0.0]). Since 0 £ Mu, i = 1,2 equation (3.9) is applied directly. After
the intersection step (3.10) we obtain the new Xi = ([-2.5, 2.5], [-1.25, 1.25])
which is a substantial improvement.

Let X be a box, φ, Β, and Μ as defined above. The following iteration aims
to shrink X but not to loose any solution of the equation system Μ (χ — Υ) = b.

A L G O R I T H M β (One single relaxation step (Interval Gauss-Seidel step))

Step 1. Fori = l ,2, . . . ,m

i/0 £ Mu then

�� �� �� �� ��

72 Interval Newton Methods

(a) set
m

Zi := Xi + M«\ £ Μ0·(χ; - Xj) - h)

j = i

and
Xi-XiHZi. (3.11)

(b) IfXi = 9 then terminate and report

• no solution in X (input box).

Step 2. Fori = l ,2, . . . ,m

t /Oe Ma then

(a) set
m

Zi := Xi + Mrr\ £ M^XJ - Xj) - b{)

and
Xi-.= Xir\Zi. (3.12)

^ If Xi = 9) then terminate and report

• no solution in X (input box).

(c) If Xi has a gap then replace Xi by its hull while keeping track oft
and gap.

A further numerical example is given by

M l , 2] [1,2] \ / [1.0, 1 .5] \

[1,2] [-1 ,2] J * * Y)-{ [2.9, 3.0]) • [d U >

We start the Gauss-Seidel process with the vector X = ([1, 2],[1, 2])T and
χ = m(X). Since 0 £ Mn = [1, 2] we perform the first step of the procedure
and obtain

Zi = x i + (M i 2 (x 2 - X 2) - 6 i) / M n

= 1.5 + ([1, 2](1.5 - [1, 1.5])/[1, 2] = [-1, 1.5].

Performing the intersection step we get X\ := [1,1.5], a halving of the first
coordinate interval. Now, 0 G M 2 2 so we compute

Z2 = xz + [Μ 2 ι (χχ - Χχ) - bi)IM22

= 1.5 + ([1, 2](1.25 - [1, 1.5]) - [2.9, 3.0])/[-l, 2] =]0-3,3.9[

�� �� �� �� ��

Tie Hansen-Sengupta Version 73

where the notation]a, b[indicates that the result is to the left of and including
a and to the right of and including b i.e. there is a gap (a, 6). The intersection
of this result with X2 = [1, 2] now shows that X2 := 0 and hence X := 0 which
shows that (3.13) has no solutions in X.

If X has been shrunk significantly then it makes sense to repeat the step
with the smaller X using the values of Μ and b from the last iteration (simplified
relaxation step). This can be repeated several times until the shrinking is no
longer significant. (We say that the shrinking is significant if the ratio of new
box volume to old box volume is smaller than 0.9. This threshold results from
computational experience and should be adjusted upwards with increasing m
and increasing expense in recalculating J{X)-) After the termination of the
relaxation step and the dependent simplified steps the largest one or two gaps
are collected and they will be used to split the output box in two or four parts
for further processing.

Remark 1. In order to determine the hull of that part of the solution
set of the system M(x -Y) = b which lies in X, the complete Gauss-Seidel
algorithm (consisting of the Gauss-Seidel steps where after each step the values
M, x, and 6 are calculated anew from the current X) can be applied to X. In
order to get convergence to the hull one has to split the current box after each
iteration when no shrinking or only insignificant shrinking could be obtained.
Then the algorithm has to be applied to each of the boxes separately. Finally,
all the solutions to the different branches have to be brought together to make
up the whole solution set. The number of boxes can increase quite rapidly
as can be seen from Figure 3.1 where sloped lines bounding the solution set
have to be covered by axis-parallel rectangles. The number of boxes is therefore
proportional to the desired accuracy in the solution. For convergence conditions
see Neumaier [179]. The complete algorithm is not described here in further
detail since we only use the algorithm as part of the interval Newton process
to be described below.

Remark 2. Instead of a relaxation iteration Gauss elimination can be used.
This is nothing more than the well-known Gaussian elimination performed in
an interval setting. Gaussian elimination is not as robust as the Gauss-Seidel
steps. It is, however, more effective under certain conditions (for instance, if
the Jacobian or the preconditioned Jacobian matrix is diagonally dominant,
see Neumaier [179]). Practical experiences show that it is best to combine
Gauss-Seidel steps with Gaussian elimination, cf. Hansen [92], Neumaier [179],
Ratschek-Rokne [213].

Remark 3. Further means to improve the efficiency of the relaxation steps
is not to take χ = mid (X), but points with function values near to zero as
developing point. For this one applies a non-interval Newton or quasi-Newton
method to mid (X) and stops at a point χ £ X with small norm ||< (̂x)||
or at the boundary of X if the trajectory followed by the non-interval Newton

�� �� �� �� ��

74 Interval Newton Methods

iterations leave X. Details may be found in Hansen [91], Ratschek-Rokne [213].

We now describe the interval Newton algorithm in more detail.
Inclusion functions J(Y) and Φ(Υ) for ./^(x) and φ(χ) are needed as well

as an e > 0 or e > 0 for a terminating criterion.

A L G O R I T H M 7 (Interval Newton Algorithm after Hansen-Sengupta)

S t e p 1. Let X be given.

S t e p 2 . Initialize list L = (X).

S t e p 3 . Calculate Φ{Χ). IfO& Φ(Χ) then go to 15.

S t e p 4 . Calculate J(X).

S t e p 5 . Calculate B, an approximate inverse of mid (J(X)).

S t e p 6. Set χ equal to the midpoint of X, that is χ = mid (X).

S t e p 7 . Calculate Μ := BJ(X), and b := Βφ(χ).

S t e p 8. Apply one Gauss-Seidel step to M(x — Y) = b to obtain Y. Set
X :=Y. (Keep track of gaps and their indices.) If some Xi = 0 then go
to 15.

S t e p 9 . If X improved significantly in Step 8 set χ := mid (X) and perform
the simplified relaxation procedure. If X = 0 then go to 15.

S t e p 10 . If X improved significantly in Step 9 set χ := mid (X) and return
to 9.

S t e p 1 1 . If X improved significantly in Step 8 and if \\Φ(Χ)\\ > e go to 3.

S t e p 1 2 . 1/ the gaps together with their coordinate directions were saved in
Step 8 then

- update the gaps (they could increase or even vanish by the continued
shrinking process(S.lO)) • Use the coordinate direction with the
largest gap for splitting X using the gap obtaining boxes Vi and V2.
This gap is no longer part ofVi or V2. (The remaining gaps are still
included.) Go to 14-

S t e p 1 3 . If X did not improve significantly in Step 8 then

- choose a coordinate direction ν parallel to which Υγ χ ... xYm has an
edge of maximum length, i.e. ν 6 {t : w(Y) = w(Yi)}. Bisect Y
vertical to direction ν getting boxes Vi, Vj such that Y = Vi U Vjj.

S t e p 1 4 . Enter Vi and V2 onto the list.

�� �� �� �� ��

The Existence Test 75

Step 15. Remove X from the list. If the list is empty, terminate and report

• no solutions.

Step 16. Apply termination criteria. For example: (i) If \\ Φ(Χ) ||< e for all
boxes X of the list then terminate. Or: (ii) If w(X) < I for all boxes X
of the list then terminate since a continuation seems to be unsuccessful.
Etc.

Step 17. Set X to be the box of the list with the largest width.

Step 18. Return to 3.

3.4 The Existence Test
After the termination of the computation of Alg. 7, for example by criterion (i)
of Step 16 the list L contains only boxes whose points have absolute function
values smaller than e. Further, all the zeros of φ(χ) that lie in the starting box
lie also in the final boxes since no zero is ever lost.

If one wants more specific information, one might apply the existence test
(ci. Sec. 3.2) to the boxes Y of the final list. That is, apply one single in
terval Gauss-Seidel step to Y (with or without executing any preconditioning
beforehand) but without executing the intersection operations (3.10), (3.12)
and (3.11). (When dropping the preconditioning set Μ := J(X), b := φ(χ) in
Step 7 of Alg. 7.) After its termination check for the inclusions Zi C Yi for
i = l , m . If they all are valid, Y contains a zero of φ.

Boxes, that fail the existence test, can still contain a zero, but a decision
was not possible during the computation, that is, w. r. to the parameters and
the accuracy.

What is the reason that one makes a rough separation between the existence
test from the interval Newton method? The reason is that there are many older
and newer versions of interval Newton methods. They have two aims: The first
aim is to eliminate parts of the domain of a function that have no zeros, and
the second aim is to prove that a zero does exist in a certain domain. In the
first case the method is mainly used in computations where the shrinking of
the domain is most important. This is especially important when the domain is
globally processed where the shrinking of the domain implies that the removed
parts need not be processed. This makes the computation faster and cheaper.

A typical example for this kind of procedure is the Hansen-Sengupta algo
rithm which was primarily designed for solving global optimization problems,
cf. Hansen-Sengupta [96]. Their algorithm was applied to the derivative of
the objective function with the intention that the parts removed during the
shrinking process could not contain a local extremum (except on the boundary
of X) and hence, cannot contain a global extremum. To apply the existence

�� �� �� �� ��

76 Interval Newton Methods

test in such cases would be a wasting of time since it only would confirm zeros
of the derivative which would be reasonable when one would search for local
extrema, but does not help in most cases when one searches for a global ex
tremum. This is also the reason that only a few sweeps of the algorithm were
recommended to shrink the domain in order not to concentrate the remaining
subboxes around local minimizers which are finally not needed. On the other
hand if the local extrema which are not global are already eliminated by other
means, for example, Moore's [165] famous midpoint test, it makes again sense
to apply the existence test since it can confirm the global extremum since it
also a local one.

To know about the existence of zeros is important especially for geometric
computations: Whether two explicitly defined curves, say y = /(x) and y =
g(x), intersect is equivalent to the question whether the function y = g(x)—f(x)
has zeros. The question has to have a definite answer which is embodied in the
meaning of the existence tests. As we will see, it is first important to shrink the
domain with the interval Newton method and then to confirm the existence of
the zeros in small subareas.

One also can ask for the uniqueness of zeros which is an important issue in
many mathematical and computational disciplines. We drop this interesting
field since is not so relevant for this monograph. For good surveys of existence
and uniqueness tests cf. Neumaier [179] and Kearfott [127].

Thus the idea of the existence test is first to apply the interval Newton
algorithm with an appropriately chosen e > 0 (or e > 0 or both). After its
termination by Step 16 of Alg. 7 a list of subboxes is rendered with widths
that are sufficiently small (or smaller than e). These boxes are characterized by
the fact that the computation up to the termination was not able to prove that
these subboxes do not contain any zeros. This means that these boxes contain
either points which are almost zeros or points which are, in fact zeros. Hence
the existence test is an excellent tool for figuring out boxes which contain a
zero.

The chances of the test to indicate a zero increase the smaller the parameter
e or I is and hence the smaller the widths of the final boxes are. Theoretically
one could already apply the test to the whole domain without any shrinking
by the interval Newton method, but then a positive answer will hardly be
obtained. The reason is that the smaller the box width is the smaller is the
excess-width and the better is the approximation of the range of the box by
the inclusion function and thus the better the numerical results are.

The following variant of the Hansen-Sengupta algorithm combines the in
terval Newton method, which provides an adequate shrinking of the domain,
with the existence test for verifying that there are zeros in the domain as it
is described in the listing of the basic properties in Sec. 3.2. In addition to
the objective function φ(χ) and its domain X, inclusion functions J{Y) and
Φ(Υ) for J<t,{x) and φ(χ) are needed as well as an € > 0 as upper bound for the

�� �� �� �� ��

T i e Existence Test 77

absolute function values in the boxes considered in the terminating criterion.
If φ is very flat then one also should consider the termination via e additionally
or alternatively. As a first guess for c we suggest numbers from w(X)/lO0 for
smoother functions up to w(X)/\O00 for functions with more variations. It
might be necessary to adapt these default values to the actual conditions. We
also suggest to drop the preconditioning in the existence test since the dimen
sions for the purposes of computational geometry are at most 3 so that the
chances of the test to render a positive result will not be improved too much
by the preconditioning.

A L G O R I T H M 8 (Interval Newton Algorithm with Existence Test)
Perform the interval Newton method, Alg. 7. When the computation is

terminated because

(i) the processing list L is empty then STOP (there is no zero of φ(χ) in
X),

(ii) all boxes of the (nonempty) list L are of width smaller than e, then
apply one sweep of Alg. 8 but without preconditioning and without exe
cuting the intersection operations such as (3.10), (3.12), and (3.11) for
these boxes. If

ZCY

for some of these boxes Y where Ζ is the box resulted from the application
of the above-mentioned sweep to Y then STOP (Z contains a zero and
hence Y and X do).

(Hi) If Ζ CY holds for no box Y of the list L, then STOP (no decision
results from this computation whether a zero exists in X or not).

�� �� �� �� ��

Interval Newton Methods

�� �� �� �� ��

Chapter 4

T h e E x a c t
A l g o r i t h m

S i g n o f S u m
(E S S A)

4.1 Introduction

In the introduction to the book we noted that many geometric algorithms are
dependent on the sign of a finite sum. Examples of such algorithms are left-turn
test, orientation questions, Boolean algorithms (point in circle vs. not in circle),
etc. Implementing such algorithms in fixed length floating point arithmetic can
lead to inaccurate or wrong geometric configurations due to falsification of the
computation by rounding errors. Interval analysis techniques can filter some
of the computations and provide guaranteed results in certain cases, however,
some cases are left that have to be dealt with using exact techniques.

For such cases ESSA [221] was developed. It is an algorithms which deter
mines the sign of a sum of real quantities in a guaranteed manner.

The algorithm is especially designed for computations involving geometry
where rounding error free algorithms are particularly desirable due to the strong
influence of rounding errors on logical decisions as mentioned earlier.

In order to meet the condition of being rounding-error-free, the algorithm
is so constructed that it processes data that is already in a binary form. Con
version errors are therefore avoided and hence, as noted in 4.3, only machine
numbers are considered and the algorithm will determine the sign exactly, that
is the result is guaranteed to be correct.

An extensive literature exists on the computation of the sum of a set of
floating-point numbers and in some cases on the relationship of this computa
tion to the stability of numerical and geometric computations [45, 104, 200].
Most of this literature does not mention the restricted problem of the determi
nation of the sign of such a sum.

79

�� �� �� �� ��

80 The Exact Sign of Sum Algorithm (ESSA)

A short abridge of the contents of this chapter is as follows. In the next
section, we consider some of the literature of geometric computations that show
the need of our algorithm concept. In Sec. 4.3, the algorithm is established.
The most important properties of the algorithm are described in Sec. 4.4.
Numerical results are shown in Sec. 4.5 where the algorithm was tested with
both well- and ill-conditioned sums with 10000 randomly generated summands.
In Sec. 4.6 we have a close look at a few of the direct applications of the
algorithm. Finally, in Sec. 4.7, a program for the algorithm written in C++
code is included.

4.2 The Need for Exact Geometric Computa
tions

In this section we reflect further on the relationship between exact computa
tions and computations implemented on a computer, especially for the case
of geometric applications, on the still missing balance and distinction between
these two kinds of computations, and on the need for exact execution of some
primitives occurring in geometric computations.

Simple computational primitives form the basis for many geometric algo
rithms. As an example the Graham scan algorithm [198] for computing the
convex hull of a finite point-set in the plane relies on the well-known left-turn
test which is a primitive that decides whether a query point lies to the left, right
or on a directed line defined by two other different points. The three-valued
result of this primitive can be transformed into the result of the computation
of the sign of a 3 χ 3 determinant, a seemingly simple computational task.
When the formula for the determinant is implemented in finite precision arith
metic, however, roundoff errors may falsify the result so that primarily, a wrong
sign of the determinant, and secondarily, a perturbed or a non-convex hull is
computed. If this hull is used in further computations then configurational
anomalies can occur. A rich variety of solutions have been proposed for the
algorithmic part of the convex hull determination ranging from Graham scan
(mentioned above) to gift wrapping and quickhull [198,190]. Algorithms based
on these solutions would all return convex hulls (i.e. a set of points forming the
vertices of a convex polygon and the adjacency information for the vertices)
if they operated over the field of real numbers. This is not possible in general
since real number implementations of algorithms would require irifinite repre
sentations of data, intermediate results and outputs. Realistic implementations
must deal with finite representations such as the representations available on
a computer. The problems that arise from implementing the algorithms on a
computer using fixed-length floating point computations were, however, mostly
only mentioned and then ignored. In trying to overcome such obstacles Forrest
[56] suggested more generally for all kinds of geometric computations

�� �� �� �� ��

The Need for Exact Geometric Computations 81

One of the steps in developing a geometric computing environment
is to identify geometric primitives and then to implement these cor
rectly. If primitives are indeed primitive, they ought to be simple
and hence the identification of special cases and their correct treat
ment should be possible. Given correctly implemented primitives,
there is a reasonable prospect of building an environment in which
such primitives can be utilized in a proper manner to build more
reliable geometric systems.

A number of authors have also attempted to provide correctly implemented
geometric computations. One approach is the epsUon geometry discussed in the
thesis by Salesin [237]. He provides a general model for imprecise geometric
computations which include fixed and floating point arithmetic as special cases.
Algorithms based on this model take numerical data as input and provide
combinatorial data as output that provide an exact solution to a perturbed
version of the input. The decisions based on the computation of geometric
primitives are derived with interval tools such that the decisions are either true,
false or uncertain and it is guaranteed that all undecidable decisions are of the
latter type. The uncertain result of a computation is undesirable and part of
the research in [237] is to construct procedures such that the range of inputs
resulting in the uncertain case is limited. Another tool used to implement
primitives in this model is backward error analysis.

Another approach is discussed in [123] where the primitive sign of determi
nant is discussed. A variety of other geometric primitives can be transformed
to this primitive. Interval arithmetic is employed as an interval filter as far as
possible to get a decision for the sign of the determinant. When this fails they
resort to variable precision arithmetic. A determinant used as a primitive in
the construction of a Delaunay triangulation illustrates the method.

A numerically stable convex hull algorithm for a simple polygon as proposed
in [115] is based on backward error analysis. Here the primitive is slope of line
and the decision as to whether a sample point is a point of the convex hull or
not is made by comparison of slopes. In [116] the authors provide an algorithm
that when implemented in fixed length floating point arithmetic constructs a
truly convex hull, that is, the algorithm returns a point set that are the vertices
of a convex polygon even in the presence of roundoff error, where the underlying
concept is again backward error analysis.

Sugihara [259] assumes that the precision of the input data is a given number
of bits, typically less than the mantissa length of a floating point number in
the computational device used. He then shows that degeneracy (vertex degree
> 3, i.e. more than 3 edges meeting at a vertex) can be avoided in a 2D
Voronoi diagram computation implemented in quadruple precision if vertex
perturbation is allowed. He also shows that quadruple precision does not lead
to numerical error in the decisions derived from the numerical computations
for a 2D Voronoi diagram.

�� �� �� �� ��

82 The Exact Sign of Sum Algorithm (ESSA)

Arbitrary precision arithmetic has been implemented by, for example, [103].
It is used by [70] to compute exact results for planar maps. It is easily shown,
however, that the required precision increases rapidly and that the computa
tions become very expensive. In order to reduce the cost of the computations
[159] advocates double-precision arithmetic. The algorithm in [159] calculates
an arrangement of lines that is topologically correct except that neighboring
vertices might be rounded to the same point.

Many of the inconsistencies encountered in the implementation of geomet
ric algorithms can be traced back to degeneracies or special cases. Examples
of such degeneracies are three lines meeting at a point, one point lying on a
line defined by two other points, parallel lines or four points lying on a circle.
Edelsbrunner and Miicke [41] and Yap [274] therefore perturb the data slightly
so that the degeneracies are avoided. This simplifies the logical structure and
the design of algorithms considerably since it removes the degeneracies that are
difficult to manage and which often lead to uncertain decisions. The disadvan
tage with this approach is that the degeneracies might be an integral part of
the geometric model. The perturbations might therefore change essential fea
tures of the model, such as its topology, in an unwanted manner. An example
of such a situation is easily found in solid modelling where many objects have
faces defined by more than three points, yet faces defined by more than three
points constitute degenerate cases.

Let us return to the computation of the convex hull of a finite set of points
in the plane, mentioned earlier. This computation provides possibly the best
example done up to the present for research into a numerical method for a
particular geometric problem in the presence of numerical errors.

Although some authors realized that numerical error influenced the result
of a convex hull computation, it was Li and Milenkovic [147] who made a first
attempt to avoid the dependency on those errors. They designed an 0(n log2 n)
convex hull algorithm which computed an e-strongly convex o(e)-hull. This
means that an approximate hull was constructed so that no point of the set
was more than o(e) away from the required hull and that every vertex could be
moved by a distance e without violating the convexity property. Certainly, the
hull property for the original set was lost. The algorithm uses the notions of
spines, vertebrae and extenders which are quite sophisticated means developed
to exclude instability and wrong evaluation of the geometric situation caused
by the rounding errors which arise from the left-turn test. The algorithm is an
e-geometry type algorithm.

In [59] a similar result is presented using the so-called e-arithmetic. This
arithmetic is based on elementary axioms for floating-point arithmetic. Al
though the algorithms are numerically stable they also only compute an ap
proximate hull.

In this context we again mention the construction of a truly convex hull,
that is based on slope comparisons and backward error analysis, cf. [116].

�� �� �� �� ��

The Algorithm 83

In [122] the approach is again different. The authors use a blend of al
gorithms, some based on interval analysis, to compute different parts of the
convex hull, and they switch to exact computations with variable precision
arithmetic when interval arithmetic fails. The result is an exact hull, that is, it
is truly convex in the above sense, and it is exact, that is, it is the hull of the
original and not the perturbed set. The computational cost is, however, quite
high.

Finally we would like to mention the idea that in order to determine the
sign of the value of an expression such as a determinant it might be possible
to determine the value of only a part expression. This idea seems to have
originated in the paper [123] where it is stated that:

In particular, many such primitive tests, including orientation of
d + 1 points in Ed and point-hyperplane classification, can be for
mulated as the sign of the determinant of a matrix. Since comput
ing values of determinants is very expensive in arbitrary- precisions
arithmetic, it is natural to ask whether is is possible to compute
the sign without computing the value.

Our algorithms strictly confirms and emphasizes this fine idea.

4.3 The Algorithm
In order to be precise we give the algorithm to be described a name and we
call it ESSA which is an abbreviation for the Exact Sign of Sum Algorithm.

We now present the details of ESSA which is of extremely simple logical
and algorithmical structure. ESSA determines the sign of the sum of a finite
set of binary floating point numbers of a fixed mantissa length, t. Although
ESSA could be made valid for any finite sum we design ESSA for sums with
a number of summands not exceeding 2 t _ 1 , which is large enough for almost
all applications. If we were to drop this restriction then ESSA and its discus
sion would loose their transparency and become too sophisticated. Certainly,
variable precision arithmetic could also be used to compute the exact sign of a
sum, however, the complexity of variable precision arithmetic increases much
faster then the complexity of ESSA described here.

At this point we note that the algorithm resembles algorithms for the com
putation of the value of a sum based on the distillation principle (see for exam
ple [200]). The difference is the requirement that the sign is computed with no
error and that the algorithm terminates without having to consider all terms
in most of the cases.

Even though no mantissa manipulation is required for writing the code,
it is necessary to introduce the kind of representation we are working with.
We assume that the machine numbers are binary floating point normalized
numbers having single precision, that is, they have some fixed mantissa length

�� �� �� �� ��

84 The Exact Sign of Sum Algorithm (ESSA)

t > 0. Hence, besides 0, α φ 0 is a machine number in our context iff a is of
the form

a = 0.al...at x 2 E (4.1)

where ai = 1 (normalization), a 2 , . . . , a t G {0,1}, a t . . . a t being the mantissa
of a and 2? the exponent part (shortly, exponent) of α to the base 2. (There is
no need for a binary representation of Ε in this paper. We also do not consider
overflow, underflow or any restrictions of the size of E, which is the user's
responsibility.) Depending on (4.1), α has a value

α = £α<2"χ2Ε = Σα«2Ε"'· t=l «=i

One should be cautious if α is already a power of 2, for example, a = 2 8. Here,
the exponent of ο is not 8, but 9 due to the representation (4.1).

Preprocessing. Let a collection of / > 0 machine numbers, i.e. normalized
binary floating point numbers, 8 j φ 0, i = 1 , . . . , /, be given as summands. Note
that zero as summand is excluded.

As already mentioned we pose the side condition

i < 2 , _ 1 , (4.2)

which can be omitted if necessary. In that case ESSA will be less transparent
and its computational cost will increase, see Remark 5 in Sec. 4.4.

We sort the summands into positive and negative summands. Also, we
work with the absolute values of the negative summands instead of their proper
values. Both of the classes of summands that we work with are ordered by ">",
that is, the larger-than-or-equal relation.

Input for ESSA:

1. The ordered list of positive summands, αχ > a 2 > . . . > am (> 0), where
m > 0

2. the ordered list of the absolute values of the negative summands,
h > bi > ... > bn (> 0), where η > 0.

Hence, the sum, the sign of which we need, is

(m η
5 = Σ8< = Σα»-Σ6»· <4·3)

t=l »=1 «=1

Clearly, I = m + n. By Ei we denote the exponential part of α<, by Fj the one
of bj (i = l , . . . ,m; j = l , . . . ,n).

�� �� �� �� ��

T i e Algorithm 85

A L G O R I T H M 9 (Exact sign of sum algorithm E S S A . j

S t e p 1. (Termination Criteria)
(i) lfm = n = 0 then 5 = 0. S t o p .
(ii) If m > η = 0 then S > 0. S t o p .
(Hi) If η > τη = 0 then S < 0. S t o p .
(iv) If αχ > n2 F l then S > 0. S t o p .

7/6i > m2 E l fnen 5 < 0. S t o p .
S t e p 2. (Auxiliary variables).
Set ax = αγ = bl = bx := 0.
S t e p 3. (Comparison and processing of the leading summands of the lists.)

(i) CaseEi=Fi:
If αϊ > 6i then set o t := αϊ — 6i
else set bt := bi - o i .

(H) Case Ex > Fi:
Set u :=2 F >- 1 if 6i = 2i"1~1 otherwise set u:=2F>.
Set ax := a\ —u,ax :=u — b\.

(Hi) CaseFi>Ei:
Set ν := 2El~l if ai = 2Bl~l otherwise set υ := 2El.
Set 6j : = bi -v, bx := ν — οι.

S t e p 4. (Rearrangement of the lists while keeping 5 constant).
(i) Discard ai and bi from lists.

(ii) Enter those of the values α'1,ο'ι' and b\,b[that are not zero to the
Oj - list resp. 6j - list such that the lists remain sorted.

(Hi) Rename lists (as well as list lengths) as
αϊ > 02 > . . . > o m (> 0), bi > 62 > · · • > 6 „ (> 0).

(iv) Goto Step 1.

D i s s e c t i o n o f t h e s t e p s

Step 1. The termination criteria are obvious. Parts (iv) and (v) express
just a dominance of the positive or negative summands of S, for instance, case
(iv),

m η

5 = £ O J - ^ 6 j > oi - nh > n(2Fl - 61) > 0,
«=1 t = l

since Fi is the exponent of δι.
Here, τη > 0 and η > 0 were already used; otherwise the computation would

already have been stopped by (i), (ii) or (iii).
Note that the products n2 F l and m2El that occur in the computation are

of type integer and thus exactly executable.

�� �� �� �� ��

86 The Exact Sign of Sum Algorithm (ESSA)

The conditions in (iv), (v) are not only termination criteria, but are respon
sible for the effectiveness of ESSA. Together with the assumption / < 2 t _ 1 , they
cause

\Ei-Fi\<t-l (4.4)
for the current values of 0.1 and 61, cf. the Lemma. This means that the
mantissas of 01 and 61 overlap, when the larger of the two numbers is repre
sented normalized, and the other is potentially represented unnormalized, so
that max(Ei,Fi) is its exponent part.

Step 3. In case (i), it is obvious that the partial sum a \ —h\ resp. 61 —at can
be executed exactly. Note that the exponent of αχ — bi is less than E\ = F\.

Case (ii). Generally, 01 — 61 cannot be computed exactly. However, αϊ — 61
can be approximated by ax with a remainder ox because of the equation

αϊ — 61 = ai — u + u — b\ = a t -1- . (4.5)

Both values, a \ as well as a [, can be computed exactly because of (4.4).

For example, if 61 Φ 2Fl _ 1 then u = 2Fl. Due to (4.4), u can be represented
as

« = 2 ^ =0.ii...o" t x 2 B l

where

Si = 1 if Ει - Fi = i
= 0 otherwise.

Hence, subtracting u from αι = 0.1a2...at χ 2 Ε ' can be done exactly in our
setting.

The second difference, % = u — 61, is best demonstrated by writing it out
in the following manner,

u = 1.0Ό...0 χ 2 F l

- 6 1 = - 0 . 1 f t . . . A x 2 f l

gives
αϊ = 0.0/32...β\ x 2 * = 0.β'2 ...β[χ 2*-1.

Here, β\ denotes the dual complement of
Note that

α,γ < a \ — b\ < Oi

and that the exponent of a [is less than Fi.
Case (iii) is analogous to Case (ii).
Step 4- This step replaces the leading summands of the lists, a \ and 61, by

I d - 611 in case (i),

αχ,αγ in case (1 1) ,

b'i, b'i in case (iii).

�� �� �� �� ��

Properties of ESSA 87

The new elements are put on the lists in the proper order.
In case (i), one of the lists is shortened by 1 element. In case (ii), the Oj-list

gets longer by 1, the Vlist shorter by 1. This part of the step aims to shrink
the bj-list as much as possible in order to extend the dominance of the aj-list
(i.e., Ει > Fi) and to confirm an expected positivity of S. (The results of
numerical experiments with random numbers coincide with this hypothesis, cf.
Sec. 4.5, Table 1.) The sum S remains constant because of

/ II

αϊ — bi = ax + ax.

Case (iii) is analogous to Case (ii).

4.4 Properties of ESSA
In this section, we collect the basic properties of ESSA that enable us to work
with it. Some of the properties required are given as remarks since their proofs
are quite simple.

Since formula (4.4) is essential for ESSA to work it will be proven. The
assumptions are that αϊ < n2Fl, bi < m2E\ τη Φ Ο,η Φ 0 (otherwise the
computation had already been terminated by Step 1).

L E M M A 1 Ifl <2ι~ι then \EX - Fx \ < t - 1 for the current values in Step
3 of ESSA.

Proof by contradiction. Without restricting the generality, we assume

αϊ > bi

which implies Ει > Fi. In order to get a contradiction, we further assume

Ει - Fi > t. (4.6)

We want to show that n2Fl < ai which gives a contradiction.
Let

oi =0.1a2---at x 2E\

Then
2 E , _ 1 < αι.

Since I = m + n and τη φ 0, we have η <l. Hence, by (4.6) it follows that

n2F' <12F' <2 t - 1 2 F > <2E^1 <au

which provides the intended contradiction. •

T H E O R E M 8 / / the input data of ESSA are machine numbers, the compu
tation is exact and delivers the sign of the sum S = J2iLi α« - Σ£=ι fy-

�� �� �� �� ��

88 The Exact Sign of Sum Algorithm (ESSA)

Proof. The computation is exact since no rounding errors arise during the
execution of the arithmetic operations in Step 3 as already explained in the
last section. Further, the iterations change the arrangement of the two lists,
but the value of the sum (as difference Σα, — E 6 j with the current values α<, bj)
is kept constant, cf. the dissection of Step 3 in Sec. 4.3. The computation
terminates if at least one of the lists is empty or one of the two lists dominates
the other, cf. the dissection of Step 1 in Sec. 4.3. That ESSA does terminate
will be made clear in Rem. 1 . •

Remarks

1 . ESSA terminates after a finite number of iterations. Clear:

(i) In each iteration, the leading element of one of the two lists is
replaced by a number with strictly smaller exponent or by 0 , the
leading element of the other list is replaced by a strictly smaller
element or by zero.

(ii) If Emin = min(Em,Fn) is the smallest occurring exponent in
the originally given sequences, that is, in the iteration 0 at the
input level, then no non-zero element can arise during the whole
computation with an exponent smaller than J S r a i n - t + 1 . The
reason for this is that, if two numbers with the same exponent are
added or subtracted, the exponents never decrease if the results
are represented unnormalized. Hence, if the final results are then
normalized, the result is 0 or a number whose exponent is not
less than Em;n — t + 1 .

(iii) Since one of the two leading exponents is reduced by 1 in each
iteration, cf. (i), and since no exponent can ever be less than
- E m i n - t + 1 , cf. (ii), ESSA must terminate.

2 . Upper bound for the number of iterations. The maximum number of
iterations does not exceed l2t. This number results from the number of
exponent reductions by 1 of all the summands (Step 3, (ii) or (iii)) until
they reach the lowest possible exponent, Emin - ί + 1 , such that finally a
number of Step 3 (i) operations will be executed, which is to be added.
This is a worst case arrangement.

In order to prove this assertion one has to go into the details:

A. First we design a worst case model. For this purpose we arrange the
set {ai : i = 1 , . . . , m} U { 6 < : i = 1 , . . . , n} as a sequence (c„){,=1 ordered
by the <-relation. Let Gv be the exponent of c„. Then we assume

Gi-G2 < t - 1 ,

Gv-i-Gv < 2 t - 2 fori/= 3 , . . . , / .
(4.7)
(4.8)

�� �� �� �� ��

Properties of ESSA 89

These two assumptions make the discussion of the worst case simpler and
they do not restrict the worst case: If (4.7) does not hold then one has
Gi — Gi > t and further, \Ei — Fi | > t. This implies from Lemma 1 that
one of the termination conditions hold such that no worst case situation
is present.

If (4.8) does not hold then we have

~Ομ >2t-2 (4.9)

for some μ > 3. Correspondingly, we subdivide the sequence (cv)l

v=l

into two subsequences, a left subsequence, i.e. (c„)!JZ} and a right sub
sequence, i.e. (ου)ι

ν=μ. Since ESSA works from left to right, there will
be some stage of the computation where the right subsequence is not yet
involved, but where one of the following cases occurs:

a) the left subsequence consists only of numbers from the aj-list or only
of numbers from the Oj-list,

b) the left subsequence consists only of two numbers and c\ — c2 = oi =
δι holds for them such that the next execution of Step 3 will be done by
case (i) resulting in values a[= b[= 0. Thus, the left subsequence is
completely dissolved.

During the processing of the left subsequence until the stage a) or b) is
reached, the gap shown by (4.9) can become smaller, but is at least of
length t, that is, we have at each stage of this processing

Gieft - G r i g h t > t (4.10)

for each qeft of the left subsequence and each ĉ ght of the right subse
quence. This is understood if the reasoning of part (ii) of Remark 1 is
applied to cM_i (instead of Emin). If now the processing discussed termi
nates with case a), then the assertion of Lemma 1 is not satisfied for the
current values of αϊ and bi, since one of them would belong to the left sub
sequence and the other to the right subsequence such that \Ei — Fi \ > t
is implied by (4.10). Therefore one of the termination conditions of Step
1 are satisfied as was the case in the discussion of (4.7) and this causes
the computation to stop. Hence, such a model cannot be a worst case
model. If now the above-mentioned processing terminates with stage b),
where the left subsequence has zero as a partial sum such that this sub
sequence vanishes then the next iterate will start to work with the right
subsequence. Note that in this case the size of the gap G^-ι — GM (with
current values μ, (7μ_ι and GM) plays no role at all. Hence the number of
iterations remain unchanged if we assume that (4.8) holds as well. This
means that we are justified in stating that the restrictions (4.7), (4.8) are
consistent with he worst case scenario for ESSA.

�� �� �� �� ��

The Exact Sign of Sum Algorithm (ESSA)

B. Secondly, using this form of the sequence with properties (4.7), (4.8)
it is easy to count the number of iterations, which are needed in order to
move all the summands to the right, until their exponent is - E m i n - t + i -
The number of iterations is the larger the more the connected sequence
is spread out, that is,

G1-G2 = * — 1,
G „ _ i - G „ = 2 t - 2 fori/= 3, . . . , / .

Hence, the last number in the sequence, cj, having .Emm as exponent,
needs at most

Oi + l(t - 1) iterations

in order to reach exponent £ ? m i n - t + i > the one before, cj_i, at most

It + 2(t - 1) iterations,

in order to reach exponent Em\D-t+i, the one before, c/_2, at most

2t + 3(i - 1) iterations,

etc. Finally, c 2 needs at most

(/ - 2)t + (/ - 1)(ί - 1) iterations

and ci at most

(1 - 2)t + l(t - 1) iterations

to reach exponent Em\n-t+i-
We now have a collection of at most / processed summands with expo
nent Em\n _ t + i . Since they arose from the initial sequence where the last
occurring exponent was Em\n, they all have the form

±0.10...0 χ 2 E m ' ° - , + 1 .

Now only Step 3 (i) operations are applicable where each addition results
in zero until m = 0 or η = 0 ensues. This needs at most 1/2 iterations.
Hence the overall sum of iterations in this worst case model is

t[l + 2 + • • • + (I - 2)] + (t - 1)[1 + 2 + ··· + (/ - 1)]
+*(! - 2) + (* - — 1) +1/2
= Z2(t - 1/2) - t
<l2t.

•
For a complexity analysis one has additionally to count the initial sorting
with 0(ilog 2i) arithmetic operations, further the number of operations
at each iteration, which are two, and finally the updating of the lists at
each iteration needing 0(log21) comparisons. Hence, if one had not to
care about the initial restriction / < 2 t _ 1 , one would relate ESSA to the
0(l2 log2 /) complexity class.

�� �� �� �� ��

Properties of ESSA 91

3. The average numerical costs and speed of ESSA is, as is also the case with
comparable methods, much better than the arrangement of the worst
case which probably never will occur in reasonable practical applications.
Looking at the numerical results in Sec. 4.5 one could conjecture that the
number ought to be 7 / rather than tl2 iterations. In fact, in the case of
the purely randomly generated sums in Table 1 one can observe a value
7 < 0.15.

4. Alternatives to ESSA: ESSA is already surprisingly simple. It can even
be made still simpler, if in Step 3 (ii) always

u := 2F>

and in step 3 (iii) always
ν := 2Ei

is set. Practically, there is almost no difference to the course of the
original ESSA, but the variant shows a few ambushes towards complexity
considerations like those in Remark 2.

A second alternative is to set

o 1 : = o 1 - 2 f ' > - 1 , b'1:=bl-2F*-1

in Step 3 (ii) and

b[: = 61 - 2 B ' - \ a\ := αϊ - 2 B l ~ 1

in Step 3 (iii). This variant has the feature, that the lengths of the α<-
list and 6j-list remain in general constant in the execution of Step 3 (ii),
(in), together with Step 4. In contrast to this, the original ESSA shows
the feature that if one list is already more or less dominant then this
dominance will be strengthened and the other list shrunk in order to
force an early termination and decision.
A further possibility is offered if the user is not adverse to splitting the
mantissa in his code. The splitting has to be done so that a split part of
Oi is subtracted from 61, or conversely, resulting in only one subtraction
(instead of two in each execution of Step 3, case (ii) or (iii)). The analysis
of the convergence of this modification might, however, be difficult.

5. Dropping the restriction (4-2). This restriction was needed for the proof
of formula (4.4), cf. the Lemma, which again was the premise that Step
3 could be performed exactly. If, however, / tends to 0 0 (which is more
of mathematical interest than of practical use), then (4.4) is no longer
valid. Hence, one has to create (4.4) artificially, for example by creating
slack summands that do not change the overall sum, S. For example, if
αϊ and 61 < αϊ do not satisfy Ei - F\ < t - 1 then ά = b = 2 E l _ t + 1 are

�� �� �� �� ��

92 The Exact Sign of Sum Algorithm (ESSA)

appropriate slack summands where ά is put into the Oj-list, and b is put
as leading element into the bj-list, and formula (4.4) is now valid for d
and δ as a leading couple.

6. The preprocessing as well as the updating of the lists depends on an
ordering by the >-relation. One could also design ESSA so that it uses the
>-relation. Then the proper steps of ESSA would be much more effective,
but the preprocessing of the list would cause trouble, at least in the sense
that the theory would be more difficult. The reason is that, if some part
of the list is already ordered and if two elements are identical, then they
have to be added or subtracted first so that the order requirement can be
satisfied. This may again result in a list with two new identical elements
so that the list has to be preprocessed again. It is not possible to establish
a limit on this recursive behavior without further investigation.

7. The numerical results obtained in the experiments with randomly gen
erated summands described in Table 1 of the next section show that on
the average only about 5% of the summands are processed before a deci
sion is made. This suggests that it might be beneficial to design another
algorithm that simply processes summands "on the fly." That is, the
largest positive summand and the negative summand with the largest
modulus, αϊ and δι are selected, processed, and put back on the two
unsorted arrays and so on, recursively. Alternatively, the largest (with
respect to the modulus) 10% of the positive and negative summands are
picked out and processed, putting items back in order only if they are
larger than the smallest sorted summands. Since both suggestions would
imply a bubble-sort in the worst case, the worst-case complexity would be
0(n2); however, the average case complexity might be lower. The above-
mentioned percentages, i. e. 5% and 10% depend on the sample material
and can vary considerably. These ideas are being investigated.

4.5 Numerical Results
We tested ESSA with several series of randomly generated sums. Here we
pick out two short series of representative examples. For both series we used
the heap sort algorithm (cf., for example, [199]) for the ordering of the list of
positive and negative summands in the preprocessing phase and also in an ab
breviated form for the updating of the lists in Step 4 of ESSA. We also executed
the test series with the bubble sort method (cf., for example, [199]), however,
we rejected the results since the average execution time needed was about 100
times larger than the execution times using only heap sort. (This reflects the
0(nlog2n) to 0(n2) order relationship between heap sort and bubble sort).
The examples were calculated on a SUN Sparc 20 workstation with the C code
given in Sec. 4.7. The length of the mantissa was t = 24.

�� �� �� �� ��

Merging with Interval Methods, Applications 93

For the test series, we chose sets of 10000 summands each that were machine
numbers in the range ± [2 - 1 2 7 , 2 1 2 7]. This resulted in well-conditioned sums,
and we show our samples from this series of tests in Table 1. In order to create
a series of ill-conditioned samples we randomly generated a sequence (c^L 1 /
from the above range. Then, for each c*, we denned 9 summands, one was
8c* and the remaining 8 were each — c*. This resulted in 9999 summands. As
a last summand we added 2 - e o or - 2 _ e 0 . Hence the value of the exact sum
of the 10000 summands is ±2~ e o . In Table 2 the results are shown for the
ill-conditioned case in the same format as for the first series of results.

Each line in the tables describes the statistics of the application of ESSA
to a sequence of summands.

m = number of positive summands,
η = number of negative summands,
Step 3 consists of 3 columns each counting the

number of executions of the three cases
in Step 3 of ESSA during the computation,

ii = number of iterations,
mt = number of remaining positive summands at termina

tion,
n t = number of remaining negative summands at termina

tion,
time = computation time in microseconds (includes

the time for the preprocessing ordering as well
as the computation of S' as described below),

sgn = exact sign of the sum,
S' = result of performing the summation in double

precision arithmetic starting with the largest and end
ing with the smallest summand.

4.6 Merging with Interval Methods, Applica
tions

As mentioned in Sec. 4.2, there are several important applications of ESSA
to typical processes in geometric computations. We discuss a few of them in
more detail, and we also provide some suggestions as to when it is reasonable
to combine ESSA with interval methods.

Interval methods render an inclusion of a value instead of the required value
itself if implemented correctly. This means that, in the case of the sign of a
sum S, an inclusion

S1 with 5 € S1

where S1 is an interval is computed. Then S1 is interpreted as follows:

�� �� �� �� ��

94 The Exact Sign of Sum Algorithm (ESSA)

So

2.
62

93
59

e+
32

1.

21
51

79
e+

32

CS
eo

+
lO
CN
CO
t o
c s
00 1.

10
52

10
e-

t-
32

-1

.9
12

09
4e

+3
2

-2
.4

00
34

1e
+2

9
-7

.2
95

56
7e

+3
2

9.
33

54
04

e+
30

sg
n 1 1 1

ti
m

e CO c s c s c s CS CO CO

c 45
20

45

20

46
10

45

16

52
80

49

94

53
68

43

92

ε 53
31

52

60

53
18

52

83

45
58

43

37

45
72

52

20

'«·
c o
" 5

t~
t o ο CO CO

l O
RJ<

ο t o
1-H
T F

I-H
00
ΙΟ

(i
»

) Ο Ο ο ο 00
CO
CO

CO
Ο
T F

LO
00
eo

I-H

St
ep

 3

(»
)

1

t -

c o

CS
lO
CO

ο
co

ιΟ
CO

Ο ΙΟ
I-H

Ο Ο
00
eo

00
t~-

RL<
I-H
I-H

<o
CO o

I-H

I*-
00

I-H
ΙΟ
CO

Ο
eo

O i
O i
I-H

c

49
72

49

85

50
16

49

96

49
87

49

48

50
13

49

66

ε 50
28

50

15

49
84

50

04

50
13

50

52

49
87

50

34

a
3
to I
ο

CO

1.
15

29
22

e+
18

1.

61
40

90
e+

19

00
I-H

+
to
00 to
i-H
1-H

to
I -1

.2
68

21
4e

+1
9 σ ι

I-H

+
CS

CO
CO
LO
c s

1 -1
.1

52
92

2e
+1

8
,1

.4
98

79
8e

+
19

1.

38
35

06
e+

19

sg
n

I 1 1 T

ti
m

e CO
CO CO

i-H
CO

c s
CO

i-H
CO

CS
CO

CS
CO

c s
CO

Λ
σ>
c s
CO

ΟΪ
CO

to
eo c s

CO 10
91

10

28

CO o> σ> 10
56

ε
i-H
lO
σ> 10

69

10
45

11

05

00
t~
CO

c s
CO

00
CO
eo

ο

•Μ ***

71
56

76

85

69
72

72

29

71
11

70

06

72
52

70

07

1 (
i"

) CO
σ> 10

86

55
ο
i-H
00 12

89

10
15

12

73

11
89

St
ep

 3

1
("

)
1

11
29

15

24

11
54

13

81

00

o
I-H
σ>

σ>
i-H
00

i-H
CO
00

50
53

50

74

50
56

50

37

49
44

50

71

51
59

49

86

50
17

51

15

50
24

50

73

50
11

51

37

49
27

49

27

ε 49
83

48

85

49
76

49

27

49
89

48

63

50
73

50

73

a
3
to

Ό
CD
C
Ο

CS

Ϊ

�� �� �� �� ��

Merging with Interval Methods, Applications 95

If S1 > 0 then 5 > 0,
if S1 < 0 then 5 < 0,
if 5 7 = [0,0] then 5 = 0,
if 0 6 S1, no decision can been derived from

this computation so far.

Since interval methods control all kinds of numerical errors, the first three
cases are guaranteed. In order to get a decision in the fourth case one has to
refine or even to change the method that has been applied so far.

Next we want to pursue the question, when it is worthwhile to use ESSA
and to combine it with interval methods:

If one has to determine the sign of a sum, principally 3 types of approaches
are available:

a) usual summation, various kinds of improvements (multiple precision, re
stricted fixed point accumulation) ,

b) interval arithmetic, methods with guaranteed error bounds, machine-exact
addition,

c) ESSA.

Let us consider these three types when they are applied to a well-posed
problem:

Type a) will always work, but one has never a guarantee that the outcome
is correct.

Type b) will also work well, and one has the guarantee of a correct outcome.
Type c) works exactly, and because of the well-posing of the problem, one

of the two lists will clearly be dominant such that a termination criterion will
apply soon.

Le us turn to an ill-posed problem:
Type a) is no longer reliable.
Type b) will deliver an answer whether the result is reliable or not, but the

probability of unreliable answer will increase with the degree of ill-posedness.
Type c) will still deliver the exact result, even though the decision for the

sign might require a number on iterations.
Summing up: ESSA is the best choice, as long as one really needs the exact

result.
Nevertheless, there are some situations where a combined use of interval

analysis with ESSA is reasonable:
This is frequently the case if an arithmetic expression must first be prepared

or replaced by one which is mathematically equivalent in order that ESSA can

�� �� �� �� ��

96 The Exact Sign of Sum Algorithm (ESSA)

be applied. Let us consider as a simple example the left-turn test, cf. Appl.
1. The computational part of this test consists in determining the sign of the
determinant

Nobody with computational experience would multiply through the deter
minant obtaining the expression

which results in 6 products and 5 additions. ESSA requires the expression to
be a sum of elements, however, and the only way of achieving this is to use
(4.11). Procedures of type a) or b) would probably use an expression like

xi(y2 -yz) - X2(yi - i/3) + X3(yi -2/2)

requiring 3 products and 5 additions and being more stable than the former
expression. Another expansion is

which requires only 2 products and 5 additions. However, ESSA is not able to
evaluate the latter two expressions because it can not handle the differences
xi - x 3 , x 2 - x 3 , j/2 _ J/3) J/i - ! / 3) 2/i — ! / 2 so that exactness is maintained. The
differences in the computational performance of these simple expressions are
certainly not significant.

The difference will increase considerably when we pass to other applications,
where determinants of higher dimension are involved or where the items of the
determinants are again arithmetic expressions (cf. Appl. 2, 3, 4) such that the
determinant has to be multiplied through completely in order to generate an
expression that ESSA can handle.

A similar situation arises if multiple precision is necessary in order to get
the sign guaranteed and one does not want the programming hassle with the
multiple precision but splits it into a sum of lower precision numbers. Then
one also has to multiply through the expression until it is represented as a sum
of the lower precision numbers. For details see Appl. 2.

These examples show that it is not always wise to use ESSA for each occur
ring sign determination. There are situations where we recommend merging
ESSA with machine interval arithmetic as follows:

1. Determine the required sign with a stable low complexity expression using
single precision machine interval arithmetic.
This will, in general, be sufficient for a decisive sign determination. In
the rare remaining cases, there is no way out and one has

1 xi yi
D = 1 x 2 j/2

1 X3 V3

XlI/2 + VlX3 + X2V3 - X3J/2 - X22/1 - Xli/3 (4.11)

(χ ι - X3)(yi - ye) - (χ 2 - X3)(y2 - ye) (4.12)

�� �� �� �� ��

Merging with Interval Methods, Applications 97

2. to go through the higher complexity calculation using ESSA.

Let us consider now a few typical applications of ESSA.

Application 1 (Left-turn test)
Let p i , P 2 , P 3 be 3 points in the plane so that p< = (xi,yi), i = 1,2,3. If

p{p2 is the line through px and p?, then pz is to the left, on or to the right of
Pi|>2 (looking from p t to pi) iff

is positive, zero or negative. Expanding the determinant we get a sum

If p< = (x<,j/i)) * = 1,2,3 is represented in single precision arithmetic, then the
products appearing in (4.14) can be computed exactly using double precision
arithmetic. Thus, one has two ways to proceed.

1. Apply a double precision version of ESSA to the sum (4.14). (If one only
wants to use single precision then one can do this by doubling the number
of summands.) One always gets the right sign.

2. Apply first a single precision machine interval arithmetic version to the
expression (4.12) or an equivalent expression. If no guaranteed sign of D
is delivered, execute the calculation as in 1. with ESSA.

The left-turn test is one of the most important applications of ESSA. It
is used for example, in the Graham scan algorithm [198] for determining the
convex hull of a plane point set, cf. Sec. 4.2. The complexity order of Graham's
algorithm is 0(nlog2n) if η is the number of points and exact arithmetic
underlies the computation. If the point set is read into the computer, an initial
input data error called conversion error is unavoidable. But no further errors
need to be accepted; one just has to replace each point of the input data set
by the smallest machine representable set that contains that point. Clearly,
the set is stored by means of its corners, and can be a rectangle, a straight line
segment, or the point itself. Now we determine the convex hull of this enlarged
(exactly represented) point set with the left-turn test. If ESSA is used for the
left-turn test, we get the exact convex hull of the enlarged point set which is
the smallest machine representable convex set that contains the convex set that
would be generated by the original input data set.

The importance of the construction of the convex hull for a point set is best
demonstrated by various replacement procedures that have now been developed
to overcome the lack of a reasonable exact left-turn test. For example, Knuth

1 xi Vi
D = 1 x-i j/2

1 X3 V3
(4.13)

D = XiJ /2 + X2V3 + X3VI ~VlX2- ί/2*3 ~ 2/3*1 · (4.14)

�� �� �� �� ��

98 The Exact Sign of Sum Algorithm (ESSA)

[137] defined axioms that relate points in the Euclidean plane to each other via
the sign of the determinant (4.13). Based on these axioms he defines a convex
hull and error-free algorithm for computing convex hulls provided the sign of
the determinant can be computed exactly. The determinant (4.13) is therefore
expanded as in (4.12). If the input data is rounded to a fixed point range of b
bits then it is shown that 26+1 bit arithmetic suffices for exact computation
of the determinant.

The order of the algorithm remains C?(nlog2n) since the computational
cost of the interval or exact computation is constant. The above determinant
also indicates the orientation of the three points. If D < 0 then P1P2P3 form a
counterclockwise cycle and if D > 0, P1P2P3 form a clockwise cycle with D = 0
indicating collinearity.

Application 2 (Coplanarity test in 3D).
In three dimensions it is well known that a point p \ is on a plane defined

by three non-collinear points P I , P 2 , P 3 where Pi = (Xi,yi,Zi),i = 1 , . . . ,4, iff

Expanding the determinant we obtain a sum of products of the form +"χ^ζ*.
If these products are computed in triple precision, then ESSA can be used to
obtain exact results for whether the point is on the plane or not. I.e., if s is
the mantissa length in use, for example, single precision mantissa, the man
tissa length used in ESSA has to be t = 3s in order that exact result can be
expected. If one does not want to write codes in triple precision numbers then
one can write these as a sum of two double precision numbers (or even as a
sum of three single precision numbers) by just splitting the longer numbers and
hence one does not work beyond the basic tools of C or C++.

In the triple precision case, t = 3s, ESSA has to deal with 24 summands, in
the double precision case, t = 2s, with 48 summands, and in the single precision
case, t = s, with 72 summands.

It is highly recommended when executing the coplanarity test, to first com
pute D or the sign of D in single precision interval arithmetic. ESSA should
only be used if the result is not decisive.

With this approach the test can be employed as a primitive in the gift
wrapping method [198] thus becoming a rounding error free algorithm for the
convex hull of exactly representable numbers in 3D. Similarly, as in Appl. 1, if
the originally given point set does not only consist of machine numbers, the gift
wrapping method renders the smallest convex hull with machine representable
vertices that encloses the convex hull of the original data.

The gift wrapping method with this primitive retains the 0(n log2 n) worst
case complexity since the computational costs of the interval or exact compu-

D =

1
1
1
1

Xl
X2
X3
xt

V3
y*

Zl
Z2
Z3
Zi

= 0.

�� �� �� �� ��

Merging with Interval Methods, Apphcations 99

tations are constant since they are independent of n, the number of points in
the given set.

Application 3 (Order of 3 lines in plane)
Let three lines in the plane be defined by

OjX + hy + C{ = 0, i = 1,2,3.

The determinant
αϊ bi Cl

D = 0.2 h C2
a 3 h c3

determines the following relationships between the lines:

1. if D < 0 then the lines are oriented clockwise,

2. if D = 0 then the three lines either intersect in a point or at least two of
the lines are parallel,

3. if D > 0 then the lines are oriented counterclockwise.

(Three lines ii ,l2,l3 in the plane are said to be oriented clockwise (coun-
terclockwise) if

(i) h and l2 intersect in a point p^,
h and I3 intersect in a point p2,
l2 and / 3 intersect in a point pi,

(ii) pi,p2,P3 are unequal,

(iii) running through the triangle with vertices Pi,P2,P3 in this or
der is done clockwise (counterclockwise)).

The complete procedure for computing the sign of D is analogous to the
procedure in the previous application. The procedure can be seen to form the
core primitive of algorithms to compute line arrangements in the plane [190].
Again, ESSA combined with interval arithmetic can be applied successfully to
receive a guaranteed result, provided the input data are machine numbers.

Application 4 (In-circle-test)
Let pi = (xi,yt),i = 1,2,...4 be four points in the plane and assume

Pi)P2,P3 (not collinear) define a circle C. Then the relationship of P4 to C is
determined by the sign of the determinant

D =

Xl 2/1 1
X2 V2 x\+yl 1
X3 2/3 1
x* 2/4 x\ + y\ 1

�� �� �� �� ��

100 The Exact Sign of Sum Algorithm (ESSA)

Assume that pi,P2,P3 in this order lie clockwise on the circle. (This can be
checked with the left-turn test, cf. Appl. 1.) Then

if D > 0 then pA is inside C,
if D = 0 then p\ is on C,
and if D < 0 then p 4 is outside C.

When the determinant is multiplied through then products of the form

XiVj(xl + vl) = XiVjxl + XiViVk

result. Each product of the form XiVjx\ would require quadruple precision
for getting exact results with ESSA if the points Pi are of single precision.
However, those expressions could also be accomplished by 4 double precision
quantities without too much mantissa manipulations, hence remaining thus in
a comfortable environment of the language C. This is done as follows: We start
with xuyj,Xk in single precision, compute the products XiVj and x\ in double
precision, but split each of them immediately in the sum of two single precision
numbers,

XiVj = (xiVj)L + (xiVj)R, xl = {X\)L + {X\)R-

Finally, we execute the four products

(Χϊνί)Λχϊ)μ, v,H = L,R

in double precision. Their exact sum is just χ $ ί χ \ . Hence the determinant is
the sum of 192 double precision quantities, and the computation of the sign of
D can be done exactly by ESSA.

In [137] the determinant is computed using as sophisticated analysis of
expansion in minors obtaining an exact result assuming that the input data
was rounded into a certain fixed point range. The same problem is considered
in [13], where the exact sign of a 2 χ 2 determinant is computed.

The in-circle test is accepted as a primitive for the so-called incremental
method for the construction of a Voronoi diagram [123]. In [259] numerical
error is reduced by computing the primitive to quadruple precision.

As in the former applications, we recommend the combination of single
precision machine interval arithmetic with ESSA in order to get exact results.
This makes, however, sense only then if the input parameters pt are already
machine numbers, which is, for example, the case if the pj's stem from other
calculations. This also holds for Appl. 3, but not for Appl. 1 and 2, where
the exact sign of the determinants at least guarantee the convexity of the hull
computed from the smallest possible boxes including the input parameters after
their conversion to machine numbers.

�� �� �� �� ��

ESSA and Preprocessing Implementation in C 101

4.7 ESSA and Preprocessing Implementation in
C

The following C code due to G. Mackenbrock implements Alg. 9. The sort
algorithm is from [199]. It can be replaced by any other suitable sort algorithm.

/*
Funct ion :sgnsum
D e s c r i p t i o n : sgnsum c a l c u l a t e s t h e e x a c t s i g n of

t h e sum of t h e S [i] .
Input: S . . an array of summands of t y p e f l o a t ;

n S . . l e n g t h of S.
Output: t h e s i g n of t h e sum.
Local v a r i a b l e s : n . . l e n g t h of t h e l i s t b;

m.. l e n g t h of t h e l i s t ;
E . . exponent of a [l] ;
F . . exponent of b [l] ;
s g . . - 1 -> sum n e g a t i v e

0 -> sum 0
+1 -> sum p o s i t i v e

t h e remaining v a r i a b l e s are a u x i l i a r y v a r i a b l e s .
* /

i n t sgnsum(f loat *S , i n t 1)
{

i n t n , m , E , F , i , s g ;
f l o a t * a , * b , a s , a s s , b s , b s s , u u , u , v ;

/*
I n i t i a l i z a t i o n of t h e l i s t s a and b .

*/
i f ((a = (f l o a t *) c a l l o c (l + 3 , s i z e o f (f l o a t))) = N U L L)
{

p r i n t f (" N o mem. Program t e r m i n a t e d . \ n ") ;
e x i t (l) ;

}
i f ((b= (f l o a t *) c a l l o c (1+3, s i z e o f (f l o a t)))=NULL)
•C

p r i n t f (" N o mem. Program t e r m i n a t e d . \ n ") ;
e x i t (l) ;

}

�� �� �� �� ��

102 The Exact Sign of Sum Algorithm (ESSA)

/*
Splitting of S into positive and negative summands.

*/
n=m=0;
for (i=l;i<=l;i++)

if (S[i]>0) a[++m]=S[i];
else if (S[i]<0) b[++n]=fabs(S[i]);

/ •
Sorting of the l i s t s a and b in descending order.

*/
if (m>l tt sg==-2) sort(m,a);
if (n>l tt sg==-2) sort(n.b);

/*
Main loop (the proper algorithm ESSA).

*/
LoopStart:

/*
Step 1: (Termination Criteria)

, /
if (n==0 tt m==0) { sg=0; goto LoopEnd; }
if (n==0) { sg=l; goto LoopEnd; }
if (m==0) { sg=-l; goto LoopEnd; }
frexp(b[l],*F);
if (n==0 II a[l]>=ldexp(n,F) tt m>0) { sg=l; goto LoopEnd;}
frexp(a[l],ftE);
if (m==0 II b[l]>=ldexp(m,E) tt n>0) { sg=-l; goto LoopEnd;}

/ •
Step 2: (Auxiliary variables)

*/
as=ass=bs=bss=0;

/*
Step 3: (Comparision and processing of the leading

summands of the l i s ts)
. /

/*
Ε contains the exponent of a[l] and F the exponent of b[l] in
base 2.

*/

�� �� �� �� ��

ESSA and Preprocessing Implementation in C 103

/ #
Step 3, c a s e (i) :

* /
i f (E==F)
{

i f (a [l] > = b [l]) a s = a [l] - b [l] ;
e l s e bs= b [l] - a [l] ;

}

/ *
Step 3, c a s e (i i) :

* /
e l s e i f (E>F)
{

uu= l d e x p (l . F - l) ;
i f (b [l]==uu) u=uu;
e l s e u=uu*2;
a s = a [l] - u ;
a s s = u - b [l] ;

}

/*
Step 3, case (i i i) :

. /
e l s e i f (F>E)
{

uu= ldexp(1 ,E-1) ;
i f (a [l]==uu) v=uu;
e l s e v=uu*2;
bs= b [l] - v ;
bss= v - a [l] ;

}

/*
Step 4 : (Rearrangement of t h e l i s t s , keep ing S c o n s t a n t .)

* /

i f (as==0 kk ass==0)
{

a [l] = a [m] ;
m—;
BuildHeapFromTop(m,a);

}

�� �� �� �� ��

104 The Exact Sign of Sum Algorithm (ESSA)

i f (as==0 kk a s s ! = 0)
{

a [l] = a s a ;
BuildHeapFromTop(m,a);

}
i f (a s !=0 kk aas==0)
{

a [l] = a s ;
BuildHeapFromTop(m,a);

}
i f (a s !=0 kk aas !=0)
ί

a [l] = a s ;
BuildHeapFromTop(m,a);
a[++m]=a8s;
BuildHeapFromBelov(m,a);

}

i f (bs==0 kk bss==0)
ί

b [l] = b [n] ;
n ~ ;
BuildHeapFromTop(n,b);

}
i f (bs==0 ** b s s ! = 0)
{

b [l] = b s s ;
BuildHeapFromTop(n,b);

}
i f (bs!=0 kk bss==0)
ί

b [l] = b s ;
BuildHeapFromTop(n,b);

}
i f (bs!=0 kk b s s ! = 0)
{

b [l] = b s ;
BuildHeapFromTop(n,b);
b [+ + n] = b B 8 ;
BuildHeapFromBelow(n,b);

}
g o t o LoopStart;

LoopEnd:

�� �� �� �� ��

ESSA and Preprocessing Implementation in C 105

f r e e (b) ;
f r e e (a) ;

r e turn s g ;
}
/*
Funct ion s o r t :
D e s c r i p t i o n : Heapsort from ' 'Numerica l Rec ipes i n C " by P r e s s ,

F lannery , Teukolsky and V e t t e r l i n g , Cambridge U n i v e r s i t y
P r e s s , page 247 .

Input: r a . . f l o a t i n g p o i n t numbers;
n . . l e n g t h of r a .

Output: ra s o r t e d i n descend ing order .
„ /

v o i d s o r t (i n t n, f l o a t *ra)
{

i n t l , j , i r , i ;
f l o a t r r a ;

l = (n » 1)+1;
i r = n ;
f o r (; ;)
{

i f (1 > D
r r a = r a [— 1] ;

e l s e
i

r r a = r a [i r] ;
r a [i r] = r a [l] ;
i f (— i r — 1)
ί

r a [l] = r r a ;
r e t u r n ;

}
} / * (1<=1) * /
i - l ;
j - l « l ;
wh i l e (j < = i r)
{

i f (j < i r && r a [j] > r a [j + l]) ++j ;
i f (r r a > r a [j])
{

r a [i] = r a [j] ;
j + = (i = j) ;

�� �� �� �� ��

106 The Exact Sign of Sum Algorithm (ESSA)

}
e l s e

j = i r + l ;
}
r a [i] = r r a ;

} / * f o r (; ;) * /
}
/.
Funct ion BuildHeapFromTop:
D e s c r i p t i o n : The heap property f o r ra i s r e e s t a b l i s h e d under

t h e assumption t h a t t h e property i s on ly v i o l a t e d a t t h e
roo t (a [l]) of t h e heap.

Input: r a , n .
Output: ra

*/
v o i d BuildHeapFromTop(int n , f l o a t *ra)
ί

i n t i = l , m ;
f l o a t t o p = r a [l] ;

w h i l e (2*i<=n)
{

m= 2 * i ;
i f (ra[m]<ra[m+l]) i f (m<n) m++;
i f (top<ra[m]) { r a [i] = r a [m] ; i=m; }
e l s e break;

}
r a [i] = t o p ;

>
/*
Funct ion BuildHeapFromBelow:
D e s c r i p t i o n : The heap property f o r ra i s r e e s t a b l i s h e d under

t h e assumption t h a t t h e proper ty i s on ly v i o l a t e d at t h e
p l a c e η i n t h e heap.

Input: r a , n .
Output: r a .

*/

v o i d BuildHeapFromBelow(int n , f l o a t *ra)
{

i n t i=n,m;
f l o a t l a s t = r a [n] ;

w h i l e (i / 2 > 0)

�� �� �� �� ��

ESSA and Preprocessing Implementation in C

i
m= i /2 ;
if (ra[m]<last) { ra[i]=ra[m]; i=m;}
else break;

}
ra[i]= l a s t ;

}

�� �� �� �� ��

The Exact Sign of Sum Algorithm (ESSA)

�� �� �� �� ��

Chapter 5

I n t e r s e c t i o n T e s t s

In this chapter a class of intersection problems are considered where the use of
interval arithmetic can facilitate the geometrical and algorithmic understand
ing and hence the logical design and computational effort required. This is,
surprisingly, not only the case, if one of the objects can be represented by
intervals directly, but also if certain parts of the algorithm need an exact de
termination of the range of a function and if this can be obtained partially or
completely with interval tools.

5.1 Introduction
An important class of primitives for geometric computations are intersection
operations. Many geometric computations simulate real world actions in two
and three dimensions and it is clear that, for example, in solid modelling two
objects in three dimensions cannot occupy the same space at the same time.
Determining whether this is the case or not involve, in part, intersection tests.

This is certainly completely trivial for most people. If the two objects,
however, are not directly visible, for instance, if the objects are presented only
by their data, such as their vertices (tetrahedron, cube, etc.), by midpoint and
radius (ball), or other parameters, an immediate answer to whether the objects
do intersect or not, might not be available. This means that the relationship
between the two objects has to be determined. If their relationship is such that
they do occupy the same space at the same time, it follows that the simulation
cannot describe a real world configuration. A robotics manipulator cannot lift
an object from one table and place it on another table if there are objects in the
path of the movement. In computer graphics one object may obscure another
object seen from some viewpoint. In order to confirm that the obscured object
need not be displayed one must have that the projection of the first object is
included in the second object and that the second object is farther away from

109

�� �� �� �� ��

110 Intersection Tests

the viewpoint than the first object. As an industrial example the plates to be
welded into the hull of a ship can only be cut from pieces of sheet steel if they
do not intersect. In geographical information systems, which are becoming
increasingly important, roads can be drawn to be constructed at less cost if
they do not intersect expensive objects such as buildings. Planar integrated
circuits contain hundreds of thousands of elements. These elements must be
shown to not mutually intersect and their data paths must be routed in such
a manner that no intersections occur.

The problems encountered in devising procedures for intersection compu
tations are hinted at in [255]:

Singular configurations are frequently ignored in these treatments
although they must be addressed in practical applications. (In a
singular configuration, two solids intersect in such a way that small
perturbations in location change the topology of the boundary of
their intersection).

There are essentially two types of intersection algorithms:

1. The first type of intersection algorithm processes two objects, and returns
Boolean answers for intersection and no intersection. An extension of this
is the information that one object is included in the other object.

2. The second type of intersection algorithm returns the actual intersection,
i.e. a point, a plane figure or a solid.

Both types of intersection algorithms have been studied extensively in a
variety of areas of geometric computations. In solid modelling Zeid [280] states
on page 360:

In various geometric problems involving solid models, we are often
faced with the following question: given a particular solid, which
point, line segment of a portion of another solid intersects with such
a solid. These are all geometric intersection problems.

He then proceeds to discuss both the general intersection problem and specific
cases of intersection problems. Specifically he considers ray/box intersection on
p. 563 and mentions surface/surface intersections of quadric solids on p. 404.
The book includes a total of 15 references to various intersection problems
showing the importance of the intersection algorithms for solid modelling. In
Preparata-Shamos [198] we find the geometric intersection problem studied
from a point of view of computational geometry. In this context the intersection
algorithms are studied with respect to order i.e. the algorithms are studied
with respect to computational cost as the number of points in a polygon or
the number of objects etc. increase. Intersection algorithms are also of great
importance in computer graphics, in particular in the hidden line and hidden

�� �� �� �� ��

Production 111

surface problem where only visible lines and surfaces need be considered. It is
furthermore of interest for ray tracing where intersections of rays with surfaces
have to be computed. Particular techniques have been developed in this area,
such as z-buffering see for example Foley et al. [54].

There is also grass-roots interest in the intersection problems as exemplified
by the following posting in a newsgroup on the Internet:

I am looking for good algorithms to perform the following (boolean)
tests:

1. (convex) polygon/circle intersection,
2. box/cone intersection.

Can anybody offer any advice as to where to find these routines
(references to papers particularly preferred) - no joy in the graphics
gems1.

Another question to a newsgroup (March 9, 1999) was:

I need to determine the existence of an intersection between a cube
and a sphere. I have found a solution that solves the problem, but
I would like to apply the most efficient proposal. Which is the most
efficient algorithm that solves this problem?

The objects that are treated in the geometric computations may often be
thought of as sets in two or three dimensions. If these sets have some regularity
properties, then it is sometimes possible to treat them within the field of interval
analysis. A box with sides parallel to the coordinate axes in three dimensions
can be represented by a three-dimensional interval vector. Such boxes often
arise in geometric computations from bounding objects by faces perpendicular
to the coordinate axes [10]. Similarly, a rectangle in two dimensions with sides
parallel to the coordinate axes can be represented by a two-dimensional interval
vector. This often leads to the natural use of interval analysis for intersection
problems, in particular, for the first type of intersection problems mentioned
above.

In this chapter we therefore introduce elementary interval techniques to
intersection computations.

The advantage of interval analysis implementations of some of these com
putations are:

1. They tend to produce simple, clear algorithms that are relatively easy
to implement provided a robust implementation of interval arithmetic is
available.

'The writer of the posting wanted to express that he found no suitable algorithms in
Graphics Gems, a series of 5 volumes concerned with graphics algorithms (see for example
[101]).

�� �� �� �� ��

112 Intersection Tests

2. They provide guaranteed results for a number of intersection computa
tions.

In some cases these algorithms are more computationally expensive than the
algorithms that can be developed using a more detailed case-by-case analysis.
We also present the more efficient algorithm for those problems in spite of the
fact that the easy overview is lost. This is analogous to the simple definition
of interval multiplication given in Eq. (2.4) as compared to the more complex
definition of interval multiplication given for example in [169].

As an introduction to this kind of algorithm we discuss intersection tests
for axis-parallel rectangles.

A = ([lb(Ax),nb(Ax)],{lb(Ay),nb(Ay)]) \ 2

B = ([lb(Bx),ub(Bx)],[lb(Bv),ub(By)}) j e i "

Then A, Β represent two axis-parallel rectangles in the plane. Now compute

C = A-B (5.1)

in interval arithmetic. Then we have the following results:

1. If 0 G C then the rectangles A and Β intersect.

2. If 0 0 C then the rectangles A and Β are disjoint.

Note that 0 G C means that zero is a member of each interval coordinate
and that 0 & C means that zero is not a member of at least one coordinate
interval. The reason that the test is valid is that zero can only be in C if there
is a point χ G Α Π Β, i.e. A and Β intersect. If there is no such point then zero
is not in the intersection and A and Β are disjoint.

As a simple example consider A = ([2,4], [1,2]) and Β = ([1,3], [0,2]) as
shown in Figure 5.1. The interval subtraction results in C = ([—1,3], [-1,2]).
Since zero is a member of each interval coordinate the rectangles intersect.

Clearly the above results 1. and 2. could also have been achieved via
comparisons and tests of the boundaries of the rectangles. This latter method
is called the direct method as opposed to the interval method. A comparison
gives for exact arithmetics:

Direct method Interval method
if m&x(\b(Ax),\b(Bx)) < min{ub(Ax),ub(Bx))
and
if max(lb(Aj,),lb(.B„)) < min(ub(A„),ub(£,,))
then intersection
otherwise no intersection

if 0 G A - Β
then intersection
otherwise no intersection

If the two methods are implemented on a computer, the direct method is
error free as long as the vertices are machine numbers. If the input vertices

�� �� �� �� ��

Production 113

(3 , 2) (4 , 2)

(1,0)

Figure 5.1: Intersection of two axis-parallel rectangles

are not machine numbers there is a small possibility of getting a wrong result
because of conversion errors.

When interval arithmetic is implemented on a computer as machine interval
arithmetic with the common outward rounding and a result

Cout = A — Β

is obtained, the conclusion

0 £ C o u t =ϊ A , B disjoint (5.2)

will always be correct, even if the vertices are not machine numbers. It is,
however, possible that A and Β are disjoint but that the computation shows
the result

0 e C o u t

because of the outward rounding. Such a constellation happens infrequently
and can only occur if the vertices of the rectangles are machine numbers and
if the distance of the two rectangles has the smallest possible positive value.
(This value depends on the related components and the meaning is that if the
rectangle vertices are perturbed by an arbitrarily small amount towards each
other so that the vertices remain machine representable, the rectangles will no
longer be disjoint. This situation could be discovered easily if desired.)

If such an extreme constellation is not given, the conclusion

0 € C o u t =>• A and Β intersect

is valid.

�� �� �� �� ��

114 Intersection Tests

Alternatively, the rectangle difference can additionally be executed using
inward rounding (available in almost all interval packages) such that a rectangle

Cin = A - Β

is obtained. This allows the conclusion

0 G Ci„ => A and Β intersect. (5.3)

The advantage of the combined application of inward and outward round
ing is that the simple logical structure of the intersection test is kept. The
arithmetical result of the difference is then an almost identical nested pair of
rectangles which are appropriate for the test phases (5.2) and (5.3) and which
always render a correct result.

ESSA is an appropriate tool for those constellations which neither satisfy
(5.2) nor (5.3) since the exact test condition 0 G C or 0 £ C is equivalent
to determining the signs of the differences of the components of the related
vertices. All these 3 cases together give a complete and consistent test provided
the vertices of the rectangles are machine numbers.

If the appropriate endpoints of the edges are subtracted using outward
rounding instead of computing the inward rounding in the computation of the
difference of the rectangles then pairs of intervals result which is equivalent to
inward rounding of the intervals.

More about inward rounding can be found in Sec. 5.3.
In the remainder of this chapter we discuss further, more sophisticated

intersection problems.

5.2 Line Segment Intersections
We consider: how to computationally test reliably if two line segments (short
ened in the sequel as segments) intersect in the plane. The test should also
distinguish between intersections where an endpoint of one segment lies on the
second segment and where the intersection point is between the endpoints of
the segments for both segments. This test is frequently a part of algorithms in
geometric modelling, computer graphics, GIS and computational geometry, to
name a few areas.

The test is often implemented on a computer using single or double precision
floating point arithmetic. One implementation is to compute the intersection
point of the lines which the segments belong to then checking if the intersection
point lies on both segments. All of the implementations using fixed precision
floating point arithmetic may fail due to the numerical errors causing multiple,
missed or displaced intersections.

The paper by Douglas [35] discussed an early implementation of a line
intersection testing routine. His description is typical of what happens when

�� �� �� �� ��

Line Segment Intersections 115

trying to implement even simple routines reliably on a computer. The problem
was optimistically stated as:

Simple in concept, but tricky. I want a general purpose subroutine
in FORTRAN which will tell if two line segments in the plane cross
each other,...

He then discovered that when it came to dealing with parallel segments, close
to parallel segments, segments that overlap, multiple segments meeting at a
point etc. inconsistencies could occur and he realized that

All of these inconsistencies eventually drag the programmer down
from his high level math (i.e. algebra), through computer language
(i.e. FORTRAN), into the realm of the machine methods actually
used to perform arithmetic operations and their restrictions.

He eventually had a routine were the original problem had been split into 36
cases. The program worked most of the time.

A general method for avoiding the numerical errors and degeneracies caused
by the rounding errors in finite precision floating point arithmetic is to use exact
computations. When the intersection is determined exactly the above problems
cannot occur [62, 63, 80, 123]. The approach works under the reasonable as
sumption that the data items under consideration are originally represented as
fixed-precision floating-point numbers. Then, in each step of the algorithm, the
exact values of all the components are calculated, which leads to the correct
result [62, 63].

Most of the approaches that deal with the problem of testing for segment
intersection exactly, compute the point of the segment intersection in simulated
real arithmetic [35, 63, 106, 119, 159]. Such a simulation can for example be
done in rational arithmetic and up to a point, in multiple precision arithmetic.
Since these arithmetics are computationally expensive a two step approach is
often employed where interval arithmetic is first applied as a filter (see Sec.
1.8) followed by the more expensive simulated real arithmetic when interval
arithmetic fails to give a guaranteed result [119, 134].

In the remainder of this section we follow the approach of [67] where the
algorithm that tests for the intersection of two line segments exactly, uses fixed
precision floating point arithmetic but without actually computing the inter
section point. The algorithm considers the point of intersection between two
segments as the solution of a system of linear equations. First, an interval filter
is applied to determine whether the segments intersect. When an inconclusive
answer is obtained, ESSA is applied in together with the equations for the
intersection point to determine whether the segments intersect without com
puting the intersection point. In comparison with the routine described in [35]
the programmer is elevated from the low level of machine methods to at least
the level of C code, and number of cases required in the approach are reduced

�� �� �� �� ��

116 intersection Tests

Figure 5.2: Intersecting segments

to the 10 more manageable cases given by the algorithm in the sequel which
when implemented as a computer program results in a program that always
provides the correct answer.

We now give a more precise definition of the line segment intersection test.
Given are two line segments AiA 2 and B\B2 in R2 with endpoints defined by
vectors Αι = {αιχ,αιυ), A2 = (a2x,a2v) and Bi = (δι χ,δι ν), B2 = (& 2 X , & 2 V) -

We want to determine reliably whether the two line segments intersect or not.
The coordinates of endpoints of the segments along the χ and y axes are

assumed to be represented as machine numbers with fixed precision, i.e. the
endpoints of the segments are aligned to the grid defined by the representable
floating point numbers (see Figure 5.2).

Let the equation of the line segment between A\ and A2 be X = t\A\ + (1 —
t\)A2, t\ € [0,1]. Analogously for the segment B\B2. Then the two segments
intersect if and only if the equation

M i + (1 - h)A2 = t2Bi + (1 - t2)B2 (5.4)

is solvable for ti,t2 € [0,1].
This can be written as the following system in the unknowns t i ,*2:

ai xti + a 2 x (l - ti) = & 1 X * 2 + » 2 x (l -
ai„ti + a2y(l - ti) = 6i„f2 + &2„(1 - r2),
0 < ti < 1,
0 < t2 < 1.

Let U be the determinant of the coefficient matrix of the 2 equations which
can be obtained after a simple rearrangement of the equations above. Then

�� �� �� �� ��

Line Segment Intersections 117

U = O i x & 2 j / - O l i ^ l y - 0,2χθ2ν + 0.2xb\y - 0 2 i O l y + 02xO,2v + b\xa\y — b\x02y

If U φ 0, the two equations are solvable, and we get by the well-known
Cramer's rule that

Di -b2xbiy - Cl2xb2y + « 2 g f r l y + & 2 g Q 2 y + ^ l a ^ y - b\x0.2v . .

ti = -jj-- Jj ,(5-5)

D2 o.\xb2y - aixa.2V - aixbiy - & 2 x O i y + b2XQ2V + a2xaiy .
<2 = Jj- = Jj -(5-6)

Furthermore U = 0 if and only if the two equations of the system are linearly
dependent, that is, the two segments A1A2 and B1B2 are parallel.

The original intersection problem is now transformed to the validated in
vestigation whether solutions t\ and t2 of the two equations exist at all and
whether both ti and t 2 belong to the interval [0,1]. This will be the background
of the intersection test and the following algorithm.

The algorithm begins with the determination of the sign of the determinant
U, which can be done exactly if ESSA is used. First the case is considered
when the determinant U is not equal to 0. Then it is determined whether ti is
larger than 0. To do this it suffices to compute the sign of t\ exactly. This can
also be done by ESSA. To compare ti against 1 one must compute the sign of
the difference (Di - U) exactly. This can be done with ESSA too. Then the
analogous action is applied to £2·

The various constellations which can occur are grouped in Fig. 5.3. Case
A shows the two cases of no intersection, i.e. where the generated lines inter
sect outside the segments (Case A, left figure) and where they intersect inside
at least one segment (Case A, right figure). In Case Β the situations where
an endpoint of one segment is on the other segment and where two segment
endpoints coincide are included. In Case C the two lines intersect with the
intersection point being strictly between the endpoints of both line segments.

These cases will be referred to in the algorithm as well. The parameter Flag
in the algorithm is incorporated in order to demonstrate the connections to the
cases in Fig. 5.3.

Consider now the degenerate case when the two segments are parallel (i.e.
U = 0). To determine whether the segments intersect we check whether one
endpoint, Bi of one segment B 1 B 2 belongs to the straight line passing through
the other segment AjA 2 . This can be done by applying the CCW (Counter
Clock Wise) orientation test and computing the sign of the underlying deter
minant exactly by using ESSA as shown in Sec. 4.6. Let

CCW(Al,A2,Bl) =
1 o i i aiy

1 a2x α2υ

1 bix biy

(5.7)

�� �� �� �� ��

118 Intersection Tests

C a s e A C a s e Β C a s e C

Figure 5.3: The three cases of linesegment intersection

Then this test says if CCW(A\,A2,B\) = 0 then all three endpoints (and
hence all four) lie on the same line. In this case the coordinates of the endpoints
are checked to make a final conclusion about whether the two segments intersect
or not.

The algorithm proceeds in the following manner:

A L G O R I T H M 1 0 (Line segment intersection test)

Step 1 . Set Flag = 0.

Step 2. Compute the sign of the denominator U using ESSA.

Step 3 . If U φ 0 then

1. Fori = 1,2
(a) Compute the sign of the numerator Dt using ESSA.
(b) If sgn(Di) = 0 then Di/U = 0.
(c) Ifsgn(Di) = -sgn(U) then Di/U < 0. STOP (No intersection,

Case A.)
(d) Otherwise, Di/U > 0. Compare Di/U to 1:

i. Compute the sign of the expression (Di — U) using ESSA.
ii. Ifsign(Di - U) < 0 then Di/U < 1. Flag := Flag + 5.

tit. If sign(Di -U)=0 then Di/U = 1. Flag := Flag + 3.
iv. Ifsign(Di - U) > 0 then DJU > 1. STOP (No intersec

tion, Case A.)
2. If Flag = 10 then STOP (Intersection, Case C) otherwise

STOP (Intersection, Case B.)

Step 4. If U = 0 then

1. ΙίΟΟ]ν(Αι,Α2,Βι)φΟ then
STOP (No intersection) .

�� �� �� �� ��

Line Segment fotersections 119

2. Otherwise, CCW(Ai,A2,Bi) = 0

(a) If Αχ, A2, Bi and
B2 lie on the same vertical line, i.e.
a\x = a2x = b\x then compare the y
coordinates of the points:

If a\y < h\y < a2y or a\y < biy < a2y then
STOP (Intersection).
Otherwise STOP (No intersection)

(b) Otherwise, A\, A2, B\ and B2 do not
lie on the same vertical line. Compare their χ coordinates:

If o i i < hi < a2x or a\x < k i x < a2x then
STOP (Intersection).
Otherwise STOP (No intersection)

We note that each of the sign comparisons can be performed exactly in
a fixed precision floating point machine arithmetic if the components of the
segment endpoints are machine numbers. Nevertheless, it is recommended to
apply an interval filter before the comparisons to reduce the average computa
tional cost. The values of D\,D2 and U should be evaluated in nested form in
case of the interval arithmetic computation.

In order to demonstrate the features of the algorithm and the importance
of validated tests, we show the results of numerical experiments.

Two close to degenerate case configurations of the segments were selected
for the tests. In the first configuration the segments were almost parallel to
each other (Figure 5.4(a)), and in the second they were almost perpendicular
(see Figure 5.4(b)).

The coordinates of the endpoints were generated by a procedure that ran
domly selected them from the small areas that are shaded in the figure where
the size of the shaded areas were selected according to a perturbation parameter,
an integer power of 2 in the range 0 to 26, where 2° results in the maximum
perturbation - the segments are practically random and where 2 _ 2 e implies
practically no perturbation, i.e. the coordinates of the segment endpoints dif
fer only in the least significant bit of the mantissa representation.

Three different algorithms were implemented and run for each of the above
configurations. The number of test runs for each algorithm and each pertur
bation was 5000. First, the ESSA-based method was applied to compute the
intersection test exactly. We do not show the results because they all were,
in fact, exact. Then the direct computation algorithm was implemented for
computing the intersection directly from the system given where only floating
point arithmetic was used.

The number of incorrectly reported intersections was recorded for varied
perturbation values for the direct method. Similarly, the direct method was
executed on an interval platform (interval method). In this case the number of

�� �� �� �� ��

120 Intersection Tests

Figure 5.4: Close to degenerate configuration of segments

inconclusive results were recorded. In these cases ESSA was called in order to
finally obtain a correct result.

Both the number of incorrect results and inconclusive results recorded for
5000 test runs for each perturbation value of the parallel segment configura
tion are presented in Table 5.1 starting with the perturbation 2~n since the
perturbations 2° to 2 ~ n resulted in no incorrect or inconclusive results.

The test results show that when the perturbation parameter is small the
number of incorrect and inconclusive results is close to 1%. However, when
the perturbation parameter increases above 18 the number of inconclusive and
incorrect results grows exponentially, reaching the 100% mark for the pertur
bation parameter 24. This can be explained by the fact that with high pertur
bation parameters the segments are not parallel in almost 100% of the cases,
but the direct algorithm reports that they are.

The second series of experiments were conducted for the perpendicular seg
ment configuration. The test results are presented in Table 5.2. The percentage
of results that are wrong for each of the two configurations are shown in Figs.
5.4 and 5.5 labeled "Direct Wrong". On the same figures the number of incon
clusive interval evaluations are shown as "Interval Inconclusive".

The exponential grows in the number of inconclusive and incorrect results
are noticeable for the lowest values of the perturbation parameter. The main
difference in the results is that the number of incorrectly reported segment
intersections reaches 50% for perturbation 2 _ 2 e . This is justified by the fact
that the program that initially generated the perpendicular segments generated
intersecting segments in 50% of the cases, but the direct intersection algorithm
reports that segments intersect in all cases, thus it is wrong in a half of the

�� �� �� �� ��

Line Segment Intersections 121

Power Perturbation Number of incorrect Number of inconclusive
of 2 results results

(direct method) (interval method)
-11 0.000488281 0 0
-12 0.000244141 1 0
-13 0.000122070 2 0
-14 6.10352E-05 1 0
-15 3.05176E-05 2 0
-16 1.52588E-05 5 0
-17 7.62939E-06 17 0
-18 3.81470E-06 32 1
-19 1.90735E-06 57 2
-20 9.53674E-07 130 12
-21 4.76837E-07 271 48
-22 2.38419E-07 499 133
-23 1.19209E-07 916 416
-24 5.96046E-08 1547 2011
-25 2.98023E-08 4349 5000
-26 1.49012E-08 5000 5000

Table 5.1: Test results for parallel segment configuration

100%

90%

80%

70%

& 60%

| 50%
u w φ 40%
α.

30%

20%

10%

0%

P a r a l l e l segments

8 10 12 14 16 18 20 22 24 26

P e r t u r b a t i o n (2 ")

- Direct Wrong

- Interval ^conc lus ive

Figure 5.5: Dependence of wrong and inconclusive results on the perturbation

�� �� �� �� ��

122 Intersection Tests

Perpendicular segments

100% 100% •ΜΖΖΪ, ί''!;:'·::.::·: [vl?:7 : ->:- 'ί χΉ̂ '! :"ϊ ' ' ' .'-U'-^W^l-^ ' -'Vi^'?' |· > : ϊ:^;:·:^^

90%
80%
70% 1 Λΐ̂ ,.χ'ίϊί' ̂ .. '̂,'.-ΐίΤ: "'.ίϊ'·.:.,. .ϊ V '•• • ,.-'".:ΧΖ'"-.:.. .· ·'.'.:·... 7 :'' \ , . · ; . . ."' '^,^ί u^'-l

φ
o>

60%
S c 50% —Φ— Drect Wrong

i 40% —•— Nerval hconclusive
9
a. 30%

20%
10%
0% • 0% •

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Perturbation (2")

Figure 5.6: Dependence of wrong and inconclusive results on the perturbation

Power Perturbation Number of incorrect Number of inconclusive
of 2 results results

(direct method) (interval method)
-11 0.000488281 0 0
-12 0.000244141 1 0
-13 0.000122070 1 0
-14 6.10352E-05 2 0
-15 3.05176E-05 2 0
-16 1.52588E-05 8 0
-17 7.62939E-06 13 0
-18 3.81470E-06 26 3
-19 1.90735E-06 56 8
-20 9.53674E-07 107 35
-21 4.76837E-07 241 126
-22 2.38419E-07 400 402
-23 1.19209E-07 764 1065
-24 5.96046E-08 1202 3596
-25 2.98023E-08 1698 5000
-26 1.49012E-08 2600 5000

Table 5.2: Test results for perpendicular segment configuration

�� �� �� �� ��

Box-Plane Intersection Testing 123

reported answers.

5.3 Box-Plane Intersection Testing
Considering the interactions and correlations between logic, accuracy, robust
ness, reliability and costs we discuss a very simple problem, in order to give
an example for the specific class of computational geometry problems where
selfvalidation is required and for the specific way of reasoning used to arrive
at reliable solutions. That problem is to provide a reliable and reasonable
Boolean-valued (and not triple-valued!) algorithm to decide whether an axes-
parallel box and a plane intersect or not. We show that it is in fact possible
to avoid each kind of uncertainty and error provided the box corners and the
coefficients of the plane equation are already machine numbers2. Then the
answer will be given for any geometrical constellation and will be completely
reliable and never uncertain.

We provide three algorithms. Two of them are fairly obvious whereas the
third one is not. We show that each of them has its advantages and each of
them its disadvantages with respect to numerical costs, mathematical trans
parency and overhead. It is, in fact, surprising to see that the easiest way of
implementing the test which everybody would likely use as a first trial algo
rithm is far from being the best among the three. Indeed, as one can see from
our discussion below, one cannot say that any one of the three algorithms is
the absolute best one.

We want to test whether an axes-parallel 3D box represented by X —
(Χι,Χι,Χζ), where Xi, i = 1,2,3 are intervals, intersects a plane defined
by the equation

f(x) = αιχι + o 2X2 + 03X3 + 0.4 = 0

where the parameters, at, i = 1,2,3,4 are given. It is assumed that the input
data, that is, the coefficients of the plane equation and the vertices of the
box, is already machine representable and that the test guarantees to provide
the correct result for all possible configurations. The test is therefore only
executed with the usual proviso that any actual real life numbers will first have
been converted to machine numbers. If the input to the data for the test is, for
example, the result of previous computations then the representation is already
exact.

The arithmetic and logic that stand behind such a test are extremely simple,
i. e.

plane and box X intersect iff there exist x,y e X such that f(x) < 0 < f(y)
or, equivalently,

2 A note on box and plane intersections where the plane is defined by various means is
given in [215].

�� �� �� �� ��

124 Intersection Tests

plane and box X do not intersect, iff either f(x) < 0 for any χ £ X or
f(x) > 0 for any χ G X holds.

Various numerical implementations of this definition are possible: One could
use all the points χ of X in the second form of the definition (as shown in
approach A below), or any special representatives of the box such as vertices or
diagonals (as shown in approaches Β and C, below). Independent of the choice
of implementation one has to fight with and control the rounding errors. We
select three representative implementations for demonstration and discussion.
We make use of very few basic principle of interval arithmetic from Ch. 2.

A. Direct Interval Computation with Outward and Inward
Rounding
As before the range of / over X is denoted by f(X). Furthermore let

F(X) = αιΧι + a2X2 + a3X3 + a 4

be the natural interval extension of f(x) to X. Generally, F(X) cannot be rep
resented on the computer since there are only finitely many machine numbers
available. In order not to loose the logical connection between F(X) and the
plane equation, F(X) is evaluated twice, once with outward rounding, as is
commonly the case in interval computations, and once with inward rounding,
which is also possible in almost all interval software packages (see also [132]).
Thus we obtain two approximations of F(X), that is, F0Ut(X) and Fi„w(X),
respectively. Note that Fi„w(X) can be the empty set. In any case,

Finw(X)QF(X)CF0Ut(X).

Theorem 3 says that the natural interval extension of a multivariate function
gives the range if each of the variables occurs at most once and of power one.
One recognizes that this theorem is applicable to / , and we get

f(X) = F(X).

Hence, we have machine representable outer and inner approximations of
the range, f(X). That is,

Finw(X) C f(X) C Fout(X).

This inclusion chain renders the following validated result:
(i) If 0 G Finw(X), the box and the plane intersect,
(ii) if 0 φ F0Ut(X), box and plane do not intersect.
(iii) In the remaining cases, which can be summarized as

0€Fout(X)\Finw(X)

�� �� �� �� ��

Box-Plane intersection Testing 125

the computation up to this stage was not effective or precise enough to allow
a decision.

Generally, the two intervals Fout(X) and Finw(X) will have almost the same
size so that case (iii) will only occur very infrequently. Nevertheless, one also
has to provide a way to get a reliable test result in this case. We will return to
this issue later in point D.

B. Direct Interval Computation of the Vertices of the Box
The numerical procedure will in this case follow the fact that box and plane
do not intersect iff the eight vertices of the box lie in only one of the two open
half spaces defined by the plane. Let

Vl,...,V8

be the eight vertices of the box X. Then box and plane intersect iff two vertices
Vi and Vj exist that satisfy

/(«,) < 0 < /(uj).

Let F(vi) be the machine interval arithmetic computation of f(vi) with
regular outward rounding for t = 1, ...,8. Then one gets the following result:

(i)If
F(vi) < 0 < F(Vj)

is satisfied for some indices i, j € {1, ···, 8} then the box and the plane intersect.

(ii) If F(vi) < 0 for any i = 1, ...,8 or
if F(vi) > 0 for any i = 1 , 8
then the box and the plane do not intersect.

(iii) In the remaining cases, the computation up to this stage was not effec
tive enough to allow a decision.

As in implementation A, one needs a way to cover the constellations related
to this case (iii). This will be settled in point D.

C. Testing Only a Representative Main Diagonal
The numerical procedure in this implementation is based on the very surprising
and almost unknown fact that the box intersects the plane iff the plane intersects
that main diagonal of the box that has the smallest unoriented angle to the
normal of the plane.

In order to use this fact, the box vertices are labeled as in Fig. 5.7. Let
then the main diagonals D i , £ > 4 of the box be denned in such a manner that

�� �� �� �� ��

126 Intersection Tests

Figure 5.7: Box-plane intersection

�� �� �� �� ��

Box-Plane Mtersection Testing 127

D\ connects v\ with vj,
Di connects vi with wg,
X>3 connects v% with u5,
D4 connects uj with v§.
Since we have to deal with orientation, these diagonals are represented as

vectors which are also denoted by D\, . . . , D A :
DI =v7 - Vi,

D 2 = V g - v2,

D3 = v h - v3,
Di = ve - v4.
As one can see, the numerical values of the coordinates of the vectors are

not essential for the characterization of the diagonals, but only the sign of the
coordinates, cf. Fig. 5.7. Thus the diagonals are uniquely defined by the sign
distribution of their coordinates,

Dx ~ (+ + +),
D2 ~ (- + +),
D 3 ~ (- - +),
Di ~ (+ - +)·
If degeneracies are admitted, that is, the box is no longer solid, the charac

terization is still valid, if -I- stands for a nonnegative real. Then some diagonals
will coincide. They are still uniquely defined by the signs, but be aware, their
numbering is not.

Let now η — (m n2 TI3) be a vector and n3 > 0. Let further Do be a main
diagonal which has the sign distribution (sgn(ni) sgn(n2) +) where sgn(0) is
assigned + as in the degenerate case. Then Do is that main diagonal which
has the smallest unoriented angle among Di, ...,D\ to n.

Crucial for our test is the following

Proposition. The box diagonal with the smallest unoriented angle to the
plane normal intersects the plane iff the box intersects the plane.

Proof, (i) It is obvious that box and plane intersect if one of the diagonals
intersect the plane since the diagonals are part of the box.

(ii) Now assume that the box and plane intersect and further assume that
no box edge is parallel to the plane. Then there exist vertices v' and v" so that
v' is farthest from the plane on one side and v" is farthest from the plane on
the other side.

Next we prove that v' and v" are the endpoints of a main diagonal:
Suppose v' and v" are on the same edge. Then there exist at least one v'"

on an edge joining v' (or on an edge joining v") that is farther away from the
plane than v' (or v"). Hence v' and v" cannot be on the same edge.

Similarly, they cannot be on the same face. Hence v' and v" must form the
endpoints of a box diagonal.

�� �� �� �� ��

128 Intersection Tests

It is now easy to see that the diagonal formed by v' and v" has the smallest
unoriented angle with the plane normal:

The projection of this diagonal onto the plane normal must be the largest
projection of all the diagonals since the endpoints of the diagonal are furthest
away from the plane on either side. Since all of the diagonals have the same
length the diagonal with the largest projection must form the smallest angle by
the definition of the cosine of the angle. Since υ' and v" are on different sides of
the plane (degeneracies included) the connecting diagonal intersects the box.

If one box edge is parallel to the plane, cf. the technical assumption at
the begin of (ii), one proceeds analogously to construct an appropriate main
diagonal, but it is no longer uniquely defined. •

We return to our concrete geometric situation. The plane was given by the
equation

f(x) = ayXi + o 2X2 4- 03X3 + a 4 = 0.

Let for a moment 03 > 0. Then, by the normal form of the plane, the
normal vector of the plane is, up to the length, defined by

(αχ α 2 α 3) .

Hence the main diagonal which is required for the test is determined as
follows:

Let the coefficients of the plane equation, oi, . . . , 0 4 , be given (again without
any restrictions). Then we obtain the following procedure:
1. Determine a main diagonal Do which has the sign distribution

(sgn(cn) sgn(a2) +) if sgn(a3) > 0,

or the sign distribution

(-son(ai) - sgn(a2) +) if sgn(a3) < 0.

2. Let Vi and Vj be the endpoints of DQ. Evaluate F(vi) and F(VJ) as in B.
Then one gets the following result:

(i)If
F(vi)<0<F(VJ)

or
F(Vj) < 0 < F (V I)

is satisfied, the plane and Do, hence the plane and the box intersect.
(ii) If F{vi),F(VJ) > 0 or if F(vi),F(vj) < 0

the plane and Do, hence the plane and the box do not intersect.
(iii) In the remaining cases, the computation up to this stage was not ef

fective or precise enough to enforce a decision. This will be settled in point
D.

�� �� �� �� ��

Box-Plane Intersection Testing 129

D. Procedure for the Remaining Undecidable Cases

In each of the three implementations there remained a percentage of constel
lations which could not be decided. In order to complete the tests one has to
apply an exactly working algorithm for comparisons of sums, or which is the
same, for determining the sign of a sum since all the undetermined cases can be
brought to this form. An algorithm which meets these requirements is ESSA.
Therefore, each of the implementations A, B, or C together with ESSA is able
to give a complete and reliable answer to the question whether the box and the
plane intersect.

5.3.1 Which of the 3 Approaches is the Best?

After having described three implementation samples, one question is still open,
that is the question which of them is best and can be recommended. This is not
easy to say and depends mainly on the expectations of the user.

Implementation A is the simplest one and it is very easy to handle. It could
be a favorite implementation on the average since, statistically, it will have the
most favorable computation time. However, if the undetermined case (iii) in A
is addressed, i. e.

0 i Finw(X), 0 € F0Ut(X)

then the former computational information is completely worthless and cannot
be used for a supplementary final correct computation. The reason is that if
(iii) occurs, "most" of the corners are on the one side of the plane and the
remaining "few" are so near the plane that the application of A cannot figure
out definitively on which side of the plane they are. So the corners have to
be checked again with ESSA. The spectrum ranges from 1 till all 8 corners, so
that worst case analysts will never use implementation A.

The code for implementation Β is as simple as the code for A. The average
costs, however, are higher than at A, since one has between 2 and 8 corner
evaluations already in the definitive case without ESSA. But if the undeter
mined case (iii) in Β happens, one already knows the critical corners and one
only has to process these with ESSA. This shows that the worst case analysis
is already better than the one for A.

The code for the implementation C is already more difficult than the pre
vious code, and the mathematical background is charming but not too easy to
understand. The average computational costs, however, are lower than in case
Β and comparable with the costs in case A. The worst case analysis for C is
better than for case A and case B.

�� �� �� �� ��

130 Intersection Tests

T r i a n g l e i n R e c t a n g l e i n O v e r l a p D i s j o i n t
r e c t a n g l e t r i a n g l e

Figure 5.8: The four possible rectangle-triangle configurations

5.4 Rectangle-Triangle Intersection Testing
One of the primitive operations that occur in many geometric computations is
to establish the relationship between a rectangle which can be assumed to be
axis-parallel and an arbitrary triangle both lying in the same plane. Typically
this operation might occur as part of a subdivision process or as part of the
interrogation of a map.

In order to discuss the possible cases we first define the term overlap for
two sets, or geometric objects A and B:

A overlaps Β iff Α Π Β φ 0 and neither AC. Β nor Β C A.

That is, A is not contained in Β, Β is not contained in A but A and Β intersect.
The aim of this section, based on [219], is to develop two procedures for

recognizing the possible rectangle-triangle relationships:

1. containment of the triangle in the rectangle,

2. containment of the rectangle in the triangle,

3. the triangle and the rectangle overlap,

4. the triangle and the rectangle do not intersect.

These four cases are illustrated in Figure 5.8.
In the first test we apply Skelboe's principle to determine the set of barycen-

tric coordinates of all points of the rectangle in concise form. Hence we get
something like interval barycentric coordinates being defined in Subsec. 5.4.1.
These were already used in [215] to develop a plane-box intersection test.

Hence the main feature of the first test is

the use of interval barycentric coordinates which are the collection
of the barycentric coordinates of all points in the rectangle. This
computation is almost as simple as the computation of barycentric
coordinates of points.

�� �� �� �� ��

Rectangle-Triangle Intersection Testing 131

The second test is a non-interval test. It is based on a direct checking of the
relationships between the edges of the rectangle and the triangle. This might
appear to be fairly complicated, however, it turns out to be reasonably simple:
By introducing the idea of rectangle edges that are "visible' from a triangle
vertex and then using the slopes of the triangle edges it is only necessary
to test the relationship of one triangle vertex with one or two of the visible
rectangle edges when the triangle and the rectangle are tested for intersection.
The numerical cost is a bit higher if they are checked for overlapping.

All together, both versions of this approach need only a few arithmetic and
logical operations. The drawback is that this (second) test is logically rather
involved so that a computer implementation has to incorporate many branches
that need to be distinguished.

5.4.1 Interval Barycentric Coordinates
The non-degenerate triangle we want to relate with the rectangle is denned by
three vertices r , s , t e R2 and it is denoted by Τ in the sequel.

It is well known that the barycentric coordinates of a point q € R2 w.r.t. Τ
can be computed as

_ area(g,3,t) _ area(r,g,t) _ area(r,a,g)
7 1 W " area(r, s, t)' 7 2 W ~ area(r, a, t)' 7 3 W ~ area(r, s, t)

where

χ 1 area(r, s, f) = -
Γι Sl ii
Γ2 52 h
1 1 1

(see [252, 46]). Although this definition is complete, we note that area(g, s,t)
is the area of the oriented triangle with vertices g, s, i. Orientation means that
the boundary curve of this triangle passes g, s, t in this order.

Among the various properties of barycentric coordinates we mainly need
the following two:

7i(«) + 72 (g) + 73(σ) = 1 for q e R2, (5.8)

q is a point of the triangle iff 0 < 7*(g) < 1 for i = 1,2,3. (5.9)

We now note that for each i the barycentric coordinates for points g with
respect to Τ partitions the plane into three regions by two parallel lines, one
passing through a side of Τ and the other passing through the opposite vertex.
This partitioning results in:

1. a region where q is restricted by 7i(g) < 0,

2. a region where q is restricted by 7*(g) e [0,1],

�� �� �� �� ��

132 Intersection Tests

Figure 5.9: Partitioning by one of the barycentric coordinates

3. and a region where q is restricted by 7i(q) > 1.

An example of this partition with i = 3 is shown in Figure 5.9. The intersection
of the three regions where q is restricted by 7J(O) G [0,1], i = 1,2,3 defines the
triangle, i.e. {q : 7,(9) G [0, = 1,2,3} = T.

Consider now the axis-parallel rectangle D = D\ χ D2. Using the notation
for ranges, •7i(£>) = {7t(g) : q G D}, i = 1,2,3 it follows that

Z ? C T i f f 0 < a 7 j (Z ?) < l , i = l,2,3. (5.10)

It turns out that by the principle of Skelboe the natural interval extension
7 J (D) , i = 1,2,3 compute the range provided the determinants involved are
expanded so that the interval variables only occur once and to the first power.
This means that

_ area(D,8,i) _ area(r,D,t) . (n \ - area(r,a,£>)
Ί Λ ' ~ area(r,e,r) ' 7 2 1 ' ~ area(r,e,r) ' 7 3 K ' ~ area(r,s,i)

computes the exact range provided the determinants are expanded in the fol
lowing manner (i = 1 is chosen as an example):

area(I>, β, t)
7i (D) =

Dx 81 h
D2 s 2 t2

1 1 1 area(r,s,i) 2area(r, s,t)

(Pi - h)(s2 - t2) - (D2 - t2){Sl - h)
2area(r, a, t)

(5.11)

We note that each interval variable only occurs once in this expansion which
means that Skelboe's principle holds. The interval evaluation (5.11) therefore
computes the range and we can replace (5.10) by

Z?CTiff0<7<(i)) < 1 , t = 1,2,3. (5.12)

�� �� �� �� ��

Rectangle- Triangle Intersection Testing 133

D

Figure 5.10: A counterexample to intuition

provided all the 7<(I>), i = 1,2,3 are evaluated in the same manner as (5-11).
Because of (5.8), criterion (5.12) is equivalent to

D C Τ iff 0 < 7<(£>), i = l,2,3. (5.13)

One notes that relationship (5.12) is already appropriate as a criterion for
the case Τ C D and it will thus be incorporated in the complete test in the
next subsection. Another criterion which is immediately obvious due to the
definition of interval barycentric coordinates, is based on the partition of the
plane into regions, cf. Fig. 5.9 and it says that the rectangle and the triangle
do not intersect, if the rectangle is contained in one of the halfplanes defined
by

7<(α) < 0 or ji(q) > 1 for some i = 1,2,3.

That is,

if 7<(£>) < 0 or 7i(D) > 1 for some i = 1,2,3 then D Π Τ = 0. (5.14)

The converse of this conclusion is, however, not true. Hence (5.14) will be
completed in the next section when more geometric insight is obtained.

5.4.2 The Geometry of Test 1
In the previous subsection we noted that the interval evaluation of the barycen
tric coordinates enabled us to make a definite decision for intersection or dis-
jointedness for some of the triangle-rectangle configurations. The remaining
cases which have not been covered by the simple constellations (5.12) and
(5.14) need some further contemplation and the incorporation of geometric as
pects. One even has to be careful not to succumb to any "obvious" geometric
insights. For example, one could easily be attempted to conclude that D and
Τ intersect if ji(D) D [0,1] for i = 1,2,3. However, there are examples that
show that this conclusion is wrong, cf. Fig. 5.10. The rectangle in the figure
only has to touch the two dotted lines to satisfy those assumptions.

�� �� �� �� ��

134 Intersection Tests

Figure 5.11: The bounding rectangle possibilities

In order to proceed we introduce the axis-parallel bounding rectangle Η —
H(T) of T, that is, the isothetic rectangle hull of Τ (being the smallest axis-
parallel rectangle that contains T) as shown in Fig. 5.11.

In the first part of the figure the bounding rectangle is generated by the
three vertices of Τ and in the second part only by two (i.e. one of the vertices
can be moved a bit in a certain direction without changing H).

From the definition of Η another partial test follows immediately:

If D Π Η = 0 then D and Τ are disjoint. (5.15)

This means that any rectangle D lying outside Η forms an empty intersection
with the triangle T. We only have to concern ourselves with the rectangles D
that intersect H.

For this reason we introduce the intersection

D„ = DnH

and we use it for the further development of the complete test. One notes
that the triangle Τ has almost the same relationship to D H as to D. That is,
D intersects [is contained in, contains, is disjoint with] Τ if and only if DJJ
intersects [is contained in, contains, is disjoint with] T. One only has to be
cautious with overlapping which can change to a degenerate situation when
DJJ is just a straight line or a point.

Hence, (5.12), (5.14) and (5.15) remain valid if in the right-hand side of
(5.12) as well as in the assumptions of (5.14) and (5.15), D is replaced with
DH-

The advantage of dealing with DH instead of D is twofold:

(i) One can execute the investigation of the various cases within Η which
reduces the number of cases

(ii) one can get an earlier decision during the algorithmic execution of the
test.

As an example for (ii) assume that 71(D) < 0 does not hold when executing
(5.14). In spite of this 71 {DH) < 0 may hold so that we have the immediate

�� �� �� �� ��

Rectangle- Triangle Intersection Testing 135

result that Τ Π DH = 0 which means that Τ Π D = 0 thus terminating the
query.

T e s t 1 for the relationship between the axis-parallel rectangle D and the
nondegenerate triangle T.

Let Η be the axis-parallel rectangle hull of T, let DH = D C \ H and ^ (D H)
be the interval barycentric coordinates of DH w.r.t. T. Then

A I . If DH = 0 then D and Τ are disjoint.

A2. If Η = DH then Τ is contained in D .

A3. If 7i(Dff) < 0 or j i { D H) > 1 for some i = 1,2,3 then D and Τ are
disjoint.

A4. If 0 < 7i(Hji) < 1 for t = 1,2,3 then

(i) D is contained in Γ, if D = DH
(ii) D and Γ overlap if D φ D H -

A5. In the remaining cases, D and Τ overlap.

A test is called complete if it considers all constellations which can occur
as subject of the test. A test is called correct of consistent if no wrong result
is rendered. One notes that Test 1 is complete (due to the passage "In the
remaining cases..." in step A5). It remains to prove that the test is correct,
which will be done in the remainder of this section. Since the correctness of AI
to A4 is obvious and connected with (5.12), (5.14), (5.15) and the transitions
from Η to D H , only the proof of A5 is required.

A few of the conclusions of the test are obviously reversible:

A 2 \ If Γ is contained in D then Η = D H -

A4'. If 0 < 7i(DH) < 1 for i = 1,2,3 then

(i) if D is contained in Τ then D = DH

(ii) if D and Τ overlap then D φ D H -

It suffices to prove A5 in a weaker version, namely

A5'. In the remaining cases, D and Τ intersect.
The reason is that for the remaining cases no inclusion relation can occur:
Τ C D would imply Η = DH by A2' which is already subsumed by the test
step A2, and D C Τ would imply 0 < ^ (D) < 1 and 0 < 7 < (D H) < 1 for
i = 1,2,3 then we would get D = DH by A4' which is already subsumed by
test step A4(i).

�� �� �� �� ��

136 Intersection Tests

We first cite two lemmas which certainly could be proven by drawing sample
figures. Our preference is, however, for analytic proofs.

L E M M A 2 If-)i{DH) > 0, 7 j (D H) > 0 and 0 € y K (D H) where {i,j,k} =
{ 1 , 2 , 3 } then Τ and D H intersect.

Proof. Since 0 6 7*(i?ff) there exist an χ 6 DH with 7* (a;) > 0. The
remaining assumptions imply 7i(x) > 0 and 7j(x) > 0. Since Σ 3 „ = ι 7«,(x) = 1
holds after (5 .8) , we get

0 < 7„(x) < 1 for ν = 1 , 2 , 3 .

This means that χ € Γ by (5 .9) . Hence χ G D H Π Τ and D H Π Τ φ 0. •

L E M M A 3 //, for ν = 1,2,3,

0 6 > (B / f) or 0<7„(£>H)

and if DH and Τ do not intersect, there exist at least two different indices i,j
with

0€7i(DH) and0€7j(DH).

Proof. In order to get a contradiction we assume that at most one of the lines
7„(x) = 0 meets DH-

If exactly one of the lines meets D H , Lemma 2 says that DH and Τ intersect.
This is a contradiction.

If none of the lines meets DH then, by assumption, 0 < 7„(DJJ) holds for
side condition (5 .8) of the barycentric coordinates, Σ)ΐ!=ι 7"(x) = 1 f° r

χ G R2, and the fact that JV(DH) = ^ΊΛ^Η) for ν = 1 , 2 , 3 we get 7„ < 1 for
ν = 1 , 2 , 3 . This means that 7„(DJJ) C [0 ,1] for ν = 1 , 2 , 3 and it follows that
DH and Τ do not intersect. •

T H E O R E M 9 Test step A 5 is correct.

Proof. We mentioned already that it is sufficient to prove the correctness of
A 5 ' instead of A 5 .

We assume that D and Τ obey "a remaining case" as expressed with A 5 \
which means that D and Τ do not meet the assumptions of A 1 to A 4 . Focusing
on A 3 and A 4 and using (5 .13) says that there does not exist an index i = 1 , 2 , 3
with

~fi(DH) <0 or ji(DH) > 1 , (5 .16)

but that there exist an index k = 1 , 2 , 3 such that

0 < l k { D H)

�� �� �� �� ��

Rectangle- Triangle Per section Testing 137

does not hold. These two conditions together imply that

0 G -yk(DH) for some k = 1,2,3. (5.17)

We now have to distinguish two cases.

1. is generated by all three vertices of Τ (lefthand side of Fig. 5.11). In
this case, the vertices of Τ lie on the boundary of H, and those parts of the
lines ji(x) = 0 that lie in Η are parts of the edges of T, i.e.

By (5.17), there exists χ G DH C Η with jk(x) = 0. By (5.18), χ G Τ is
implied, and Dh and Τ intersect, accordingly D and Τ intersect, which was to
be proven.

2. Η is generated by two of the vertices of Τ (cf. right side of Fig. 5.11).
That means the third vertex can be dropped or slightly moved in a certain
direction without changing H. In order to get a contradiction, it is assumed
that Dh and Τ (and accordingly D and T) do not intersect. This assumption
together with (5.16) and (5.17) implies that the assumptions of Lemma 3 hold.
Therefore, an index l φ k with 0 G ji(Dh) exists. Without restricting the
generality, we set k = 1, I = 2 such that

holds. There exist points p,q G Dh with 7 1 (p) = 7 2 (9) = 0. By assumption,
p,q £T. Hence ρ G Dh C Η lies on the line 7 1 (x) = 0 and q G Dh Q Η on
the line 72 (x) = 0. This is only then possible if the vertex ί of Γ being the
cutting point of the two lines 71 (x) = 0, 7 2 (2) = 0 is an interior point of H,

Therefore, r and s are the vertices of Γ that generate H, they connect
opposite corners of H, and the line segment from r to s is a diagonal of H.
Without restricting the generality we assume that r is the left lower corner
of H, that 8 is the right upper corner of H, and that t lies above the related
diagonal, as shown in Fig. 5.12. It follows from this configuration that the
lines 7 1 (x) = 0 and 7 2 (1) = 0 increase monotonically, that is, ρ is left of and
below i, and t is left of and below q. This gives, expressed analytically,

One notes that the axis-parallel rectangle hull of ρ and q, denoted by
H{p,q) = {x G R2 : Pi < Xi < gj,i = 1,2} and that each axis-parallel rectangle
Β contains H(p,q) where p,q G B. Hence, t G H(p,q). Since ρ,σ G Dh where
Dh is an axis-parallel rectangle, it follows that H(p,q) C Dh- This yields
t G Dh Π Τ obtaining a contradiction by DH η Τ φ 0. •

if χ G Η and 7<(x) = 0 then χ G Τ for i = 1,2,3. (5.18)

0G7i(£>ff) , 0 G 7 2 (£ H) ,

0G7 3(-Dff), or 0 < 7 3 (D f f)

PI < *i < Qi and P2 <h < q2-

�� �� �� �� ��

138 Intersection Tests

,.Ί2(χ)=0

r

Figure 5.12: The geometry of the proof

5.4.3 An Algorithm for Test 1
The collection of steps Al - A5 is certainly correct and forms a complete test
and can immediately be chosen as the set of steps for an algorithm and for a
numerical execution.

It is, however, reasonable to add a few simple comparisons and to change
the order of the steps slightly in order to set the cheaper computational steps
firstly and to compute the (more expensive) interval barycentric coordinates
secondly. We accept hereby a small percentage of overlapping of conclusions
hoping that the early steps will lead to a decision so that the algorithm can be
terminated.

Let again r, s, t G R2 be the affinely independent vertices of the triangle
Τ with coordinate representation r = (ri,r2), etc. Let D = D\ χ D2 be the
rectangle with D\ = [ci, di] and Z?2 = [C2, tfc]. The four corners of the rectangle
are (ci,C2), (di,C2), (di,d2) and (ci,d2) in counterclockwise order.

Further let

Oj = min{ri,8i,ti},i = l,2,

bi = max{ri,Si,ti},i = 1,2.

The rectangle hull Η = H(T) is then given by Η = [aj, 6ι] χ [α2,62], and the
four corners of Η are (01,02), (61,02), (61,62), and (01,62) in counterclockwise

�� �� �� �� ��

Rectangle-Triangle intersection Testing 139

order. Hence Η can be seen as generated by α = (αϊ,02) and 6 = (61,62) as
well, Η = H{a,b).

With these preparations the algorithmic version of the test is established.

A L G O R I T H M 11 (For testing the relationship between the axis-parallel rect
angle D and the nondegenerate triangle T.)

Step 1. If 61 < C i or 6 2 < C2 or di < αϊ or d2 < a2 (that is, D and Η are
disjoint) then D and Τ are disjoint.

Step 2. If Ci < ai and bi < di for i = 1,2 (that is, Η C D) then Τ is contained
in D.

Step 3 . Compute DH — DV\H.
(If ki = max{aj,cj, Zj = min{6j,dj} for = 1,2 then DH = [ki,h] x
[k2,h])

Step 4 . If r G D, s ί D or t & D or if s G D, t & D or r & D or if t € D,
r & D or 8 & D (that is, one vertex of Τ lies in D and one outside D)
then

(i) D is contained in Τ if D = D H ,
(ii) D and Τ overlap if D φ DH-

Step 5. Compute the interval barycentric coordinates ji(Dn) = Π7»(Ι?#), i =
1,2,3 as explained in Subsec. 5.4-1-

Step 6. Ifii{DH) < 0 or ji{DH) > 1 for some i = 1,2,3 then D and Τ are
disjoint.

Step 7 . IfO < 7 J (£ > H) < 1 for i = 1,2,3 then

(i) D is contained in Τ if D = D H ,

(ii) D and Τ overlap %ίΰφΰΗ-

Step 8. In all remaining cases, D and Τ overlap.

The advantage of this algorithm is that it is transparent and the disadvan
tage is that one can develop algorithms requiring fewer operations. In a worst
case analysis we counted 13 subtractions, 7 of them with intervals, 6 products
with intervals, 3 divisions with intervals, and 36 real comparisons. Equality
checking was not counted. The average number of operations will always be
lower, however.

The experienced programmer will certainly not program Steps 1 to 3 one
after the other as shown above. One can reduce the computation time if these

�� �� �� �� ��

140 Intersection Tests

steps are combined and reformulated by a tree structure where the branching
depends on the relations of the assumptions of the Steps 1-3.

If the computations for the algorithm are executed on a computer, there is
a very small percentage that the results will be falsified by rounding errors. A
good means for controlling and overcoming such problems is machine interval
arithmetic, cf. Sec. 2.4. This does not add substantially to the cost of the
algorithm since interval calculations already form the basis for the algorithm.

One could imagine that it is a simple matter to lift the considerations of
this section by dimension 1 in order to obtain a test or an algorithm for the
relationship of a box and a tetrahedron. This is, however, not the case for
topological reason: The difference area H \ T consists in general, of two or three
connected components. In dimension 3 the difference area H \ T (where Τ is a
tetrahedron and Η = H(f) the axis-parallel hull of f) will only consist of one
component which involves at least one interior hollow leading to a number of
different cases caused by a variety of sites which cannot occur in two dimensions.
Hence, a test for the relationship between a box and a tetrahedron will appear
in a separate section.

5 . 4 . 4 Numerical Examples Using Test 1
As an example we consider the situation in Figure 5.12 where a triangle Τ
defined by the vertices r = (0,1), β = (4,1) and t = (6,6) and three rectangles
D , D ' and D " are shown.

1. Clearly the vertices of Τ are not in D . The bounding rectangle Η =
[0,6] χ [1,6] is therefore computed. Since DH = Η Π D φ 0 we therefore
compute 71 (D H) = [0.5,1.15], - y 2 (D H) = [-0.95,0.5] and 73(D H) =
[0.2,0.8]. Since Steps 6 and 7 do not hold we have that the rectangle D
overlaps the triangle Τ (found in Step 8).

2. The vertices of Τ are not in £>'. The bounding rectangle Η = [0,6] χ [1,6]
is therefore computed. Since D ' H = D ' Π Η φ 0 we therefore compute
71 (£>'„) = [0.1,0.45], < y 2 { D H) = [0.15,0.7] and y 3 (D ' H) = [0.2,0.4]. Since
l i { D ' H) <Ξ [0'!]' * = 2,3 holds and D ' = H ' H it implies that the box D '
is completely contained in the triangle (found in Step 7).

3. For the rectangle D " = [5,6] x [1,2] we have that the vertices of Τ are
not in D " . We again compute the bounding rectangle Η = [0,6] χ [1,6].
Since D ' H = D " η Η φ 0 we compute 71 { D H) = [-0.5, -0.15], 72 (# H) =
[0.95,1.5] and 7 3 (D^) = [0.0,0.2]. Since ~fi{DH) < 0 it follows that
rectangle D " is disjoint from Τ (found in Step 6).

�� �� �� �� ��

Rectangle-Triangle Intersection Testing 141

Figure 5.13: Rectangle triangle intersection examples

�� �� �� �� ��

142 intersection Tests

5.4.5 An Alternative Test
Test 1 has a very simple logical and geometric structure. Even so, the correct
ness of the test is not at all evident. Another feature of the test is that almost
no logical or computational effort is invested in order to distinguish between
the cases of overlapping and intersection of Τ and D. (Hence no distinction
was made.) The price for this convenience is paid in numerical effort. We
therefore provide an alternative test to Test 1 which has diametrically opposed
properties: The logical structure is much more complex, but the correctness
of the test is evident and does not require a proof. The number of arithmetic
and logical operations is also lower in the worst case analysis. Some logical
and computational differences also arise if overlapping and intersection is dis
tinguished.

We use the notation of the previous sections, i.e., we use the rectangle hull
Η = Η (Τ) of the triangle Τ and the intersection D H = D Π Η between the
rectangle D and the hull H.

Then the second algorithm for testing the relationship between the axis-
parallel rectangle D and the nondegenerate triangle Γ is as follows (where the
steps of the algorithm and the accompanying explanations are merged in order
to improve the understanding of the algorithm):

A L G O R I T H M 12 (Second rectangle- triangle test)
First Steps 1 ίο 4 of Alg. 11 are executed. If they have not led to a decision

then the remaining situation is that

a) D and Η are not disjoint (DH φΟ),

β) Τ is not contained in D,

7) all vertices of Τ lie outside D and thus outside D H -

In order to reduce the number of cases as far as possible the following Steps
5 and 6 are used to normalize the geometric constellation.

Step 5 . Find a vertex of Τ which is also a corner of H. (There exist at least
one such vertex.) Let this vertex be the left lower corner of H. (This can
be achieved by mirroring the objects in one or both of the coordinate axes,
i.e. xi t-t —xi or X2 ·-> — xi or both.) Denote this vertex by r, cf. Fig.
5.14-

Step β. Denote the remaining vertices of Τ by s and t so that (cf. Fig 5.15)

(i) s lies on the right edge of Η and
(ii) t lies above the line segment from r to s.

�� �� �� �� ��

Rectangle-Triangle htersection Testing 143

r

Figure 5.14: The requirement of Step 5

r s r r

Figure 5.15: The requirement of Step 6

If conditions (i) and (ii) cannot be achieved, mirror the objects of the test
on the main diagonal of the plane (that is, swap coordinates i i and X2).

In order to test Τ and DH for intersection it is only necessary to investigate
the two edges of DH which are "visible" from the vertex r. Only the endpoints
need to be checked. If, however, one wants to know whether D is contained in
Τ or not, then one has to consider all the edges, respectively all the corners.

We denote the corners of by

k = (kl,k2), k' = (luk2), fc" = (fci , / 2) , k"' = (k2,l2),

cf. Step 3 of Alg. 11. The corners fc, fc', fc" and the edges from fc to fc' and
from fc to fc" are interpreted as visible from r if the relationships between r and
the corners are as shown in Fig. 5.16.

The intersection test is now based on observing only whether the visible
corners lie on one side or on different sides of the triangle edges. This is best
done by utilizing slopes. Let x,y € R2 then the (directed) slope of the line
segment from χ toy is denoted by

sl(x,y) = (y2 - X2)/(yi - *i)-

We admit values ± 0 0 by setting

sl(x,y) = (sgn(y2 - x2)) = 00 if an = yi, X2 Φ J/2-

�� �� �� �� ��

144 PersectioD Tests

k"

I 1
k k'

Figure 5.16: k, k' and k" are visible from r

t

Figure 5.17: The two cases for location of t in Step 7

If χ = y then we introduce a special convention. In this case sl(x, y) is assigned
that slope value with which sl(x,y) is compared. For example, if χ = y and

sl(x,y) > sl(r,s)

is to be evaluated sl(x, y) is set to sl(r, s). (In such situations r = s will not
occur.) The background for this convention is that it works well and that it is
helpful in avoiding cases that arise from degenerate situations (i.e. the cases
where DH shrinks to a line segment or to a point).

We distinguish two cases, i.e. t lies on the upper edge of Η or it does not,
cf. Fig. 5.17. The latter case implies that s is the right upper corner of H.

The reason for taking this difference into consideration is that it allows us
to develop steps that are taylored to the geometry. Furthermore, it allows
us to commence the branching of the algorithm in such a manner that the
computational costs are kept low.

S t e p 7 . J / i 2 = 62 (that is, t lies on the upper edge of H) then go to Step 7A
otherwise go to Step 7B.

The following test steps are now the real test steps. They are all based on
the relationships between the slopes of a triangle edge and line segments. For

�� �� �� �� ��

Rectangle-Triangle intersection Testing 145

example, if sl(r, fc') > sl(r, t) then the point k' is above the triangle edge from
r to t, and hence it follows that DH and Τ cannot intersect, cf. Fig. 5.18a).

Step 7A. If fei < ti (that is, k is to the left of t) go to (i) else go to (ii).

(i) If sl(r,k') > sl(r,t) or sl(r,s) > sl(r,k") then D Π Τ = 0 otherwise
D H T ^ H i (Fig. 5.18a)). End.

(ii) If > « 2 (that is, k is above s) then

if sl(t,k) > sl{t,s) then £>DT = 0 else D C \ T £ 0

else

if s/(r, β) > s/(r, ib") then £ > n r = 0 e l s e £ > n T ^ 0 (Fig.
5.18b)). End.

Step 7B. If jfc2 > *2 (that is, k is above t) then go to (i) otherwise go to (ii).

(i) If ii < ti (that is, fc' is to the left of t) then

if fc' φ t then D Π Τ = 0 else D Π Γ ^ 0

else

if [*J(r,i) > s/(r,fc") or sl(t,k') > i/(t,s)] then D Π Τ = 0
else ΰηΤφί) (Fig. 5.19a)). End.

(ii) If [si(r,fc') > s/(r,t) or sl(r,s) > al(r,k")} then D D T = 0 else
D n T ^ e (Fig. 5.19b)). End.

Remarks.
1. The overall number of arithmetic operations and comparisons is rather

low. We count at most 8 subtractions, 4 divisions and a few comparisons.

�� �� �� �� ��

146 Intersection Tests

a) b)

Figure 5.19: fc above t and fc below ί

2. The completeness of Alg. 12 is clear from the completeness of the cases
that occur, and the correctness can be verified from the geometric configuration,
i.e. the figures, directly.

In contrast to Alg. 11, Alg. 12 does not determine what type of intersection
(i.e. overlapping or D C T) it is. Only the case Τ C D is covered by Step 2.
Supplementary tests are required in order to get a decision for either overlap
ping of D and Τ or for the decision D C T . Hence if it has already been shown
in Step 7 that D Π Τ φ 0 then

D C Τ iff,
in case of Step 7A(i):

sl(r,k") < sl{r,t),sl(t,k"') < sl(t,s) and s/(r,s) < sl(r,k'),
in case of Step 7A(ii):

sl(t,k"') < sl(t,s) and sl(r,s) < sl{r,k'),
in case of Step 7B(i):

k' = k" (in case h > h),
sl(t,k") < sl(t,8) and sl(r,s) < sl(r,k') (in case h > h),

in case of Step 7B(ii):
sl(r,k") < sl(r,t) and s/(r,a) < sl(r,k') (in case fci < t i) ,
sl(t,k") < sl{t,s) and sl(r,s) < s/(r,fc') (in case fci > ti).

The additional cost for checking whether a triangle and a rectangle overlap
or whether the rectangle is contained in the triangle after the intersection has
been established is at most 2 slope computations and 2 comparisons. This
means that the total number of operations is at most 12 subtractions, 6 divisions
and a couple of comparisons are required.

In the same manner as in Alg. 11 machine interval arithmetic can be used
to control the problems that might occur when the algorithm is implemented
using floating point arithmetic. This would make this algorithm more expensive

�� �� �� �� ��

Box-Tetrahedron foterseetion Testing 147

since all the real calculations would have to be replaced by machine interval
arithmetic calculations.

5.5 Box-Tetrahedron Intersection Testing
Many applications in computer graphics and solid modelling require the de
termination of whether two objects intersect or not or if one object is strictly
contained in another (see, for example, [64, 156,153]). Typical situations where
this occurs are in determining whether a tool will touch an object, whether two
objects in a scene do not intersect such that the scene is realistic or whether a
robot can maneuver through a maze.

The procedure, following [220], is a generalization of the work in the previ
ous section.

It turned out that Greene's [81] approach and the one used in [215] for 2D
used almost the same geometric idea. Hence in generalizing [215] to 3D it is
sufficient to refer to Greene [81] for details regarding the geometric background.
The tests and the algorithms developed here and those used by Greene remain
significantly different, in particular with respect to the requirement that the
computations should result in a guaranteed answer.

The geometric key for the test is just the well-known fact that a box Β and
a tetrahedron Τ do not intersect iff there exists a plane separating Β and Τ
which is parallel to

(i) a face of Β or
(ii) a face of Τ or
(iii) an edge of Β and an edge of T,

cf. Greene [81], p. 78. It follows that Β and Τ intersect iff

a) the three axis-parallel projections of Β and Τ intersect and
β) for any closed halfspace Η which contains Τ where a face of Τ
lies in the boundary of Η it holds that Β and Η intersect.

In contrast to Greene who uses this criterion directly and applies it to detect
polyhedra and box intersections, we introduce interval barycentric coordinates
and operate with a reduced box. The box is seen as a three dimensional in
terval and is treated as one object. The interval barycentric coordinates give
additional information due to their geometric properties without increasing
the computational costs. The box Β is furthermore reduced to that part, Bn,
which lies in the box hull, Η = Η (Τ), of Τ where Η (Τ) is the smallest axis-
parallel box that contains T, see also Figure 5.20. The advantage of dealing
with B H instead of Β is, that the intersection properties remain unchanged
and it is a larger chance that the test resp. the algorithm will lead to an earlier
decision.

�� �� �� �� ��

148 Intersection Tests

�� �� �� �� ��

Box-Tetrahedron Intersection Testing 149

A crucial part of the procedure is based on the use of interval arithmetic to
evaluate a set of interval barycentric coordinates. The use of these coordinates
allows us to decide a number of cases without further computations as well as
to control the errors in the computations.

The central part of the procedure is based on Skelboe's principle from sec
tion 2.9 which is applied here to functions /(χ), χ = (x i , X 2 , X 3) of 3 real
variables.

The value of the principle is that the complete box B, that is, the set of all
the points of it, can be interpreted as exactly one interval arithmetic expres
sion when described by barycentric coordinates. This implies that only one
comparison is required in order to determine, provided some plane is given,
whether the box lies on the positive or negative side of the plane or whether
plane and box intersect. Nevertheless, some theoretic background is needed to
make the construction of the interval arithmetic expression mentioned under
standable, although the construction itself is simple. This, together with the
introduction of three-dimensional interval barycentric coordinates, is done in
the next section.

Interval tools also make it easy to distinguish between overlapping of two
objects and one containing the other. It is, certainly, not difficult at all to
detect whether Τ lies in B, but conversely, a couple of comparisons is needed
to decide whether Β and Τ overlap or whether Β is contained in T.

The aim of this section is to develop and verify a procedure for establishing
the possible box-tetrahedron relationships determining the conditions for:

1. containment of the tetrahedron in the box,

2. containment of the box in the tetrahedron,

3. when the tetrahedron and the box overlap,

4. when the tetrahedron and the box do not intersect.

In order to be complete we note that there are a variety of other techniques
that can be applied to the problem discussed here. As an example we note
that the results of Chazelle-Dobbin [26] can be specialized to our problem.
In their paper, the detection of the intersection between convex polyhedra is
studied and results asymptotic in the number of polyhedron vertices are pre
sented. The intersection testing problem is reduced in dimension introducing
the idea of drums (slices through vertices parallel to a coordinate plane) and
recursion between chains in two dimensions. Bimodal search is used to improve
the efficiency of subproblems. Clearly, slicing a general tetrahedron parallel to
a coordinate plane through vertices creates three drums on the average with
up to eight vertices each. The intersections of these drums with the box then
have to be computed. Just the generation of extra vertices makes this method
uncompetitive with our method since our method is specifically designed for

�� �� �� �� ��

150 Intersection Tests

the case of small numbers of vertices. Another possible algorithm would be the
computation of the maximum and minimum value of each barycentric coordi
nate occurring at box vertices [247] so that interval barycentric coordinates are
not required. These approaches would again violate the requirement that the
computations should result in a guaranteed answer.

5 . 5 . 1 Three-Dimensional Interval Barycentric Coordinates
If a non-degenerated tetrahedron Τ C R3 is given, the barycentric coordinates
w.r. to Τ are often used to describe the location of a point q G R3 w.r. to
T. If the point q is replaced with a box Β being a 3-dimensional interval, we
speak of 3-dimensional interval barycentric coordinates. They are an excellent
and simple means to describe the location of Β w.r. to Τ and are therefore
appropriate as basic expressions for an intersection test.

We consider four points a, δ, c, d G R3 forming the vertices of a non-degenerate
tetrahedron denoted by T. The barycentric coordinates of a point ρ G R3 with
respect to the tetrahedron are computed as

7 1 (p)

7 2 (P)

7 3 (P)

7 4 (p)

vol(p, b, c, d
vol/a, b, c, d\
volfa, p,c,
volfa, b, c, d
vol(a,b,p,<t
volfa, 6, c, a
volfa, b,c,p'
vol(a, 6, c,

(5.19)

where

vol(r,s,t,u) = I

Γ ΐ r 2 r 3
1

S i «2 «3 1
h h *3 1

« 2 " 3 1

for r, s, i,u G R3, cf. for instance, Hanson [98]. Although this definition is
complete we note that vol(r, s, t, u) is the volume of the oriented tetrahedron
with vertices r,s,t,u (in this order). It can be degenerate.

Barycentric coordinates have a number of interesting properties. Here we
need the following two:

» G T i f f 0 < 7 i (p) < 1, i = l , . . . , 4 , (5.20)

£ > (p) = l , f o r p G f l 3 . (5.21)
•=i

Hence, for example, the points ρ lying on the plane spanned by the vertices
a, b, c, or, which is the same, spanned by that face of Τ which has a, 6, c as

�� �� �� �� ��

Box-Tetrahedron intersection Testing 151

vertices, are characterized by 74 (p) = 0. In a similar manner, the points ρ
lying in that closed halfspace of the plane just mentioned in which Τ lies, are
characterized by 7 4 (p) > 0.

In the same manner as in [215] we now consider a box Β = Βι χ B2 x #3 ,
also denoted by Β = (Βι,Β2,Β3),Β{ G I,i = 1,2,3. Then

Β C Γ iff 0 < 7<(p) < l,i = 1 , . . . ,4 for all ρ G £ . (5.22)

The statement "for all" p£ Β simply means that all points in the range of 7<(p)
over Β , defined as O^(B) = {ji(p)\p G B}, must have the property (5.22). In
other words, the box Β is included in Τ iff all barycentric coordinates are in
the range [0,1] i.e. we need to evaluate Ο^(Β), i = 1 , . . . ,4 and then to test
the inclusion in [0,1].

The exact evaluation of the range of a function is in general a difficult and
time consuming task (see for example [212]). The present case has, however,
some special properties which we now exploit.

For simplicity we only consider the case for i = 1 since the other cases are
similar and we generalize the techniques used in [215]. Letting i = 1 we have
that

vol(a, 0, c, a)
by (2.17) using interval arithmetic for the natural interval extension of 71 over
B. Since the denominator is only a scalar, we only need to consider the nu
merator of (5.23) for the purpose of obtaining the extent of the range and we
get

Βι B2 B3 1
6l &2 63 1
ci c2 c3 1
di d2 d3 1

{(Bt - d i) ((& 2 - d2)(c3 - d3) - (63 - d3)(c2 - d2))
= -(Bi - efe)((6i - di)(c3 - d3) - (63 - d3)(ci - *)) >(5.24)

+(B3 - d 3)((6i - di)(ca - d2) - (b t - tfe)(ci - di))} /6

and the principle previously mentioned applies since each interval variable oc
curs only once. This means that for this particular expression we have

vol(£,D,c,d) = i

•vol(B, 6, c,d) = vo\(B,b,c,d).

With the determinants evaluated in this manner and using the point value of
vol(o, b, c, d) it follows that 7<(B), i = 1 , . . . , 4 can be used in the procedure to
make a definite decision as to the tetrahedron-box relationship for the following
ad-hoc cases:

1. Inclusion of the box in the tetrahedron. This occurs when Ji(B) C [0,1]
for i = 1 , . . . , 4 or already when 7<(B) > 0 [resp. < 1] for i = 1 , . . . , 4
by (5.21).

�� �� �� �� ��

152 in tersec t ion Tests

2. The box is contained in one of the regions defined by 7<(σ) < 0 or ji(q) > 1
for some i, i = 1 , . . . , 4. That is, if fi{B) < 0 or ji(B) > 1 for some i,
i = 1 , . . . ,4 then clearly Β Π Τ = 0.

Certainly, not every box-tetrahedron relationship is covered by these two
sample cases.

5.5.2 The Algorithm
It was already mentioned earlier that we use Greene's observation as the ge
ometric background for the procedure. This observation says that the box Β
and the tetrahedron Τ intersect iff Β and Τ intersect in all three projections
parallel to the main axes and that Β does not lie entirely outside any planes
spanned by a face of T.

We do not, however, pursue Greene's procedure which first searches for
the box corners that are farthest (regarding a positive as well as a negative
direction) from the planes spanned by the faces of T. The procedure then
observes those corners to determine on which side of the related planes they
are in order to force a decision about box-plane intersection. If no decision
has been reached so far, the projections of Β and Τ are checked for their
intersections. This last step cannot be avoided in our procedure either, and
we again use 2D-barycentric coordinates, whereas Greene uses his algorithm
focused on 2D. The reasons for the choice of 2D-barycentric coordinates also
in 2D are the same as for choosing the 3D-barycentric coordinates for the 3D
problem treated in this section.

In this subsection, we first formulate the geometric idea with interval barycen
tric coordinates such that a test based on this would already be complete and
correct. We then add a couple of further test conditions that need almost no
additional computations. These additional test conditions lead in general to
earlier decisions than if they were not incorporated.

Test 1 for checking intersection between Β and T.

1. If 7i(B) < 0 for some i = 1 , . . . , 4, then Β and Τ are disjoint.

2. If Pj{B) and Pj(T) are disjoint for some j = 1,2,3, then Β and Τ are
disjoint (pi,»2>P3 are the 3 axis-parallel projections).

3. In the remaining cases, Β and Τ intersect.

Note that Pj(B) is a rectangle and pj(T) consists of one or the union of
two nondegenerate triangles. Detecting their intersection property can be per
formed with the test given in [7] or in Greene [81].

It is quite simple to distinguish between the intersection cases for overlap
ping and complete containment:

�� �� �� �� ��

Box-Tetrahedron Intersection Testing 153

Let Η be the axis-parallel box hull of T, that is, the smallest axis-parallel
box that contains T.

T e s t 2 for checking overlapping and containment of Β and T.

1. T C B i f f i / = B~nB (i.e., Η C B) .

2. B C T i f f O < 7 j (B) f o r t = l , . . . ,4.

3. In all the other cases of intersection (Test 1) Β and Τ overlap.

Proof. The correctness of 1. and 3. is obvious. In 2., if Β C T, no point
ρ oi Β lies outside T, i.e. no point ρ of Β satisfies 7i(p) < 0 for any i. Since
7i(B) = {7«(p) : ρ G B}, we get 0 < 7i(B). The converse direction uses the
same argument. •

In order to establish the algorithm, we add a few additional steps to the
two tests, even though they are already complete. The reason is that, on the
average, an earlier decision is forced via the additional test steps and yet the
added numerical effort is almost negligible. In particular, it makes sense to first
check how many vertices of Τ lie in B. This can be executed just by coordinate
comparisons. Then one needs to apply the test only for the case that no vertex
of Τ lies in B. We then restrict the test to that part of Β which lies in the
box hull, H , of Τ rather than to the whole box B. There are two reasons for
doing this. The first reason is that this part, denoted by B H = Β Π H , has
the same intersection relationship with Τ as with B, except for one degenerate
case where Β and Τ touch each other on an edge but no vertex of Τ lies in
B. (This will be considered in Step 5 of the Algorithm.) The second reason is
that by dropping the parts outside H , earlier test-steps can bring a decision.
For example, it may be that 71 (BH) < 0 such that disjointness of Β and Τ is
proven, but 7<(B) < 0 need not be the case such that it would be necessary to
compute the projections, etc., cf. Test 1. Finally, it makes sense to add test
questions to see if

H(B) > 1

for some i = 1 , . . . ,4 is valid which also raises the effectivity of the procedure.
For points ρ G iZ3, checking the comparison 7$(p) > 1 would be completely
superfluous after having checked the conditions 7<(p) < 0 for i = 1 , . . . ,4 (cf.
Step 1 of Test 1). This is due to property (4) which implies that 7<(p) > 1 for
some i = 1 , . . . , 4 assumes 7j(p) < 0 for some j = 1 , . . . , 4, and converse. How
ever, this situation cannot be transferred to interval barycentric coordinates.
Hence, 7<(B) > 1 for some i = 1 , . . . , 4 just says that ji(p) > 1 for all ρ G Β
holds. This means, by (4), that for each ρ G Β an index j exists such that
7j (p) < 0. Since the numbers j can vary, one cannot conclude that 7j (p) < 0
for all ρ G Β (with constant j) such there is no relationship with 7j(B) < 0
(cf. Step 1 of Test 1).

�� �� �� �� ��

154 Intersection Tests

A L G O R I T H M 13 (For testing overlapping, containment and disjoint rela
tionship between Β and T.)

S t e p 1. Check the number of vertices of Τ lying in B:
if 4 thenTCB,
if 2, or 3 then Τ and Β overlap.

S t e p 2 . Compute H, the axis-parallel box hull of T,
compute Β Η — Η Π Β .

S t e p 3. If Β Η = 0 then Β and Τ are disjoint.

S t e p 4. Fori = 1, . . . ,4,
(i) compute the interval barycentric coordinates 7 J (B H) ,

(ii) »/7i(B//) < 0 or "H{BH) > 1 then Β and Τ are disjoint.

S t e p 5. Ifii{BH) > 0 for i = 1 , . . . ,4 then
Β C T , if Β Η = B, otherwise Β and Τ overlap.

S t e p 6. For j = 1,2,3:
if Pj(T) andPJ{BH) are disjoint then Τ and Β are disjoint.

S t e p 7 . If no decision was made in the previous steps then Β and Τ overlap.

Step 6 of the algorithm 13can be executed by the procedure given in the pre
vious section which also is based on 2D interval barycentric coordinates.

R e m a r k s .

1. The algorithm can certainly be used to check for "intersection" or "dis-
jointedness" only. In this case, the results Τ C Β , Β C Τ and "overlap
ping" are to be interpreted as "B and Τ intersect".

2. The algorithm is complete and correct. When it is implemented on a
machine, however, correctness can be weakened due to rounding errors.
This can be mitigated if machine interval arithmetic is implemented with
"outward rounding" (see [5] or [8]). Then the numerical execution re
mains correct so far that if the algorithm delivers a definite decision it is
guaranteed.

3. C o m p u t a t i o n a l c o s t s . We briefly compare the computational costs of
Greene's [81] and algorithm 13. The algorithm of Chazelle-Dobbin [26]
and related procedures are incomparable because they aim to behave
asymptotically best w.r. to polyhedra and the number of their vertices.
Hence the advantages of these methods do not apply to our case.

The numerical effort of Greene's and our approach is almost the same if
worst cases are considered. To determine the planes spanned by the faces
is comparable with the computation of the interval barycentric coordi
nates. Working with barycentric coordinates has the small advantage of

�� �� �� �� ��

Box-Tetrahedron Intersection Testing 155

getting the orientation without additional effort. The number of inequal
ities is a bit higher in our case due to the enrichment of the algorithm by
further steps.

The advantage of our algorithm is the incorporation of the additional
steps (being superfluous from the standpoint of logic), which lead to an
earlier decision. For instance, one only has to apply the main body of
algorithm 13 if no vertices of Τ lie in B .

4. If one wants to detect intersection of a box Β with a polyhedron P, one
can use almost the same algorithm. The geometric background is again
the observation that Β and Ρ do not intersect iff there exists a separating
plane that is (i) parallel to a polyhedron face, or (ii) parallel to a box face,
or (iii) parallel to a polyhedron edge and a box edge (Greene [81]). Again,
this is equivalent to the following criterion: Β and Ρ intersect iff a) Β
does not lie entirely outside the plane of any face of P, and b) the (axis
parallel) projections of Ρ and Β intersect (Greene [81]). The projections
of Ρ and Β give a (solid) polygon ρ and a rectangle D. Dropping one
dimension, the criterion reduces to the following one: D and ρ intersect
iff a) D does not lie entirely outside the lines spanned by any edge of p,
and b) D intersects the rectangle hull of ρ (Greene [81], p. 77). Hence it
is obvious that tests 1, 2 and also algorithm 13 can easily be adapted to
a box-polyhedron intersection test, where again the relationship between
Ρ and Β or ρ and D can be described by interval barycentric coordinates.
In order to determine the interval barycentric coordinates which need to
be related to a tetrahedron (or a triangle in the 2D case) by definition, a
subdivision of Ρ into tetrahedrons is not advised since, in general, always
one face of such a tetrahedron would be needed to check the inequality
7i(B) < 0. Hence, any vertex of Ρ not lying on the plane spanned by
the face in question will do it. If, however, one additionally wants to
incorporate the knowledge of 7i(B) > 1 properly one has to search for a
vertex of Ρ which is farthest from the face in question.

5.5.3 Examples
As an example consider the tetrahedron Τ defined by the four points ο =
(1,1,4), 6 = (1,1,1), c = (4,1,1) and d = (1,4,1). The axis-parallel box hull
is Η = ([1,4],[1,4], [1,4]).

Example 1. Consider the box Β = ([1.3,1.6], [1.3,1.6], [1.3,1.6]). Since
Step 1 of algorithm 13 does not apply and since B H = Β φ 0 we calculate the
interval barycentric coordinates as 7i(B/f) = [0.01,0.2], ^ (B H) = [0.4,0.7],
j 3 (B H) = [0.01,0.2] and ηΑ{ΒΗ) = [0.01,0.2]. Since B H > 0, t = 1 , . . . ,4 it

�� �� �� �� ��

156 Intersection Tests

Box ([- 1 , 0] , [- 1 , 0] , [- 1 , 0])

Figure 5.21: Box-tetrahedron test

follows that Β C T.

Example 2. Consider the box Β = ([2,3], [2,3], [0,2]). Since Step 1 does
not apply we calculate BH = Β Π Η = ([2,3], [2,3], [1,2]). Now, Ύι(ΒΗ) =
[0,1/3], y2(B„) = [-2/3,1/3], Ί3(Β„) = [1/3,2/3] and -y4(B„) = [1/3,2/3].
Hence, neither Step 4 nor Step 5 of algorithm 13 lead to a decision. The same
holds for Step 6. Hence we are left with Step 7 which means that Β and Τ
overlap.

Example 3. Consider the box Β = ([-1,0], [-1,0], [-1,0]). Since BH = 0
it follows immediately that Τ and Β do not intersect. This example is shown
in Figure 5.21.

�� �� �� �� ��

Ellipse-Box Intersection Testing 157

5.6 Ellipse-Rectangle Intersection Testing
We now present an efficient algorithm, also described in [224] for testing whether
a solid rectangle and a solid ellipse intersect. The algorithm requires at most
two evaluations of the quadratic polynomial that defines the ellipse and a few
simple arithmetic expression executions. Convexity and monotonicity proper
ties of this polynomial are the main tools for the design of the algorithm.

Testing for intersection between a rectangle and an ellipse can for example
occur in computer graphics in windowing operations [54], in solid modeling
with boolean operations [280] and in databases while executing neighborhood
queries [143]. Implicitly the test is required for these applications in 3D. We
know of no efficient test for an ellipse - rectangle intersection although such a
test is found as a primitive in Class TGEllipse [264]. It works with an axes-
aligned rectangle and an arbitrary ellipse. In the case of a non-axes-aligned
rectangle, rectangle and ellipse have to be rotated to make the rectangle axis-
aligned.

Let the rectangle Ή, to be tested be defined by its four corners,

(XL, VL), (XR, VL), (XR, VR) and (xL, yR)

with XL < XR and yi <yR- Thus TZ is a Cartesian product,

K = X xY (5.25)

where X = [xL, xR] and Y = [yL, VR]-
An ellipse curve can be described as the zero set of a second degree poly

nomial,

f{x, y) = ax2 + bxy + cy2 + dx + ey + f (5.26)
= (ax + by + d)x + (cy + e)y + f (5.27)

with
462 < ac, (5.28)

see for example [52] and we assume that

α > 0 (5.29)

without loss of generality.
The solid ellipse corresponds to the point set Ε = {(x,y) : f(x,y) < 0}.

Hence, a point (x, y) of the plane lies in the ellipse (including its edge) iff
f(x, y) < 0. Throughout this section, we will say ellipse instead of filled
ellipse.

Further discussions of ellipses in a graphics setting are found in [229], pp.
236-242, [105] and in [146] or [54] where conversion from a representation using
major, minor axes, orientation and origin to an implicit form is discussed.

�� �� �� �� ��

158 Intersection Tests

Conditions (5.28) imply that / is convex and hence, that / is convex over
each straight line in the plane. Convexity properties are connected with mono
tonicity properties of / , and we will make intense use of them.

In contrast to our method, the geometrically most straightforward method
for deciding whether Ε and TZ do intersect is probably the direct geometric
method, which might begin checking whether one of the 4 edges of TZ cuts the
boundary of E, etc. Despite the simple logical structure of this test it is quite
expensive since it requires the solution of four quadratic equations in the worst
case as well as the execution of several comparisons and arithmetic expressions.
The correct implementation of a quadratic equation solver is surprisingly com
plex, cf. [58] and more accessible in [199].

No quadratic equation need to be solved in our method.

5.6.1 Analytical Tools Needed
In this subsection, we collect the prerequisites that are needed in order to
develop our test without too many interruptions.

A. The Midpoint of the Ellipse
Let mE = (x*, y*), the midpoint of Ε be defined as the unique minimizer of
/ , cf.[36]. Then mE is the solution of the equation V/(x, y) = (0, 0) where

t _ be - led , _ bd - 2ae
X ~ 4ac-P' V ~ Aac-b2'

Because of the convexity of / and the minimum property of the midpoint, / is
monotonically increasing on each ray leaving mE. This fact plays a key role in
the logical structure of the algorithm.

B. Monotonicity
The knowledge of the monotonicity properties of / on the edges of TZ is also
an essential part of the intersection test.

Let I be the lower or upper edge of TZ, that is, I = (X, yo) with y 0 = yi, or
Vo = VR, cf. Fig. 5.22. Then / is monotonically increasing [resp. decreasing]
on Τ iff V x / (x , yo) > 0 [resp. < 0] for any χ G X holds, where Vzf denotes
the partial derivative of / with respect to x. This infinite set of inequalities will
be written concisely as Vxf{X, yo) = 2α X + byo + d>0 [resp. < 0]. We use
interval arithmetic to compute these expressions. Similarly, / is monotonically
increasing [resp. decreasing] on an edge (xo, Y), where xo = XL or xo = XR iff
V„ / (x 0) Y) = 2cY + 6x0 + e > 0 [resp. < 0].

In order to conveniently express increasing or decreasing function values if
one moves from one corner of the rectangle to an adjacent corner, the following
notation will be useful:

�� �� �� �� ��

Ellipse-Box Intersection Testing 159

< * , y > (xR,y)

Figure 5.22: Rectangle

Let (xo, yo) be one of the four corners of 71. We set

yo)

Y)

if xo
if xo

if yo
if yo

VL,

VR-

XL,

XR,

For example, the condition Vx > 0 indicates that if the point (x, y) moves
on the edge (X, yo) from the endpoint (xo, yo) to the other endpoint on this
edge, the function values increase monotonically .

C. Inexpensive Computation of Discriminants
In a few cases of the test it is necessary to know whether an axis parallel
straight line meets the ellipse or not. This can be decided by considering the
sign of the discriminant of / over this line. We will keep the computation of
the discriminant inexpensive by expressing it in terms that are already known
at the stage of the test where the discriminant is needed.

We note that a quadratic equation in one variable,

αχ 2 + βχ + 7 = 0

is solvable in 71 iff its discriminant, D = β2 — 4ory, is nonnegative.
Hence, the system of equations,

(5.30)

which is equivalent to the equation in x,

fix, y0) = αχ2 + (by0 + d)x + (cy2, + ey0 + f) = 0,

�� �� �� �� ��

160 Intersection Tests

has a solution in Tl (that is, the line y = j/o meets E) iff

DiVo) = (byo + df - Aa{cyl + ey0 + /) > 0 (5.31)

where D(yo) is the discriminant of /(x, yo) = 0. Reformulating (5.31) results
in

D(y0) = (2axL + by0 + d)2 - 4a[ax2

L + bxLy0 + cyo + dxL + ey0 + f]
= [V X / (X L , yo)]2 - 4a / (x L , y 0)
= [inSyxf(X, y 0)] 2 -4a / (x L , y 0)
= [inf Vx(x 0 , yo)]2 - 4a/(x 0, yo) if xo = XL-

Similarly, we obtain

D{yo) = (2axR + by0 + d)2 - 4a[ax2

R + bxRy0 + cy% + dxR -I- ey0 + /]
= [supVx/iX, y 0)] 2 - 4α / (χ Λ , y 0)
= [inf Vx(x 0 , y 0)] 2 - 4a/(x 0, y 0) if xo = XR-

Putting these two reformulations together, we can express the solvability of
(5.30) as follows:

(5.30) has no solution in Ti iff
D(y0) = [inf V x (x 0) yo)]2 - 4a/(x 0, yo) < 0. (5 3 2)

If we interchange the variables χ and y, and apply the previous considerations
to the system

f { * > V) = 0) (5.33)
x = xo J

we get analogously that

(5.33) has no solution in Λ iff
D(x 0) = [inf Vy(x 0 , yo)]2 - 4c/(x 0, y 0) < 0. (}

Testing the conditions (5.32) and (5.34) in the algorithm will be inexpensive
since the values Vx , Vy, and /(xo, J/o) as well as 4o (or 4c) would already have
been evaluated at that stage of the computations. In fact, only 4 or 5 arithmetic
operations are required additionally in order to evaluate the discriminants.

5.6.2 The Algorithm
In this subsection, an algorithm is established that tests whether a given solid
ellipse Ε in general position and a given solid axis-parallel rectangle do or
do not intersect. The input data is Ε represented by the coefficients of the
function / , and Tl represented by the 4 necessary coordinates X L , XR, VL, VR-
It is assumed that TZ is non-degenerate.

If Ε and Tl intersect then the algorithm does not tell whether Tl is contained
in Ε or vice versa. Appropriate tests are provided in the next section if such
additional information is requested. They can be merged with the algorithm
at the indicated points.

�� �� �� �� ��

Elhpse-Box Intersection Testing 161

A L G O R I T H M 14 (Ellipse-rectangle intersection test.)

S t e p 1. Compute the midpoint mE = (x*, y*) of E.

S t e p 2 . IfmEGTl then

pin Ε Φ 0 (Options: ECU Test, TIC Ε Test). STOP].

S t e p 3 . Let (xu, yo) be a corner of 71 which is nearest to mE and (x/, yj) be
one which is farthest away from mE.

S t e p 4 . Compute /(x u , yo)-
V /(so, yo) < 0 then

pin Ε φ 0 f Option: 71 C Ε Test). STOP].

S t e p 5 . Cases:

C a s e A : ι ' Ε X

(i) Compute Vx = Vx(A", y 0),
(»»') «/ Vx > 0 then /ft η £ = 0, STOP/,

«7 Vx < 0 then
a) compute / (x/ , yo),

β) the result is 71Π Ε = 0 iff f(xf, y 0) > 0, STOP,
else

a) compute D(yo),
β) the result is 71Π Ε = 0 iff D(y0) < 0, S7OP.

C a s e Β .· y* 6 Y

(i) Compute Vy = Vy(xo, yo)-
(ii) «/ Vy > 0 inen [Tin Ε = 9, STOP],

if Vy < 0 inen
a) compute /(x 0 , y/),

tne resuit is Tin Ε = 0 iff f(x0, Vf) > 0, STOP,
e/se

a) compute D(x0),
β) the result is ΤΙ Π Ε = 0 iff D(x0) < 0, STOP.

C a s e C : χ* £ X, y* £ Y

(i) Compute Vx = Vx(x 0 , y 0),
i / V x < 0 then

a) compute /(x/, yo),
the result is Tin Ε = $ iff /(x/, yo) > 0, STOP,

if inf Vx < 0 t/ien

�� �� �� �� ��

162 Mtersection Tests

a) compute D(yo),
β) the result is Tl Π Ε = 0 iff D(y0) < 0, STOP,

(ii) Compute Vy = Vy(x 0 , yo),
if Vy > 0 then [JinΕ = 9, STOP],
if Vy < 0 then

a) compute f(x0, y/),
β) the result is Tl Π Ε = 0 iff f(x0, yf) > 0, STOP,

else
a) compute D(xo),

β) the result is Tl Π Ε = 0 iff D{x0) < 0, STOP.

THEOREM 10 The algorithm is correct and complete.

Proof
Completeness. The algorithm is complete when each ellipse-rectangle con

stellation which is admitted by the general assumptions will be processed cor
rectly by the algorithm. That the algorithm meets this definition, follows
directly from its logical structure, which can be reformulated as a nested se
quence of if-then-else statements and cases in the following form (computations
of expressions can be suppressed):

If Al then Resl else
If A2 then Res2 else

Case 1 or Case 2 otCase 3

Since the three cases cover each geometric constellation which has been left so
far, each selection of input data will be processed by one of the statements Al,
A2, Case 1, Case 2, or Case 3.

Correctness. An algorithm is correct if it assigns the right result (boolean,
in our case) to any possible input data. In order to prove the correctness
of the algorithm we have to go through all its branches and to input them
geometrically. The discussion of the options will be postponed to the next
section.

Step 2: Intersection is obvious, cf. Fig. 5.23a.

Step 4: f(xo,Vo) < 0 means (xo,Vo) C Ε and intersection follows, cf. Fig. 5.23b.

Step 5: Because of the previous steps, we have the following
assumptions in the sequel,

mE & Tl and (xo, yo) £ E.

Case A(ii) says χ* ζ. X and V * > 0, that is, the function / is monotonically
increasing if / passes from xo to x/ on the edge (Χο,Ι/ο)· Since /(xo,!/o) > 0,

�� �� �� �� ��

Ellipse-Box Intersection Testing 163

a) b)

Figure 5.23: The initial easy cases of intersection3

we get f(X,yo) > 0 for all χ G X, so that the whole edge is outside E. Further,
each point (ar, y) €71 lies on a ray which leaves mE and passes through the edge
(X, yo) before it reaches (x, y). Since the function values increase monotonically
on the ray, f(x,y) > 0) follows. That is, Ε is outside 71. No intersection, cf.
Fig. 5.24a.

Case A(iii) The conditions Vx < 0 says that / is monotonically increasing
if / moves on the edge (X,yo) from x/ to x 0 . Hence, if f(xf,y0) > 0 then
f(x, y0) > 0 for all χ G X, and this edge is outside E. For the same reason as
in Cose A(ii), the whole ellipse is outside E, cf. Fig. 5.24b.

If /(xp,yo) < 0, then (x/,j/o) is an ellipse point, and Ε Π 71 φ 0, cf. Fig.
5.24c.

The eise-clause is addressed if neither Vx > 0 nor V x < 0 holds. In
this case, / is not monotone on the edge (X,yo) and one has to check the
discriminant condition directly for an intersection with this edge, which implies
the intersection result for Ε and 71 because of x* G X, cf. Fig. 5.24e and 5.24c.

Case Β is symmetric to Case A (swap χ with y).

Case C(i) Besides x* G X, this case is analogous to Case A(iii).

Case C(ii) Besides y* G Y, this case is analogous to Case B(iii).
•

5.6.3 Optional Inclusion Tests
It was already mentioned that the aim of Algorithm 14 is to decide whether
Ε nTl Φ 0 or Ε Γ\71 = 0 holds. In case of Ε Π 71 Φ 0, it is sometimes
also of interest to know whether 71 C Ε or Ε C 71 or if neither of the two
inclusions hold. In this section we therefore suggest auxiliary tests which are

3 T h e midpoint of the ellipse is denoted by * and (χο,ϋο) by · .

�� �� �� �� ��

164 Intersection Tests

Figure 5 .24: The remaining cases when mE & ΊΖ and (χ η , j/o) £ Ε

�� �� �� �� ��

Ellipse-Box Intersection Testing 165

to be inserted into Algorithm 14 at the positions marked.
The optional ECU test only has to be executed in Step 2 since mE 6 TZ

is a necessary assumption for the validity of the inclusion Ε C 71. Hence, if the
ECU test is not invoked during the execution of Algorithm 14, Ε C 71 does
not hold.

Optional E C U Test
(valid only as part of Step 2 in Alg. 14)

S t e p 1 ' . Determine (χη, yo) as in Step 3.

S t e p 2 \ Compute f(xo, Vo)-
If f(xo, Vo) < 0 then [E £ 71, STOP].

S t e p 3 ' . Compute V x = Vx(xn, yo)-
If inf Vx < 0 < sup Vx then

(t) compute D(y0),
(ii) if D(y0) > 0 then [E <£ 71, STOP].

S t e p 4'. Compute Vy = Vy(x 0 , yo)-
If inf Vy < 0 < sup Vy then

(i) compute D(xo),

(ii) the result is Ε C 71 iff D(x0) > 0,

else

EC 71.

The optional TIC Ε test is less tied to the position in Algorithm 14 where
it is invoked. The reason is that there is almost no other possibility except
to compute the four function values at the corners of TZ. It is not possible
to decide the TZ C Ε test only with gradient or discriminant considerations
because one can construct examples with identical gradient and discriminant
information but with different TZCE behavior. Again, as is the case with the
EC7Z test, the inclusion TZCE does not hold if the TZCE test is not invoked
in Step 2 or Step 4 during the execution of Algorithm 14.

Optional TZ C Ε Test
S t e p 1 . Compute the function values f(xL, VL), f (x L , y«), } (X R , VL), f (x R , VR),

which are not yet known (for example, f(xo, Vo) will be known already).
It follows that TZ C Ε iff none of these values are positive.

�� �� �� �� ��

166 Persection Tests

D(y0)>o

D(y0)>o

c) d)

Figure 5.25: Cases for the Ε C 71 test

THEOREM 11 Algorithm 14 enlarged by the inclusion tests is correct and
complete.

Proof. Completeness. The logical structure of Algorithm 14 is changed
only marginally by adding the inclusion test. I.e., each admitted geometric
rectangle-ellipse constellation will be recognized by the enlarged algorithm,
and the completeness is kept.

Correctness. The correctness of the 71 C Ε test is obvious. Regarding the
ECU test, it is first clear that mE G Tl is a necessary condition for ECU.
Hence the test is attached to Step 2 only, that is, a confirmation that Ε C Tl
holds arises from Step 2 only. If there is no such confirmation, Ε C Tl is not
valid.

The correctness of the steps of the test rely on simple geometric considera
tions':

Step 2'. Condition f(xo,Uo) < 0 says that (xo,yo) lies in E, so that there
are adjacent points of Ε that lie outside 71, cf. Fig. 5.25a.

Step 3'. Because of the missing monotonicity of / on the edge (X,yo), one
has to check the discriminant condition for an intersection of Ε with the edge.

�� �� �� �� ��

Ellipse-Box Intersection Testing 167

In case of a proper inclusion, that is, D(ifo) > 0, and a part of (X,yo) will be
outside E, cf. Fig. 5.25b, and Ε % Tl.

Step 4' treats the remaining case, D(yo) < 0. Even though there is no
proper intersection of Ε with the edge (X, yo) and intersection of Ε with the
edge (χο,Υ) can well happen. If no monotonicity of / on the edge (χο,Υ) is
given, Ε intersects Tl properly iff D(XQ) > 0, cf. Fig. 5.25c and 5.25d.

If monotonicity of / on the edge (χο,Υ) is given, the ellipse cannot pass
this edge, and hence, since (xo,J/o) is nearest to mE and (xo,J/o) £ Ε through
no other edge.

•

5.6.4 Complexity and Rounding Errors
The operational-logical structure of the algorithm 14 is a tree with several
branches and subbranches, where the height of the tree is very low. The com
putational execution of the test is therefore very inexpensive. Summing up the
algorithm needs:

1. the computation of mE, requiring 14 arithmetic operations,

2. 0, 1 or 2 function evaluations, requiring 10 arithmetic operations each
(using the form (5.27)),

3. 0, 1 or 2 partial interval derivatives (if 2 are needed, only 1 function
evaluation and no discriminants are needed), requiring 3 arithmetic and
2 interval arithmetic operations each (which is equivalent to 7 arithmetic
operations each),

4. 0 or 1 discriminant evaluations (if 1 is needed only 1 function evaluation
is needed), requiring 4 to 5 arithmetic operations each

and a few additional comparisons and sign checks.
The decision for intersection or not is therefore obtained after 2 inexpensive

evaluations (mE, f) and 2 very inexpensive evaluations (V, D) or after 3
inexpensive evaluations and one very inexpensive evaluation.

If the optional inclusion tests are incorporated into algorithm 14 then the
costs will not increase since the algorithm stops with the 2nd or 4th step if
the inclusion tests are called up. Thus, if the optional tests are not invoked
because the computation does not go through their branch, the cost analysis
of the algorithm is still valid.

Hence, we sum up the overall costs if the optional tests are invoked (we
again drop comparisons):

1. Computation of mE (for Algorithm 14),

�� �� �� �� ��

168 Intersection Tests

Figure 5.26: Intersection testing of curve and rectangle

2. 1, 2, 3 or 4 function evaluations (one for the Ε C Ti test, at most 3 for
the Ti C Ε test),

3. 0, 1 or 2 partial interval derivative evaluations (for the Ε C Ti test),

4. 0, 1 or 2 discriminant evaluations (for the Ε C TI test).

5.7 Intersection Between Rectangle and Explic
itly Denned Curve

In this section some computational aspects of dealing with real curves are
discussed. Objects bounded by curves occur frequently in computer graphics
and solid modeling. When a windowing operation is performed then one wants
to know whether such objects appear completely in the window, or partially,
or perhaps not at all. This leads to a development of algorithms for testing
whether a curve and a rectangle representing the frame of a window intersects.
Similarly interference testing between objects whose boundaries are defined by
curves and curved surfaces leads to curve-curve and surface-surface intersection
testing.

We consider explicitly defined plane curves and whether they intersect an
axes-parallel rectangle. The curves are either of the type (x, /(x)) or they are
more generally defined via a parametrization, that is, of the type (x(t),y(t)).

First let the rectangle ΤΙ = Χ χ Y and the curve y = /(at), χ e Xo be
given. Here, X = [11,3:2], Y = [Vi,y2], and Xo are intervals. We assume that
X and Xo overlap, otherwise the rectangle and curve do not intersect. Only the
area common to X and Xo is meaningful for the test and we therefore replace
Χ Π Xo by X as the working area. With this new notation, we have

71 = X xY &ndy = /(χ), χ € X,

�� �� �� �� ��

Intersection Rectangle and Curve 169

cf. Fig. 5.26.
We further need an inclusion function F of / for the validated computation

where

w(F{Z)) - w(Df(Z)) -40 as w(Z) -> 0. (5.35)

for subintervals Ζ of X. A real number e > 0 is needed as termination param
eter.

We provide two different intersection tests for this type of curve. The first
test needs no derivative information and is thus applicable to curves which are
not necessarily continuously differentiable, for example, to curves which are
only piecewise smooth. The principle underlying the algorithm is subdivision
combined with function value comparisons in the subintervals. It is easy to
write the code but the computation might be time consuming.

In this connection the condition (5.35) has to be explained. It says that the
excess-width of the inclusions F(Z) tends to zero as the width of the underlying
interval Ζ does, that is, the approximation of the range of / over Ζ by the
inclusion F(Z) improves as the width of Ζ becomes smaller. Without this
property the iterated subdivision which is pursued throughout the algorithm
and which makes the subintervals smaller and smaller would be useless. This
explanation is also valid for the second test.

The second test we provide is considerably faster and requires that the curve
is smooth. This test is largely based on the interval Newton method.

In the first test, X is systematically subdivided into subintervals Ζ =
[zi.ife], and the intervals F(Z) and F(z) where ζ £ Ζ for some ζ are eval
uated. All intervals Ζ satisfying F(Z) C R \ Y are excluded since they cannot
contain points which are rectangle as well as curve points. The computation
terminates when

(i) a point ζ or an interval Ζ is found with F(z) C Y or F(Z) C Y (inter
section is confirmed),

(ii) points ζ and z' are found with
F(z) < yi < F(z') or F(z) < y2 < F(z') (intersection is confirmed),
(iii) all the subintervals which are available so far have width smaller than

e (no decision has been possible up to now within the prescribed accuracy),
(iv) the list of available subintervals becomes empty (no intersection is con

firmed).
The idea of the algorithm is to demonstrate that there is a point of the

curve that is guaranteed to be in the box or that is guaranteed that no point
of the curve is in the box. The algorithm therefore first computes an inclusion
of the curve over the domain X. If this inclusion is outside Y then there is
no intersection. Similarly if the inclusion is contained in Y then an inclusion
is guaranteed. If neither of the above situations are valid then the algorithm
proceeds by evaluating inclusions of the curve at the endpoints of the domain
X.

�� �� �� �� ��

170 Intersection Tests

If a decision is not reached for the whole rectangle, the rectangle is recur
sively subdivided and the process repeated till either a point of the curve lies in
a subrectangle or no curve point lies in no subrectangle which gives a validated
decision. If not decision is reached till all subrectangles are smaller than a give
width, the algorithm is terminated with an uncertain result.

Input parameters are the inclusion function F for / over X which satisfies
(5.35), the rectangle 71 and a termination parameter e > 0.

A L G O R I T H M 15 (Rectangle curve intersection test)

Step 1. Compute F(X).

Step 2. IfF(X) η Y = 0 then STOP (no intersection is confirmed).

Step 3. If F(X) C Y then STOP (intersection is confirmed).

Step 4. Compute J\ = F(xx) and F2 = F(x2). If Fi C Y or F2 C Y then
STOP (intersection is confirmed).

Step 5. / / Fi V F2 > y2 set G(X) = F{X), Ζ = Y and set r = lb(Fi V F2)
goto 8.

Step 6. IfFiVF2 < yx setG(X) = -F(X), Ζ =-Y and set r = -ub{FiVF2)
go to 8.

Step 7 . STOP (intersection is confirmed).

Step 8. Initialize list C = {(X,r, 1)}.

Step 9. Denote by (W,q,d) the first element of C and remove this element
from C.

Step 10. IfG(W)nZ = 0 go to 14.

Step 1 1 . If G{W) C Ζ then STOP (intersection is confirmed).

Step 12. Subdivide W into Wi and W2.

Step 13. Fori = 1,2

1. If ubG(mid m(Wi)) < z2 then STOP (intersection is confirmed).
2. Enter (Wi,lbG{mid (Wi)),d + 1) onto the list C so that the list is

first ordered by increasing third component then by increasing second
component.

Step 14. If C = 0 then STOP (no intersection is confirmed).

Step 15. Ifw(W) < e for all (W,q,d) 6 C then STOP (all the subintervals
Wi in the final (nonempty) list have a width smaller than e).

�� �� �� �� ��

Intersection Rectangle and Curve 171

S t e p 16 . Goto 8.

The algorithm behaves as binary search in the worst case. However, in
general it only needs to subdivide until a decision has been reached. This may
happen after just a few steps.

It is obvious that the algorithm as well as its numerical realization is com
plete, i. e., it deals with every possible configuration. The algorithm and the
numerical realization are correct as a wrong result never can arise. The com
putation terminates after a finite number of steps since the subdivision process
bisects the current subintervals uniformly so that their widths become finally
smaller than e, provided no earlier termination took place.

The second test can be considered in two parts. The first part tests for
simple configurations which can be dealt with easily. In the second part the
interval Newton procedure is applied in order to localize intersections of the
curve with the lower or upper horizontal side of Ti after which the existence
test is applied to provide guaranteed results.

Input parameters are the inclusion function F of f over X which satisfies
(5.35), the rectangle Tl = Χ χ Y and the termination parameter e > 0, as
well as the data which are required for running the interval Newton algorithm
(the parameter e' of the interval Newton algorithm must be larger than the
parameter e here.)

A L G O R I T H M 16 (Improved rectangle curve intersection test)

S t e p 1. Initialize list C = {X}. Remove X from list.

S t e p 2 . Compute F(xi),F{x2) andF(X).

S t e p 3 . IfF(xi) CY or F(x2) C Y, then STOP (intersection is confirmed).

S t e p 4 . IfF(X) C R\Y , then
(i) if C is empty then STOP (no intersection is confirmed)
(ii) delete X (since it does not contain parameter values with curve points
in Tl)
and go to Step 8 (select next interval).

S t e p 5 . IfF{xi) < y 2 and yx < F{x2)
or

ifF(x2) < y2 and yi < F(xi)
then STOP (intersection is confirmed).

S t e p β. Ifyi e F (n) V F (i 2) or if F(Xl),F(x2) < yu

then apply interval Newton method to f — y\ over X.

If during the interval Newton computation

�� �� �� �� ��

172 Intersection Tests

(i) a point ζ G X or a subinterval Ζ is found with

F(z) CY or F{Z) C Y

then STOP (intersection is confirmed),

(ii) a subinterval Ζ is found with F(Z) < j/i then Ζ can be deleted since
it contains no intersection points with the curve,

(iii) the processing list of the interval Newton method becomes empty then
STOP if £ is empty (no intersection is confirmed) otherwise go to Step
8 (select next interval).

If the interval Newton computation terminates because all the subintervah
Zi in the final (nonempty) processing list of the interval Newton method
are sufficiently small then apply the existence test to each of these boxes.
As soon as the existence test verifies that a zero of the function f — yi
exists, that is a solution of the equation / = j/i in one of the these boxes
then STOP (intersection is confirmed). Apply the statements (i), (ii),
and (iii) also to the existence test computation.

Bisect those intervals which remained in the procession list of the interval
Newton algorithm (existence test included) if their width is larger than
w(X)/2 and put them at the end of the list C. Put those intervals the
width of them is already smaller than or equal to w(X)/2 at the end of
the list C without bisecting them.

Step 7 . Ify2 G F(Xl) V F(x2) or if F(Xl),F(x2) > y2,
then apply interval Newton to f — y2 and proceed symmetrically to Step
6.

Step 8 . Remove the first interval from the list C that has width larger than
or equal to e and denote it by X = \x\, x2\. If the width of all intervals
of the list (which cannot be empty) is smaller than e then STOP (no
decision about the intersection has been possible yet with respect to the
chosen accuracy).

Alg. 16 as well as its numerical realization are complete, correct and ter
minate after a finite number of steps. These properties are due to the logical
construction of the algorithm and the properties of the interval Newton method.

More general, we now deal with a parametrized curve z(t) = (x(t), y(t))
with t G [0,1], and z(t) G R2 and wish to check for an intersection with the
rectangle TI. We need an inclusion function Z(T) = (X(T),Y(T)) G Γ2 for
z(t), with Τ G I([0,1]), where X and Y are inclusion functions for χ and y. In
analogy with the previous tests, the conditions

w{X(T)) - u;(nx(T)) -40 as w(T) -> 0, 1
w(Y{T)) - w(Oy(T)) -+0 as w(T) -* 0 J

�� �� �� �� ��

Intersection Rectangle and Curve 173

are required for subintervals Τ of the parameter interval [0,1]. Geometrically,
Z(T) can best be interpreted as the rectangle X(T) χ Y(T). A termination
parameter e > 0 is needed as before.

The following algorithm checks whether the rectangle TZ is intersected by
the curve z(t). Similarly to Alg. 15, the parameter interval is subdivided, until
it is recognizable that curve points are in TZ or that none of the subintervals
contains any curve points. If the widths of all the subintervals are smaller than
€, the computation is terminated without a conclusive result. Interval Newton
steps are not incorporated since these steps can only be reasonably applied
when a well determined search interval is available. Theoretically, this would
be possible, but practically, it would lead to a large number of cases which are
not worth the effort.

The input parameters are the rectangle TZ = Α χ Β, the curve z(t) =
(x(t),y(t)) with t € [0,1], the inclusion function Ζ as described above and
which satisfies (5.36), and a termination parameter e.

ALGORITHM 17 (Testing for intersection between rectangle and paramet
ric curve)

Step 1. Set Τ = [0, l],ti = 0, and h = 1,

Initialize list C = {T}. Remove Τ from list.

Step 2. Compute Z(h), Z(t2) and Z{T).

Step 3. If Z(ti) C TZ or Z(t2) C TZ, then STOP (intersection is confirmed).

Step 4. / / Z(T) C R2\TZ , then
(i) if list C ist empty then STOP (no intersection is confirmed)

(ii) delete Τ (since Τ does not contain points with function values in TZ)
and go to Step 7 (select the next interval).

Step 5. (i) IfY(h) < b2 and bi < Y(t2)

or

ifY(t2) < h andbj < Y{ti)

then STOP (intersection is confirmed).

(ii) IfX(h) < a2 and αχ < X(t2)

or

ifXfo) < a2 and a v < X(h)

then STOP (intersection is confirmed).

Step 6. Split Τ into two subintervals of equal length and put them at the end
of the list.

�� �� �� �� ��

174 Intersection Tests

Step 7 . Remove the first interval from the list, denote it by Τ and its endpoints
by h and t2. Ifw(T) < e (then all intervals of C have width smaller than
e) then STOP (no decision about the intersection has been possible with
respect to the chosen accuracy).

Step 8 . Go to Step 2.

Alg. 17 as well as its numerical realization are complete, correct and ter
minate after a finite number of steps. These properties are due to the logical
construction of the algorithm.

Condition (5.36) says that the excess-widths of the inclusions X(T) and
Y(T) tend to zero as the width of the underlying interval Τ does, that is,
the approximation of the current range of χ and y over Τ by the inclusions
X{T) and Y(T) becomes better and better. Without this property the iterated
subdivision which is pursued throughout the algorithm would be pointless.

5.8 Box-Sphere Intersection Test

5.8.1 Introduction
Testing for the intersection of a circle with an axis-parallel rectangle or for
the intersection of a sphere with an axis- parallel box is a computer graphics
primitive that occurs in a number of applications. In the field of solid modeling
such tests are applicable as a preprocessor for many surface-surface intersec
tion algorithms. In particular, the implementation of the tests in this section
responds directly to the concerns expressed in [51] where it is stated that

...the numerical schemes available so far for dealing with offsets
and intersections fail to meet the minimum standards of reliability,
accuracy and efficiency...

The rectangle-circle test is used to decide whether a circle or disk overlaps a
region in the view-plane and the sphere-box test is used in spatial subdivision
techniques in ray tracing.

Arvo [10] describes a series of such tests where the midpoint m and the
radius r act as sphere parameters. The tests determine the smallest or largest
distance from m to the box and compare it with r. This enables [10] to solve
several variants of the intersection problem such as solid box vs. solid sphere,
solid box vs. hollow sphere, etc. The tests are independent of the dimension.
Moreover, Guibas-Stolfi [85] propose an Incircle Test where the circle is defined
by three points a,b,c € R2. The test recognizes whether a query point e €
R2 lies inside this circle or not and it is based on the determination of the
oriented volume of a 3-dimensional tetrahedron whose vertices lie on a rotation
paraboloid. This leads to the computation of a 4 by 4 determinant. If now e is

�� �� �� �� ��

Box-Sphere Intersection Test 175

replaced by a rectangle (being the Cartesian product of two intervals), and if
the determinant is evaluated in a well-defined manner with interval arithmetic
then a circle-rectangle intersection test results [215].

The aim of this section, based on [216], is therefore first to show that Arvo's
box-sphere tests can be unified and simplified using interval techniques such
that only one (interval-) function evaluation is needed to perform the tests.
Then, the test in [215] is lifted to dimension 3 such that another box-sphere
test results. We give a new proof that avoids arguing with tetrahedrons on
hyper-rotation paraboloids (which would be the case if the test in [85] was
generalized directly) and that is - with the exception of a sign - independent
of the dimension such that it also provides a simpler proof for the test in [85].
It finally turns out that Arvo's and the extension of the test by Guibas-Stolfi
are mathematically almost identical as the underlying formulas differ by just
a constant. An algorithm for one of the tests is given and further numerical
examples are provided.

We need a small observation. Let

/ (χ) = αχ2 + bx + c. (5.37)

Then the range of f(x) over X = [XI,XR], denoted by Ef(X) can be found
by first computing ti = }{XL), h = /(*«) and if α φ 0 then t 3 = f(-b/(2a))
finally obtaining

af(X) = i [min(ii'<2)*3),max(i l,i2,i3)] if - bj (2a) 6 X and αφΟ
\ [min(ii,i2),max(ti,i2)] otherwise.

(5.38)

5.8.2 Midpoint and Radius as Sphere Parameters
Let a sphere S be defined by its midpoint m € R3 and its radius r > 0. Hence

S={x£R3: \\x-m\\ = r}.

Let us now introduce a distance comparing function

F(x) = ||x - m||2 - r 2 for χ G R3. (5.39)

Then, if the · stands for the standard inner product,

F(x) - (x - m) · (x - m) - r 2

= x -x — 2x · m + m · m — r 2

3
= y ^ (x 2 — 2xjm<) + m · m — r 2.

•=i

F(x) compares the distance from χ to m with the distance from the points of S
to m, expressed in squares to avoid square roots. A point χ is therefore inside
S iff F(x) < 0.

�� �� �� �� ��

176 Intersection Tests

2

Figure 5.27: Box-sphere configuration

Let Ε = (Ei,E2,Es) be an axis-parallel box, where Ei,E2,E3 G I(R)-
This box will be compared with S. A typical situation is shown in Figure 5.27.
The comparison can be made if we take the distance comparison function F
together with set-value considerations. For example, if

F(x) < 0 for all χ G Ε

which is equivalently expressed by DF(E) < 0, one can be sure that Ε lies
inside the sphere. One only has to find a way to determine DF(E). This can
be done easily in interval arithmetic:

Let fi{xi) = x 2 - 2mjXj for x< G R,i = 1,2,3. Then fi is of the form (5.37)
and Dfi(Ei) can be evaluated by (5.38). By (5.39), F(x) = Σ<=ι /<(χ<) + τη •
τη - r2 for χ G R3 and finally, OF(E) can be evaluated directly as

3

OF(E) = Σ Ofi(Ei) +mm-r2

«=i

with interval arithmetic.

This leads to the following:

Test for the intersection behavior of the box Ε and the sphere S:

1. Evaluate C\F(E) as explained above.

�� �� �� �� ��

Box-Sphere Intersection Test 177

2. (i) DF(E) < 0 iff Ε inside S (no intersection),

(ii) OF(E) > 0 iff Ε outside 5 (no intersection),

(iii) 0 G DF(E) iff Ε and S intersect.

Example 1 . As an example to illustrate the above consider a sphere S
defined by m = (0,1,0) and r = 1 together with a box Ε = ([3,4], [0,2], [-1,1]).
Then fi(xi) = x2, f2(3:2) = x\- X2 and h{xs) = x\ from which Π/ι(Ει) =
[9,16], 0/2(^2) = [-1/4,2] and af3(E3) = [0,1] using (5.38). From this
DF(E) = [8.75,19] > 0 showing that Ε is outside S.

The test is concerned with Ε as a solid object and with 5 as a hollow one.
One can immediately derive variants - as considered by [10] - with S solid, Ε
hollow, etc. For example, if Ε and S are solid, QF(E) < 0 is equivalent to
Ε inside S (which means here that ECS), and intersection is given. By the
way, if a decision is needed to whether S C Ε with Ε solid it is not necessary
to compute DF(E). One can check this directly by computing

SCE\flEiL<mi-r<mi+r<EiR (i = 1,2,3)

where Et = [EiL,EiR].
When numerically computing OF(E) values OF(E)NUM are calculated due

to rounding errors. In this case there is an extremely small percentage chance
that the test leads to a wrong decision due to the deviation of ^F(E)NUM from
DF(E). Nevertheless, if machine interval arithmetic is used it is still possible
to save almost all of the conclusions of the test. In this case, instead of the
interval HF(E) = [u, v] only including intervals for the endpoints u and ν can
be calculated

U £ [U L , U r] , ve[vL,vR],

and we have the following "guaranteed" conclusions summed up:

Numerical version of the Test (E solid, S hollow):

(i) vR < 0 implies DF(E) < 0 (i.e., Ε inside S),

OF(E) < 0 implies vL < 0.

(ii) « L > 0 implies DF(E) > 0 (i.e., Ε outside 5), DF{E) > 0 implies
uR > 0,

(iii) uR < 0 < VL implies 0 G DF(E) (i.e., Ε and 5 intersect),

0 G OF(E) implies uL < 0 < vR.

Remark 1 . It is obvious that the considerations of this section can be
formulated for each dimension.

�� �� �� �� ��

178 Intersection Tests

5.8.3 Four Peripheral Points as Sphere Parameters
In [85] an Incircle Test is presented which determines whether a query point
is inside a circle given by 3 of its points. We generalize this test to dimension
3 which is also of interest for the computation of three-dimensional Voronoi
diagrams [85,198]. The resulting Insphere Test accordingly determines whether
a query point e is inside the sphere S that is now given by four of its peripheral
points. We provide a new proof, which avoids hyper-geometric interpretations
and which can be performed in any dimension. We also single out the close
mathematical connections of the test with the distance comparing functions,
F(x) = (x-m) (x-m) - r 2 , introduced in Subsec. 5.8.2. After this, we go one
step further and replace the query e by a box Ε and the Insphere Test becomes
a test for box-sphere intersections, if some basic rules of interval arithmetic are
considered.

Let a, b,c,d£ R3 be affinely independent points. Then there exists a unique
sphere, 5, such that the given points lie on the sphere. We again denote its
midpoint by m and the radius by r. The generalization of [85], the Boolean
predicate Insphere(o, 6, c, d, e) will be introduced and be defined to be true iff
e G R3 is inside the sphere. Whereas the Incircle Test requires the determina
tion of a 4 by 4 determinant the Insphere Test leads to the determinant

V(a, b, c, d, e) =

αϊ αϊ a3 a - a 1
bi bi 63 b · b 1
Cl C2 C3 c c 1
d\ d2 d$ d-d 1
ei ei e3 e • e 1

(5.40)

Let β = b — a, 7 = c — α, δ = d — a, e = e-a and

V =
β\ βι βζ
7ι 72 73
δι δ2 ($3

Then

£>(α, b, c, d, e) =

ei e 3

6 · b — a · a

c-c — a- a

d-d — a-a

e-e — a - a

(5.41)

In order to avoid orientation assumptions and dealing with oriented volumes
(one way to proceed would be the assumption that β, η, δ are positively ori
ented) we introduce

a = sign(|V1).

�� �� �� �� ��

Box-Sphere Intersection Test 179

The determinant \V\ need not be evaluated separately since it occurs as a minor
of (5.41). Since a,b,c,d€ S,

\\x — m\\ — (x - m) • (x - m) — r2 for χ = α, b, c, d. (5.42)

Subtracting the equation (5.42) for a from the corresponding equations for
6, c, d yields

bb — a- a = 2m · β,
c-c — a-a — 2m · 7 ,

dd — a - a = 2m • δ.

This leads to a system of linear equations for the components of m,

(5.43)

mi bb — aa
m 2 1 = - I c c - a a
m$ I \ d • d- a - a

(5.44)

Inserting the values of m into one of the equations (5.42) gives the value of r.

L E M M A 4 (i) V{a, b, c, d, e) = 16|V\F(e)

(ii) Insphere(a,b,c,d,e) w true iff aV(a,b,c,d,e) < 0.

Proof, (i) By (5.42) and the definition of F(x), we get

ee — aa = e • e + m · m — a • a — m • m
= (e - m) · (e - m) + 2e · m - (a - m) · (a - m) - 2a · m
= F(e) + 2e · m.

Hence, by (5.43),

D(a,6,c,d,e) = 16

= 16

: m-β

V : m · 7

: m - 5

ei €2 €3 : m · e + F(e)

: 0

V : 0

: 0

ei t2 £3 : F(e)
= 16|V|P(e).

(5.45)

(5.46)

�� �� �� �� ��

180 Intersection Tests

(The determinant (5.45) results from the preceding one by multiplying the first
column by —mi, the second by -rri2, the third by -m.3 and then adding it to
the fourth column.)

(ii) Now, e is inside S is equivalent to F(e) < 0, cf. Subsec. 5.8.2, which
together with (i) - gives the result. • .

The lemma enables us to compare the two approaches to perform an In-
sphere Test if four aJHnely independent points a, b, c, d e R3 are given (that is,
if \V\ Φ0):

1. Compute m,r and F(e). If F(e) < 0 then e is inside S.

2. Compute σ and T>(a, b, c, d, e) (advisably not directly as 5 by 5 matrix)
and apply point (ii) of lemma.

Both approaches show about the same level of numerical costs and stability,
even if the number of arithmetic operations of the first approach is a bit smaller.

The conclusions attained so far can immediately be transformed to box-
sphere intersection tests based on determinants in the same manner as the
Incircle Test in [85] formed the basis for the circle-rectangle test in [215]. Ac
cording to our range notation we set OT>(a, b, c, d, E) = {V(a, b, c, d, e) : e G E]
for a box Ε C R3. Furthermore, the Boolean predicate Insphere(o, 6, c, d, E)
shall be true iff Ε lies inside S. Then the lemma gets the following form

C O R O L L A R Y 1 (i) DV(a,b,c,d,E) = l6\VpF(E).

(ii) Insphere(a,b,c,d,E) is true iff oOV(a,b,c,d,E) < 0.

The Corollary enables us to compare the two approaches to perform an
Insphere Test for boxes E, if affinely independent points a,b,c,d £ R3 are
given:

1. Compute m,r and DF(E). If OF(E) <0,E lies inside 5.

2. Compute σ and ΠΡ(α, 6, c, d, E) and apply point (ii) of the Corollary.

Remark 2 . Because of the close connection between F and V shown in
point (i) of the corollary, OV(a, b, c, d, E) can be used in the same manner
as DF(E) for several variants of the Insphere Test (box outside sphere, box
intersects sphere, etc.) cf. Subsec. 5.8.2.

Remark 3 . If one wants to evaluate DV(a, b, c, d, E) without determining
m and r, the following procedure is suggested:

Developing the determinant (5.41) by the fourth row yields

V(a, b, c, d, e) = —eiiui + «2102 - €3x03 + (e-e - a- a)un

�� �� �� �� ��

Box-Sphere Intersection Test 181

where the Wi's are the appropriate minors. Let

ζ = (b • b — a • a, c- c — a- a, dd — a - a)T

and let V< denote the ith column of V, then the minors are

VJi = \V2 V3 2 | , ίο, = \VX V3 z\, w3 = \VX V2 z\, 104 = |V|.

From ee — aa = ee + 2eawe get

(5.47)

V(a,b,c,d,e) = J2/*(«<) = Σ ^ (e < _ a <)
»=1

where
fi(Xi) = wAx] + ((- l) ' t O j + 2aiW4)xi.

(5.48)

(5.49)

One notices that /i(x<) is of the form (5.37) such that Ofi(Ei - Oj) can be
calculated with formula (5.38). This gives

DV(a, b, c, ά,Ε) = Σ Dfi(£i ~ °0- (5.50)
t = l

Example 2. We continue Example 1 by considering S as being defined by
the four points α = (1,1,0), b = (0,1,1), c = (0,2,0) and d = (0,0,0). Then

so that

β =
7 =

δ =

V =

b-a = (-1,0,1),
c - α = (-1,1,0),
d-a = (-1 , -1 ,0)

- 1 0 1
- 1 1 0
- 1 - 1 0

We also calculate ζ = (0,2, -2) T . Now

toi =

102 =

W3 =

0 1 0
1 0 2

- 1 0 -2

- 1 1 0
- 1 0 2
- 1 0 -2

- 1 0 0
- 1 1 2
- 1 - 1 -2

= 0,

= -4,

= 0

�� �� �� �� ��

182 Intersection Tests

and finally wA = |V| = 2. From these calculations (or using Gaussian elimina
tion directly on (5.44)) we could recreate m and r using (5.42) and (5.44) then
proceed as in Example 1. Since our aim is to illustrate the above theory we
elect instead to proceed as above with equation (5.49) obtaining the separable
components of Ρ as

Finally we can compute OV(a,b,c,d,E) = •/ι([2,3])+Π/ 2([-1,1])+Π/ 3([-1,1]) =
[16,30] + [0,2] + [0,2] = [16,34] > 0 from (5-50). This shows that Ε is outside
5.

5.8.4 Algorithm
We now present an algorithm for the case when the sphere S is defined by four
affinely independent points using the equations suggested in Remark 3.

A L G O R I T H M 18 (Sphere-box intersection test)

Step 1. Four affinely independent points a, b, c and d defining the sphere and
Ε = (Ει,Ει,Ε3) defining the box are entered as data.

Step 2. Calculate vectors β, 7 and δ and form matrix V.

Step 3. Compute u>j, i = 1 , . . . , 4 from (5-47).
Step 4. Evaluate the coefficients of fi{Xi), i = 1,2,3 using (5-49).
Step 5. Evaluate OV(a,b,c,d,E) using (5.50).

1. OV(a, b, c, d, E) < 0 implies that the box Ε is contained in the sphere
S.

2. OT>(a,b,c,d,E) Β 0 implies that the box Ε and the sphere S inter
sect.

3. OT>(a,b,c,d,E) > 0 implies that the box Ε and the sphere S are
disjoint.

5.8.5 Numerical Examples
We now present three more examples with less detail than the first two to
illustrate the possible cases further. Let the sphere 5 be defined by a = (2,0,0),

Λ(*ι)
/ 2 (x 2)
/ 3 (x 3)

2x\ + 4xx

2x2,
2x2

3.

Step β.

�� �� �� �� ��

Box-Sphere fotersection Test 183

Figure 5.28: Box partly intersecting sphere

b = (0,2,0), c = (0,0,2), d = (-2,0,0). Then the midpoint is easily found to
be m = (0,0,0) with the radius r = 2.

Example 3 . The sphere S defined above is compared with the box Ε
defined by Εγ = E% = E3 = [1,2]. The configuration is shown in Figure 5.28.
The approach in Subsec. 5.8.3 yields the distance comparing function in (5.39)
as F(x) = x\ + x\ + x\ - 4 which has the separable components /»(XJ) = xj.
This gives DF(E) = [-1,8] which shows that S and Ε intersect.

The approach of Subsec. 5.8.3 yields |V| = -16 , σ = - 1 and minors
W\ = tt)2 = VJ3 = 0, W4 = -16. The separable components of V are /i(xi) =
-16x? - 64x1(/ 2 (x 2) = -16x^, / 3 (x 3) = -16x| .

If Xi is replaced by Ei - a (i = 1,2,3) in each case (use formula (5.38)),
we find that OT>(a,b,c,d,E) = [-16,128]. Again, the calculation shows that
S and Ε intersect which confirms the previous result.

Example 4. The sphere 5 is as in Example 3 with Ε defined by Ei =
Ei = £ 3 = [2,3]. This results in the configuration in Figure 5.29. Proceeding
as in Example 3 we get OF(E) = [-1,8] and DT>{a, b,c,d,E) = [128,368]. In
both cases the results show that 5 and Ε axe disjoint.

Example 5 . The sphere S is as in Example 3 with Ε defined by Ei =
E? = E3 = [2,3]. This results in the configuration in Figure 5.30. Proceeding
as in Example 3 we get DF(E) = [-4,-1] and •£>(<!,b,c,d,E) = [-64,-16].
Here both results show that Ε is included in S.

�� �� �� �� ��

Intersection Tests

c=(0,0,2)

d=(-2 ,0 ,0)

/ i r = 2 \

/ \i>=(0,2,0)

I \ /m=(0,0 ,0) J

= (2 , o , o) ;
E3=[2,3]

r B=[2,3]
Bi=[2,3]

Figure 5.29: Box outside sphere

Figure 5.30: Box included in sphere

�� �� �� �� ��

Chapter 6

T h e S C C I - H y b r i d M e t h o d

f o r 2 D - C u r v e T r a c i n g

6.1 Introduction

A hybrid method for plotting 2-dimensional curves, which are defined implicitly
by equations of the form f(x, y) = 0 based on [225], is developed in this chapter.
The method is extremely robust and completely reliable and consists of Space
Covering techniques, Continuation principles and Interval analysis, and it is
called SCCI-hybrid method. The space covering, based on iterated subdivision,
guarantees that no curve branches or isolated curve parts are lost (which can
happen if grid methods are used). The continuation method is initiated in
a subarea as soon as is proven that the subarea contains only one smooth
curve segment. Such a subarea does not need to be further subdivided which
means that the computation is accelerated as far as possible with respect to
the subdivision process.

The crux of the SCCI-hybrid method is the intense use of the implicit func
tion theorem for controlling the steps of the method. The formulas which
are required in this theorem are evaluated using interval arithmetic so that
the application of the theorem gives logically and analytically correct results
which are not contaminated by rounding or approximation errors. Although
the implicit function theorem has a rather local nature, it is empowered with
global properties by evaluating it in an interval environment. This means that
the theorem can provide global information about the curve in a subarea such
as existence, non-existence, uniqueness of the curve or even the presence of
singular points. The information obtained from the theorem allows the above-
mentioned control of the subarea and to decide how it is processed further, i.e.
deleting it, subdividing it, switching to the continuation method or preparing
the plotting of the curve in this subarea. The curves can be processed mathe-

185

�� �� �� �� ��

186 The SCCI-Hybrid Method

matically in such a manner, that the derivation of the plotted curve from the
exact curve is as small as desired (modulo the screen resolution).

Let an equation
/(*,») = 0 (6.1)

be given, where / is a smooth real function in two variables, χ and y. The aim
of curve or contour tracing is to graphically represent the set of real solutions,
(x,y), of (6.1). The set of solutions of (6.1) is called the contour of the curve
or also the curve itself which is implicitly defined by (6.1). Even if / is a
polynomial, the curve can behave very badly with respect to a plotting or to a
preceding computational phase. The curve need not be connected, it can have
forks and other nonsmooth parts, and it can happen that there are isolated
parts, that consist of one point only. This means that the numerical and
graphical treatment of equation (6.1) can be nontrivial.

The most important tool for obtaining explicit representations of the con
tour is the implicit function theorem which is well-known in analysis. Its ap
plication is however rather restricted and only valid if, besides a few technical
conditions, the curve locally admits an explicit representation. For example,
the theorem does not work for singular points such as the point (0,0) of the
simple function /(x, y) = xy.

Standard traditional methods for numerical solutions of (6.1) are contin
uation methods, simplicial methods, homotopy methods and space covering
methods. Surveys of the first three methods can be found in, for example,
Zangwill-Garcia [279], Schwetlick [240], Rheinboldt [227], Allgower-Georg [8],
Guddat [84]. Space covering methods are well-known in interval analysis. As
far as we know, they were first applied to contour tracing as part of computer-
aided geometric processing by Mudur-Koparkar [174]. Further approaches to
contour tracing with interval methods can be found in Neumaier [178], Suffern-
Fackerell [258], Duff [37], Snyder [253], Kearfott [126], Kearfott-Xing [130],
Schramm [239], [22] and others. These papers, however, differ from ours either
by the problem statement or the methods used. The affine arithmetic used by
de Figueiredo-Stolfi [53] is a generalization of interval arithmetic appropriate
for some contouring problems. Grid techniques are also commonly used when
it is required to plot the curves (see, for instance, [251], [53]). Martin et al.
[154, 155] compared the accuracy and the costs of several variants of hybrid
methods, included are variants that use derivative information.

The article by Taubin [265] and references therein considers the specific
problem of rendering implicit curves on raster devices which are rectangular
arrays of domains called pixels having the same colour or shading. A variant
of this problem is discussed in [267] where the colouring of the pixels contains
information about the existence of solution points in the pixel.

Typical examples of curves that would pose problems for many standard
methods include

/(x,y) = (x2 + y2 - l)(x 2 + y2 - 1 - e) = 0 (6.2)

�� �� �� �� ��

Production 187

for small e or
f(x,y) = (x + y)(x-y) = 0 (6.3)

if the curves are defined implicitly as above and no other information such
as "the equation defines two intersecting lines" or "the equation defines two
close, but disjoint circles" is available. Continuation methods might overlook
the outer circle when starting with the interior circle of (6.2) or might break
down at the point (0,0) with (6.3). Grid methods might also have trouble in
identifying this point in (6.3) with sufficient accuracy.

We return to these prototype examples in Sec. 6.3. where we show that the
SCCI-hybrid methods have no difficulties at all in discovering these situations
and to plot curves with almost arbitrary accuracy.

The SCCI approach extremely robust and completely reliable and uses

• space covering,

• Moore's exclusion test and

• computationally verifiable global versions of the implicit function theorem

as basic principles.
In our approach, the area in which the contour has to be plotted is usually a

rectangle and it will be recursively subdivided into sub-rectangles. A rectangle
will not be subdivided further when this rectangle

(i) is proven not to contain any contour points or

(ii) is appropriate for applying the continuation method or

(iii) has reached a prescribed size which is appropriate for submitting the
contour in the rectangle to a plotting operation or to a plotting stack.
Frequently, these rectangles are called plotting cells.

The interval arithmetic proof of (i) that a rectangle does not contain any
contour points is generally supported by the exclusion test. For this purpose
one needs an inclusion function, F(X,Y), of f{x,y) as introduced in Ch. 2.
This means that

where Χ, Y are compact intervals which means that Χ χ Y is a rectangle with
edges X and Y. We return to appropriate inclusion functions with a more
detailed development in Sec. 6.2. Now, the exclusion test can be applied to the
rectangle Χ χ Y which means to select an inclusion function F of / , to evaluate
the interval F(X, Y) and to check for

f{x, y) G F(X, Y) for any χ G X, y G Y, (6.4)

0#F(X,Y). (6.5)

�� �� �� �� ��

188 The SCCI-Hybrid Method

If (6.5) is satisfied, there is no point (x,y) in the rectangle Χ χ Y with
f(x,y) = 0 because of (6.4). Hence (6.5) guarantees, that the rectangle X xY
cannot contain any contour points of / . A more sophisticated procedure can
be found in Neumaier [178] who develops an inclusion function by using a
mean-value formula and transforms the question of whether 0 G F(X, Y) to
the solvability of a linear homogeneous interval system. Neumaier calls this
procedure a "generalized Gauss-Seidel method".

The most striking feature of the SCCI-hybrid method is a process which
decides whether the current rectangle should be subdivided further or whether
the continuation method can be successfully applied in the rectangle, cf. (ii).
(The continuation method is the least expensive method for computing the
path, hence the earlier it is applicable the faster the computation proceeds.)
This decision is simply derived from the above mentioned implicit function
theorem as soon as it is globally valid in the rectangle. Then the curve in the
rectangle can be represented uniquely as a function y{x) or as a function x{y).
Certainly, explicit formulas for y(x) or x(y) need not be developed, however,
the knowledge that these explicit functions do exist means that the continua
tion theorem can be safely applied without worrying about pathological cases.
In order to check the validity of the theorem, it suffices to evaluate the par
tial derivatives of / over the rectangle, cf. Sec. 6.2. The partial derivatives,
computed so far, make it possible to draw conclusions about the monotonicity
behavior of y(x) or x(y) without further computational costs.

The continuation method itself corresponds to predictor corrector steps.
The predictor steps are immediately obtained from the partial derivatives al
ready computed and the correction steps can be done with arbitrary accuracy
using interval methods.

There is still a variety of further interval based resources, which seemingly
have not yet been used in connection with contour tracing. These are mostly
tools which, together with point methods, make it possible to collect global
information about the curves in a rectangle. Examples of this are existence,
nonexistence, connectedness (i.e., one path of the contour), entry and exit
points of the contour w.r.t. the rectangle, existence or nonexistence of singular
points. All these features can be obtained using simple tools of interval arith
metic such as inclusion functions of / , partial derivatives of / , and the interval
Newton method (which also could be avoided if the user is afraid to use it).

Summing up: The main features of the SCCI method, that is, its robustness
and complete reliability, stem from the interval tests that are incorporated and
the relative speed stems from the procedural control gained from the global
information. A disadvantage of the method is the high computational effort
which is caused by the fact that the curve is not given explicitly.

In Sec. 6.2, we will first outline the SCCI method and the tools used. This
is followed by a more detailed description of the various parts of the method. In
Sec. 6.3, the application of the presented method to the two critical prototype

�� �� �� �� ��

The Parts of the SCCI-Hybrid Method 189

examples mentioned before is discussed.

6.2 The Parts of the SCCI-Hybrid Method
The SCCI-hybrid method is presented here as a complete method consisting of
the following parts:

A. The subdivision process

B. The standard exclusion test

C. The determination of the global shape of the contour

D. The continuation method

E. The plotting

F. Consideration fo rounding errors.

Parts A, B, D and Ε are based on known material whereas part C contains
new material. Each of the parts are described below. The main discussion will
however focus on parts C and D because of the large influence of part C to
part D. The other parts are only described in a level of detail necessary for
the development of the overall method. It should also be noted that the parts
are mostly independent of each other, except for the dependency of part C on
part D. The subdivision process, the standard exclusion test and the plotting
process will therefore only be briefly discussed allowing us to focus on the new
material.

Let XQ, YQ be two compact intervals forming the search rectangle ZQ =
XQ χ Yo and let the smooth function / : ZQ - • R be given. Our aim is to plot
the contour which is defined by f(x,y) = 0. Recursively, we also have to deal
with sub-rectangles Ζ of ZQ, i.e., Ζ = Χ χ Y where X C XQ, Y C YQ are
compact intervals. We look only for those solutions of the equation f(x,y) = 0
which lie in Z .

As mentioned, we first need an inclusion function, F of / , that is a function

F : I(ZQ) -» I (R)

which satisfies

f(x,y) € F(X,Y) for all (x,y) e Χ χ Υ.

In order to obtain reasonable results, one should only choose inclusion func
tions which satisfy the condition

V J (F (X , Y)) - * Q as v>(X,Y)-*0. (6 .6)

�� �� �� �� ��

190 The SCCI-Hybrid Method

For example, if
f{x,y) = xsiny + ycosx

then F(X,Y) = XsmY + YcosX is an inclusion function that satisfies (6.6),
where sin Y and cos X are the ranges of sin and cos over Y and X, resp. (Ranges
of standard functions can be computed with almost all interval software pack
ages available.)

In contrast, the function

F(X,Y) = X[-l,l] + Y[-l,l]

is also an inclusion function of / , since the values of sin and cos are in [—1,1].
But condition (6.6) is not satisfied: Set, for example, X = 1 and Y = 1.
Then w(X) = w(Y) = 0. But F(X,Y) = 1[-1,1] + [-1,1] = [-2,2] and has
therefore width equal to 4.

If w(X) and w(Y) are small, say, not larger than 1/4, the mean value form
should be used as inclusion function instead of the natural interval extension
since it has a higher convergence order than inclusions based on the natural
interval extensions (cf. Sec. 2.12). The meanvalue form is defined as

Fm(X,Y) = f(c,d) + (X-c,Y-d)T Vf{X,Y)

for X G I(Xo), Y 6 I(Yo), where c,d are the midpoints of X and Y, respec
tively, and Vf{X,Y) is an inclusion function for the gradient which should
satisfy (6.6), see for example [212], or any other book of interval analysis.

For a better understanding of the SSCI-hybrid method we first give an
informal and then a more detailed description.

A L G O R I T H M 19 (The SCCI-hybrid method (for plotting the contour of the
equation f(x, y) = 0 in the rectangle Z Q) .)

The input parameters are ZQ, an inclusion function F of f, and the plotting
cell size. The method works with two lists, a waiting list, WL for the math
ematical processing and a plotting list, P L , which contains the final plotting
information.

S t e p 1. Initialize the waiting list, W L , by entering ZQ onto the list.

S t e p 2 . If WL is empty, terminate the computation (and start the plotting).
Otherwise, get the "next" rectangle from WL and denote it by Z .

S t e p 3 . Apply the standard exclusion test to Z . If Ζ is discarded by the test,
go to Step 2.

S t e p 4 . Determine the global shape of the contour in Ζ as specified later. Then

a) If it turns out that there are no contour points in Z , discard Ζ and
go to Step 2.

�� �� �� �� ��

The Parts of the SCCI-Hybrid Method 191

β) If Ζ has already plotting size (supplied with the global shape infor
mation), Ζ is put on the plotting list. Go to Step 2.

7) If the information on the global shape of the contour is appropri
ate, the continuation method is initiated for Z . I.e., Ζ is replaced
by plotting cells, which are put on PL. If the continuation method
cannot reasonably be applied to some part of Ζ (Ζ included), denote
this part by Ζ and go to Step 5.

δ) In the remaining cases, go to Step 5.

S t e p 5 . Subdivide Z , put the two halves on WL. Go to 2.

After the termination, the proper plotting procedure can begin, that is, the
plotting list, PL, can be forwarded to the plotting device.

We now start with a detailed discussion of the individual parts which are
needed in the overall method.

A. The Subdivision Process
The subdivision process is a known technique in many areas of numerical math
ematics, optimization, CAGD, etc. It has already been applied in Sec. 2.13,
hence a brief description is sufficient. In general the aim of this process is to
subdivide a given area recursively into smaller pieces (mainly rectangles, cubes,
simplices, etc.) until there is enough information available for the current sub-
area to commence a proper investigation or treatment of the problem or parts
of the problem in this sub-area (for instance, zero search, search for extremum
points, contour sampling, etc.).

In our case, we start with the initial rectangle, ZQ = Xo x Yo- This rectangle
is subdivided and each sub-rectangle Ζ = Χ χ Y which occurs in this process
has to pass several tests regarding the behavior of / over Z . When a test renders
a definite answer (no curve patch in Z , or, curve passes through an edge, or,
when it is promising to switch to the continuation method) or if Ζ has already
reached a size predescribed by the user (plotting cell size), then this rectangle
will not be subdivided further. Instead it will be submitted to the appropriate
mathematical or procedural treatment (such as commencing the plotting or
deleting the rectangle or commencing the continuation method). Otherwise,
the rectangle Ζ is subdivided into 2 (or 4) equal-sized sub-rectangles. The
subdivision bisects the longest edge. The two halves are put on the list WL
to be processed as mentioned above. There are various possible proposals for
ordering the rectangles on the list. Examples of the orderings are the various
types of linear orderings and tree structure orderings. In our experience the
following linear ordering has been found to be the best:

1. Get the first rectangle, Z , from the already initialized, nonempty list
(in our case, the waiting list, WL) and perform the various tests and
procedures on Z .

�� �� �� �� ��

192 The SCCI-Hybrid Method

2. If Ζ has not yet been discarded or forwarded to some other treatment,
Ζ is subdivided, and the two halves are inserted at the head of the list,
i.e., the left half before the right half, and the lower half before the upper
half.

3. (Optionally) Install a directed "adjacent" relationship structure, from left
to right, from below to above.

The advantage of this kind of "last in - first out" principle as opposed to
uniform subdivision is that one can roll up the process along desired directions.
This facilitates the incorporation of optional data structures. Furthermore,
uniform subdivision needs, in general, more storage.

The adjacency structure is thought of as an accelerating device, however, it
does not have any influence on the mathematical performance. This means if it
is already known that a box has curve points on an edge, this information can
be carried over to the adjacent box which share that edge with the aid of the
structure. We do not mention the details of how to implement an adjacency
structure since they are not part of this method.

The neighbor finding techniques which are described in Ch. 3 of Samet [238]
may also be used.

B. The Standard Exclusion Test
This test has already been described in Sec. 6.1. The test stated that no curve
points can lie in Ζ = Χ χ Y if 0 £ F(X, Y) which means that Ζ can be removed
from further processing. If 0 6 F(X, Y), then Ζ is sent to Step 4 (global shape
determination), which is the next processing step.

C. The Global Shape of the Contour in a Rectangle Ζ =
XxY

Information about the global shape of the contour in Ζ is obtained from a set of
computer executable queries. The information obtained from the queries is used
for further decisions as to how to continue the computations. The advantage
of the global shape knowledge obtained by interval methods in contrast to
sampling based information is that the knowledge is guaranteed to be correct.

In addition to the inclusion function F of / , we need inclusion functions
Fx and Fv of the partial derivatives, f x and / „ , of / , respectively. Again,
it is reasonable to take the natural interval extensions of f x and f y as in
clusion functions, such that condition (6.6) for Fx and Fv holds automati
cally. Returning to our former example, f(x,y) = χ siny + ycosx, we get
fxix,y) = siny — ysinx, fy(x,y) = xcosy + cosx as partial derivatives of /
which means that the inclusion functions are Fx (X, Y) = sin Y — Y sin X and
Fy(X,Y) = XcosY + cosX.

�� �� �� �� ��

The Parts of the SCCI-Hybrid Method 193

The queries which establishes the global information depend on
a corner sign check (signs of / at the corners of Z),
the values of F at Z,
the values of F at the edges of Z,
the values of Fx, Fy at Z,
the values of Fx, Fv at the edges of Z.
Since the global shape investigation is only executed when Ζ does not pass

the standard exclusion test, we can assume that

o e F (x , y) (6.7)

in the sequel. We now distinguish several cases:

I. 0?Fx(X,Y), 0?Fy(X,Y)

First, we consider the condition

0#Fv(X,Y). (6.8)

Since Fy is an inclusion function for the partial derivative / „ , condition (6.8) im
plies that fy(x,y) φ 0 for any point (x , y) € Z. Therefore, the implicit function
theorem is applicable, and provided, a point (x o , yo) € Ζ with / (x o , yo) = 0
exists, there is a unique function h(x) with the property yo = h(x0) and
/(χ, Λ(χ)) = 0 for all χ belonging to some neighborhood of Xo-

Since 0 £ FX(X,Y), one also has that fx(x,y) φ 0 for any (x , y) € Z.
Therefore h can be globally extended to a strictly monotone function in a
neighborhood of Ζ and is at least well-defined as long as (x , h(x)) G Z. This
function then represents the contour of / (x , y) = 0 in Z, and there are no
further contour points in Z.

The derivative of h is

fy{x,h(x))

where the strict monotonicity of h can be seen directly.
One also can practically decide whether h is increasing or decreasing, since

we know that the intervals FX(X, Y) and Fy(X, Y) do not contain zero. Hence,
h is strictly monotonically increasing, if these intervals have different signs,
otherwise h is strictly monotonically decreasing. Fig. 6.1 shows a few samples
of possible configurations. Fig. 6.2 shows a few configurations that cannot
occur.

It remains to be settled whether there is a curve in Ζ at all i. e. it is
possible to have situations as shown in Fig. 6.1c. In contrast to non-interval
methods, it is very simple to decide: If there is any curve point in Z, the curve
must have an entry and exit point in Z, since singular points are excluded in

�� �� �� �� ��

The SCCI-Hybrid Method

f)

Figure 6.2: Impossible configurations

�� �� �� �� ��

The Parts of the SCCI-Hybrid Method 195

case I. (A singular point satisfies fx{x,y) = fy(x,y) = 0.) The entry and exit
points can coincide, which then gives a corner, cf. Fig. 6.1b. Hence, in order
to finally find out, whether Ζ contains contour points or not, the signs of the
function values at the corners of Ζ are considered:

1. If the four signs are equal then Ζ cannot contain any contour points
(and Ζ can be removed from further processing). Clearly any curve in
Ζ has to enter Ζ somewhere. This can only happen if the function is
0 at some edge point. It would then follow that one of the adjacent
corners had a positive function value and the other a negative value due
to the monotonicity properties of / . The curve can not pass through
a corner since the function value at such a corner would be zero (and
by assumption the other three corners have function value zero) which
contradicts the monotonicity properties.

2. Suppose that three signs are equal and the fourth one is zero. Then
because of the derivative information, the corner with value zero is the
only solution point of equation (6.1). Hence this point can be plotted
(and entered as a degenerate plotting cell onto the plotting list PL), and
Ζ can be discarded.

3. For the remaining possible sign distributions (3 positive and 1 negative,
2 positive and 2 negative, 1 positive and 3 negative, 2 zero, 1 positive and
1 negative, 1 zero, 2 positive and 1 negative, and 1 zero, 1 positive and
2 negative) the unique curve enters and leaves via different edges which
are easy to determine from the sign distributions. All together, the ideal
situation is reached for applying the continuation method since the entry
and exit point can be computed with no danger of bifurcations or other
singular points and there are no further isolated curve segments in Z.
The entry point of the curve in Ζ is determined, where we think of the
process as progressing from left to right. (This orientation is not really
necessary for the mathematical part of the method, but it facilitates the
algorithmic design.) With respect to this orientation, the entry point is
either on the left edge of Z, or on the upper or lower edge of Z. I.e., it is
on the upper edge, if FX(X,Y) and Fy(X, Y) have the same sign (since
then h'(x) < 0), or on the lower edge otherwise (since then h'(x) > 0).
We use the interval Newton method to compute the entry point, if it
is not already at a corner, since it has quadratic convergence under the
given circumstances, as well as safe bounds for the entry point, cf. Ch.
ΙΠ. It is clear that the interval Newton method is applied to / restricted
to the edge in question so that the zero search is one dimensional.

We restate the main steps:

a) The entry point is determined,

b) the process is switched to the continuation method,

�� �� �� �� ��

196 The SCCI-Hybrid Method

a)

Figure 6.3: Possible configurations when QeFx{X,Y), 0 £ FV(X, Y)

c) d)

Figure 6.4: Impossible configurations when 0 G FX(X,Y), 0 £ FV(X,Y)

c) Ζ is removed from further processing.

II. OeFx(X,Y), 0 * F , (X , y)
The geometric interpretation of the assumption 0 £ Fy(X, Y) is that, given

any χ G X, there exists at most one y GY with /(x,y) = 0. As in case I, the
implicit function theorem is applicable if curve points exist in Z, so that the
curve in Ζ can again be described by a function h(x) where

h'(x) = -
fx(x,h(x))
fv(x,h(x))'

Singular points do not exist in Z, hence there are no bifurcation or curve
branches that begin or end in the interior of Z. However, it is possible that
several branches of the contour go through Ζ with several entry and exit points.
Fig. 6.3 shows a few examples of possible curves, and Fig. 6.4 shows some
impossible configurations.

We will briefly explain why the configuration shown in Fig. 6.4d is impos
sible. We first denote the two branches of h by h i and fa. Then we have
to distinguish between two principally different cases (further cases are slight
variations of the two main cases):

�� �� �� �� ��

The Parts of the SCCI-Hybrid Method 197

(i) The function values of / below hi are positive (precisely, /(x, y) > 0 if
(x, y) € Ζ and y < hi (x)) and the function values above h2 are negative.
Since / is continuously differentiable, each line leading from the negative
part to the positive part has to pass a point (x, y) with /(x, y) = 0.
There are no such points and it follows that the situation described can
not occur.

(ii) The function values of / in the region between hi and h2 are all positive.
This implies that the function values above hi are negative (because
of 0 ^ Fy(X,Y)) and the values below h2 are negative which means,
that /y(x,y) < 0 for points (x,y) 6 Ζ with y = hi(x) because of the
function values decrease in the y-direction and that /„ (x, y) > 0 for points
(x, y) 6 Ζ with y = h2(x) because of the function values increase in the
y-direction. Since Fy(X,Y) contains all values fy(x,y) with (x,y) G Ζ
and since Fy(X, Y) is an interval and therefore convex, Fy (X, Y) contains
0, which is a contradiction. Hence the situation described here can not
occur as well.

Two things are learned for the design of the program from this:

(i) The left edge of Ζ as well as the right edge contains as most one curve
point each.

(ii) The lower and the upper edge of Ζ can contain more than one curve
point each. But if a curve branch leaves the upper [lower] edge (seen in
direction from left to right), another branch can enter only on the upper
[lower] edge.

Based on the information gleaned so far, the processing of the rectangle Ζ will
be as follows (and we again think of a curve parametrization from left to right):

Case 1. The signs of the function values at the corners of the left edge of
Ζ axe different.

Then the curve enters Ζ at this edge at exactly one point. This point is
determined by the interval Newton method, except when the point is already
a corner. Ζ is then sent to the continuation method which is applied until
the curve leaves Ζ (for the first time). If the curve leaves Ζ at a point with
x-coordinate x' e X = [χι, X2], that part of Ζ with x-coordinate χ G [χι, x']
need not be processed further, since it cannot have another curve separated
from the first. Hence, Ζ has to be replaced by the sub-rectangle, Z' = X' χ Y,
where X' = [χ', x2]. If x' = x2 already, Z' can be dropped. If Z' is sent back to
the waiting list, WL, it is beneficial to send the information already available
along with Z', that is,

a) 0?Fy(X',Y).

�� �� �� �� ��

198 The SCCI-Hybrid Method

β) /(x'.yi) = 0 or f{x',yi) = 0 (but not both), where Y = (1/1,1/2],a:' < «2-

7) there is no further entry point of the curve on the left edge.

It can also happen that when X is reduced to X' the condition 0 G Fx (X, Y)
is changed to 0 £ FX(X',Y). In this case Z' satisfies the conditions for case I,
and is returned to this case.

Case 2 . The signs of the values of / at the corners of the left edge of Ζ
are equal (only "+" and but not 0 are possible).

In this case, no curve enters through the left edge of Z , and, it can only
possibly enter through the upper or lower edge. Let

Xu = (X,y2) be the upper edge of Z,
Xi = (X,yi) be the lower edge of Z.
Then, one evaluates F over Xu and Xi in the following manner:

(i) If 0 ^ F(Xi) and 0 £ F(XU), no curve points are on these two edges,
hence no curves enter Z, and Ζ can be discarded.

(ii) If 0 £ F(Xi), 0 G F(XU) only Xu might have entry points. It is rea
sonable to separate the easy from the more involved cases. An involved
behavior is, for example shown by

h{x) = y2 + (x + e - xi) 2 sin χ _|_ X i if χ + e - x x φ 0,
h(x) = 0 otherwise,

where 0 < e < < X 2 - x i . In this case it is almost impossible to get an
overview of the global shape of h only using numerical tools.
We therefore distinguish between the following cases:

a) If 0 & FX(XU), there can be at most one curve point on Xu which
can be shown by checking the signs of / at the corners of Xu:
al) If the function values at the corners have the same sign (0 is

again not possible), then no curve goes through Xu, and Ζ can
be discarded.

a2) If the function values at the corners have different signs, then
there is exactly one curve branch going through Z, it enters
through Xu and leaves through the right edge of Z. This means
that Ζ behaves nicely and Ζ is sent to the continuation method.

b) If 0 G FX(XU) then the curve can cross Xu from zero to an infinite
number of times. It would certainly be theoretically possible to
determine the exact number of crossing points if there is only a
finite number of them (this could be done first, using the interval
Newton method for separating them, and second, by showing with

�� �� �� �� ��

The Parts of the SCCI-Hybrid Method 199

uniqueness tests, that in each separated area there is exactly one
solution point). It seems, however, more reasonable just to proceed
with subdividing Ζ (and to store the actual data for keeping the
computational costs low) due to the many situations that might
occur.

(iii) If 0 G F(Xi), 0 £ F(XU), proceed analogously to (ii). For example, swap
Xi and Xu in (ii), to get (iii).

(iv) If 0 G F(Xi), 0 G F(XU) then there are again too many entry and exit
points possible. Hence we will turn to the continuation method only if
some monotonicity properties can be established:

a) If 0 i Fx{Xi), 0 # FX(XU) and
al) if the function signs at the 4 corners of Ζ are equal then there

are no curve points in Z, and Ζ can be discarded,
a2) if the function signs at the corners are not equal, two different

edges of Ζ are involved with a unique entry point and a unique
exit point of the curve. The entry point is determined using
the interval Newton method and then a switch is made to the
continuation method.

b) If 0 G Fx(Xt) or 0 G FX(XU) it might be possible to find the curve
points on Xi and Xu. This does not seem reasonable due to the
possibly large computational effort involved and we therefore rec
ommend that the process is continued by subdividing Z.

III. 0?Fx{X,Y), OeFy(X,Y)

This case is analogous to case II. One may swap the χ and y coordinates in
order to transform this case to case II.

IV. OeFx(X,Y), OeFy(X,Y)

This is the case where all can happen, starting from a reasonable curve
behavior as in case I (cf. Fig. 6.5a) to the occurrence of not connected curves
or singular points (forks, crossings, the start of new paths), cf. Fig. 6.5 b-g.
The reason that reasonable curve behavior can also be included in this case
is due to the overestimation of the range of the derivatives, fx and / „ , by
their inclusions, Fx and Fy. Therefore it might happen that 0 G FX(X, Y) is
computed even though fx(x,y) Φ 0 for all (x, y) G Z.

It certainly would be possible to investigate further details computationally,
such as the existence of singular points in Ζ (just apply interval Newton method
to the point equation system fx(x,y) = fy(x,y) = 0 in Ζ and check whether
the solution satisfies f(x,y) = 0). There are, however, still too many different

�� �� �� �� ��

200 The SCCI-Hybrid Method

Figure 6.5: Possible configurations when 0 e FX(X,Y), 0 e FV(X,Y)

situations possible such that it is best to reduce the size of the rectangles, until
one obtains one of the more convenient cases in I to ΙΏ since smaller rectangles
have a smaller chance of containing awkward situations. Even so, it is clear
that a singular point in a rectangle remains a singular point independent of
how small the rectangle is.

Summing up, the rectangle Ζ is sent back to be subdivided further.

D. The Continuation Method
The continuation method would be accepted as the most reasonable and ef
ficient method to design contours, if one did not have to deal with the un
certainty of whether there are perhaps easily overlooked disconnected curve
pieces "near" to the smooth path one is just plotting. In this connection the
question also arises how to jump from one path to another if they are discon
nected. See, for example, [84]. Both of the two disadvantages just mentioned
are meaningless when using the SCCI-hybrid method because of the availabil
ity of global information. Accordingly, we switch from the subdivision process
to the continuation method as soon as the global information indicates that
the above-mentioned flaws are excluded. Nevertheless, in some cases we switch
back to the subdivision process, i.e., when the computational effort for going
ahead with the continuation method would be large.

Hence, if a rectangle, Z, is destined for the continuation method it is guar
anteed that there is only one path in Z. The path may fall into several discon
nected pieces in Z, which does not matter, since these pieces are then connected
by the edge of Ζ so that they are always under control, cf., for example, Fig.

�� �� �� �� ��

The Parts of the SCCI-Hybrid Method 201

a)
< x

0 . y 0)
b)

Figure 6.6: Plotting cells Ζ

6.3b or 6.3d.
The continuation process itself is simple and easy, and comparable to march

ing methods: We start with the entry point and we continue to keep track of
the path, until it leaves Z, and we check whether there is a re-entry of the
curve (on the same edge). The track keeping is nothing but the covering of the
path with plotting cells, one after the other, from left to right. Then the curve
is generally only interpolated in the plotting cells, in our case, linearly.

Thus, let (xo,j/o) € Ζ be the entry point as well as the starting point.
Since the whole method progresses from left to right, (xo,yo) either lies on
the left edge of Z, or on the upper or lower edge of Z. In the latter cases,
there is no curve point to the left of (χο,ι/ο)· Let d be the width of a plotting
cell, prescribed by the user. The value of d can be fixed, or variable, or can
have different values in the two coordinate directions. We choose d as a fixed
constant.

Let
X = [x0,x0 + d]nX,
Ϋ = [Vo - d, y0 + d] (Ί Y,
Ζ = ΧχΫ,

cf. Fig. 6.6.
The area Ζ is the rectangle where the plotting in form of a linearization is

intended. (This paper does not discuss other interpolation types, since they
have no influence on the SCCI method itself.) As the continuation method is
developed from left to right, we need not consider the area left of x u . But we
have to consider the area below and above j/o, since the curve can move down
as well as up.

In order to get a reasonable linear interpolation, we just look at the exit

�� �� �� �� ��

202 The SCCI-Hybrid Method

i n t e r v a l f o r s e a r c h i n g
f o r e x i t p o i n t

(χ ο < 7 0)

Figure 6.7: Cone containing contour

point of the curve from Ζ which then will be the second point for the linear
interpolation, if appropriate. If there are only a few further entry and exit
points, one can continue to interpolate, or one can colour the box black, if
there are too many.

Now, first of all, the path in Ζ will be included in a cone with vertex (xn> yo)-
The cone is obtained from the partial derivatives. (A similar idea was already
used by Hoffmann [107] who used Lipschitz constants. This was, however, dif
ficult to realize since methods for determining the Lipschitz constants required
were not available. - Note that our method delivers a way to determine a Lip
schitz constant implicitly and almost automatically.) Since the contour lies in
the cone, the contour leaves Ζ also within the cone. Hence it is in general not
too difficult to localize the (first) departure point, cf. Fig. 6.7.

Since we switched to the continuation method from the part of the algorithm
where the global shape of the contour in Ζ was explored the following conditions
are satisfied:

0#Fx(X,Y) or 0#Fv(X,Y). (6.10)

These conditions are carried over from Ζ to Ζ because of the inclusion Ζ C Z.
Since (6.10) holds not only for the initial plotting cell we have considered so

far, but also for all other plotting cells lying in Z, we will no longer distinguish
between the different cells and denote them all by Ζ = Χ χ Ϋ. It is not essential
whether Ζ is now the initial cell in Ζ or not. Accordingly, we let (xoiJ/o) be
the entry point of the curve in Z. Note that (xo,yo) lies on the left edge of Ζ
or on the upper or lower edge of Ζ due to our left to right orientation.

We now distinguish between two cases:

�� �� �� �� ��

The Parts of the SCCI-Hybrid Method 203

I. 0?Fy(X,Y)

As we have seen above the curve in Ζ can be completely described by an
explicit function h(x) as long as (i, h(x)) G Z. In general we do not know this
function, but we know the derivative

, / / χ /x(x,h(x))
/„(x, h(x))

as discussed in (6.9). This is enough to get the cone, and that h(x) is unknown
does not matter as we will see below.

An inclusion function for h' could be

H'(X,Y) = -F;(*%\ for X G I(X),Y G I(Y).

Although H' is an inclusion function for ft'(x), it is reasonable to carry
along Y as a second (interval) variable in order to have a better control of the
bounds of h(x) such as h(x) G Ϋ. This helps to obtain tighter inclusions. This
means that H'(X, Y) is an inclusion of ft'(x) as long as (χ, Λ(χ)) G Χ χ Y
which is exactly the situation we have to deal with in the plotting cells Z.

The inclusion function H' is convenient to work with. In many cases, it
would however be better to find a direct inclusion of ft'(x) by looking first for
an appropriate expression of Λ'(χ) (in terms of χ and h(x)) and then to choose
the natural interval extension of this expression by replacing χ by X and h(x)
by Y. The reason is that different expressions for one and the same function in
general lead to different inclusion functions as discussed in Sec. 2.8. Experience
has shown that the function H' as defined above does not produce the tightest
bounds.

The inclusion function H' (or an improved one) is now used to define a cone
which covers the curve in the plotting cell Z. The cone is

C = {(x,y) : χ > x 0) y G yo + Η'{Χ,Ϋ)(χ - x 0)}.

The point (xo>yo)) which is the entry point of the curve in Z, is the vertex of
C, and C is built up with the slopes of all tangents of the graph of h in Z.

Hence, by the meanvalue theorem, any point of the contour that lies in Z,
lies in C, cf. Fig. 6.8.

Let
Cmax(x) = yo + (maxH'(X, Ϋ))(χ - xo), x > xo
Cmin(x) = yo + (mmH'(X,Y))(x - x 0), χ < x 0-

Then c m a x and c m j n describe the upper and the lower boundary of the cone.
We have 2 cases:

(i) Both half-lines, θ η , ω and c r a i n intersect the right edge of Z, cf. Fig. 6.8a,
for instance. Then, the curve leaves Ζ on this edge between the two

�� �� �� �� ��

204 The SCCI-Hybrid Method

Ζ

a) b) c)

Figure 6.8: Possible cones

intersection points. Simply, apply the interval Newton method to the
function /(xo,J/) with x 0 = min(xo + d, x 2) as a function in the variable
y on the interval bounded by the intersection points in order to determine
the (unique) solution point, say {xo,Vo)- This point will then be the initial
point for the continuation step in the next plotting cell or the exit point
of the curve out of Z, if xo = x 2 . If this exit point has, in fact, been
reached, the processing of the curve in Ζ is finished, all the interpolation
points for the curve or their plotting cells are on the plotting list, and Ζ
can be removed from further processing.

(ii) At least one of the half-lines Cmax or c m j n intersects with the upper or
lower edge of Z, cf. for example, Fig. 6.8b. The chance for a simple
continued " marching" as was the case with case (i) has already decreased
(theoretically, there could be still an infinite number of curve entries or
exits on the upper or on the lower edge), however, one could be lucky and
one should therefore exhaust all possibilities for recognizing a convenient
plotting behavior if such a behavior is present at all. Otherwise we have
to deal with a plotting crash (black box colouring) or to plot by sampling
as most non-interval based algorithms do.

We consider the most extensive case only, that is, c m a x goes through the upper
edge of Ζ and cmin goes through the bottom edge of Z, cf. Fig. 6.9.

�� �� �� �� ��

The Parts of the SCCI-Hybrid Method

i x o - y 0)

Figure 6.9: The general case for a cone

�� �� �� �� ��

206 The SCCI-Hybrid Method

The other cases that occur are when Cmax and cmj„ both go through the
upper edge of Z, or both go through the lower edge, or c m a x or cmin (but not
both) go through the right edge of Z. These variants can easily be derived
from the most general case from which one may learn how to incorporate the
information about the upper and lower edge. The case that cm\n coincides with
the lower edge or that c m a x coincides with the upper edge should also be clear.

We return to the general case sketched in Fig. 6.9. We only need to consider
those parts of the edges that lie in Z. Hence the edges to be considered are,
cf. Fig. 6.9,

Zu (with endpoints a and b) as that part of the upper edge of Ζ that lies
in C,

ZT (with endpoints 6 and c) as that part of the right edge of Ζ that lies in
C, and

Zi (with endpoints d and c) as that part of the lower edge of Ζ that lies in
C.

As mentioned before we wish to exhaust all reasonable possibilities to rec
ognize a convenient and true plotting behavior. For this reason, the following
tests are performed.

1. If 0 0 FX(Z), there is a unique exit of the curve through one of the three
edges, Zu, Ζχ or Zr. The edge, which has the exit, is easily determined by
comparing the function values at the points a, b, c and d. The exact posi
tion is then found by the interval Newton method. Linear interpolation
suffices for plotting.

2. Κ 0 0 FX{ZU) and 0 £ Fx(Zt), there is also a unique exit as in Test 1.
One proceeds as in Test 1.

3. If 0 0 F(ZU) and 0 £ F(Zi) there is a unique exit of the curve through
Zr. Proceed as in Test 1.

4. If 0 0 F(Zi) and 0 £ FX(ZU), there exists a unique exit of the curve
through Zu or Zr. Proceed as in Test 1.

5. If 0 0 F(ZU) and 0 £ Fx(Zi). there exists a unique exit of the curve
through Zi or Zr. Proceed as in Test 1.

If these 5 tests are not passed successfully, one can make a last attempt and
try the following:

If 0 € F(ZU) and 0 € FX(ZU)_bisect Zu iteratively to a depth of 3 or 4
obtaining 8 or 16 subintervals of Zu. If the following condition is satisfied for
each subintervai /„ ,

O0F(J„) or O 0 F x (/ „) , (6.11)

then each I„ has at most one intersection point with the curve, and the signs
of / at the endpoints of Iu clarify matters.

�� �� �� �� ��

The Parts of the SCCI-Hybrid Method 207

An analogous partition is done if 0 G F(Zi) and 0 G Fx(Zi). If the subinter
val condition (6.11) is satisfied for the appropriate subinterval, one has sufficient
information for the plotting (either linear interpolation, if points on different
edges need to be connected, or quadratic or piecewise linear interpolation, if
points on the same edge need to be interpolated). Note, there can be no cross
ings or saddlepoints. Furthermore, if the curve leaves via one edge, a re-entry
is only possible via the same edge. Further, if F(b) and F(c) have the same
sign, the curve will finally leave through Zu or Z|, otherwise through Z r .

If the plotting cells are sufficiently small and if more than 4 entry or exit
points he on at least 3 different edges, it makes sense to colour the whole cell or
parts of it black (for example, the rectangle hull or convex hull of the points).

If all these efforts for assigning a convenient plotting behavior to the curve
in Ζ have been without success (practically, this will never occur, and we
discuss this point only, in order to have a strategy suggestion for the worst-
case enthusiasts), we terminate the continuation process (one does not know,
where to continue). It is best to proceed as follows:

1. Discard that part of Z, which is to the left of Z, since the continuation
method already worked fine there.

2. The remaining part has still to be processed and is then destined for the
subdivision part. The continued subdivisions will generate smaller rectangles,
where the continuation method can be again applied partially, or until one
again winds up with the necessity of colouring some plotting cells black (but
then not being forced "to continue" the curve from this cell).

II. 0?Fx(X,Y)

This condition means that to each y G Y at most one χ G X exists with
f(x,y) = 0. This means that if there is a contour in Ζ = Χ χ Y, it is unique
w.r.t. the x-coordinate. Therefore, the application of the continuation method
is still possible, but not from left to right. It is then best to swap the two
coordinate directions and to apply the procedure as discussed under case I,
that is the case 0 £ FV(X,Y). Then it is, in fact, possible to use the left-to-
right-trend, cf. Fig. 6.10.

In order to have no plotting discontinuities at the connection points with
other cells, it is reasonable to have a bookkeeping of the swapping incorporated
in the overall data structure, if it is used at all.

If the continuation process is interrupted due to an involved plotting be
havior, cf. the discussion in the former case, one has to re-swap the part which
has not yet processed for further treatment.

Remark. The exit points will not be determined exactly when the interval
Newton method is applied. Instead they will only be enclosed by some bounds.
For example, if the exit is on the right edge of Z, we get bounds like

Vi < Vo < Vu

�� �� �� �� ��

208 The SCCI-Hybrid Method

y

0^F x(x,y) 0$Fy(x,y)

Figure 6.10: Swapping for left-to-right trend

with a prescribed maximum accuracy for the bound distance yu — yt. Thus,
for the next plotting cell, the cone will not have a shaxp vertex but only a flat
vertex such as

C = {(x,y) • y G uVi, yu] + Η'(Χ,Ϋ)(χ-χ0), χ > xo},

where Ζ = X xY already denotes the "next" cell, and the entry point is y0.
The exit point of the curve from Ζ is then again to be searched at one of the
edge parts of Ζ within C, and again with the interval Newton method. It is
important to mention that there is no error accumulation by using the cones
with the flat vertices as is the case when solving differential equations, since the
tolerance yu — yt for the determination of y0 is not affected by the inaccuracies
accumulated in the former step. The accuracy depends solely on the tolerance
predescribed for the bound difference which is the termination parameter for
the interval Newton method and this can be made as small as possible. When
the algorithm is implemented on a computer then inaccuracies due to rounding
errors cause coarsening and this can also be handled with the cone idea and
it does not matter, whether the inaccuracy comes from Newton or rounding
errors.

E. The Plotting
It is difficult to make any suggestions how to draw the contours in the plot
ting cells. By this, we do not mean the technical process of drawing, which is

�� �� �� �� ��

The Parts of the SCCI-Hybrid Method 209

left to the plotting machine, but rather the decision as to how to approximate
the contours in a cell by simpler lines which are then actually plotted. This
decision depends on the size of the cells chosen and on the optical accuracy
required. Some suggestions and hints are found in the literature, see, for exam
ple, Hoschek and Lasser [109], Suffern [257], Sutcliff [263]. Some of the main
points of discussion seem to be,

linear or quadratic approximation of the contour, if only two edge
points are discovered or "sampled" in the cell, how to draw, if more
than two edge points are found in the cell, when to colour the whole
cell black.

We will not contribute to this discussion, since the choice of the type of ap
proximations is not up to interval methods. Nevertheless, interval methods are
able to support these decisions, because of the localization of the contour in the
cell and in particular because of the localization of the points on the cell edges.
This does not depend on the sampling, which is an uncertain and statistically
completely unreliable procedure since contour points can easily be lost, but on
the interval recipe, which can be made as reliable as necessary.

The global information part about the contour in the plotting cell that we
are able to bring out of the interval theory, may include (besides the basic
knowledge that 0 lies in F(Z), where Ζ is the current cell) the computation of

the values of Fx and Fy at Z,
the values of F at the corners and edges of Z,
the values of Fx and Fv at the edges of Z,
interval Newton based knowledge

(number of zeros of / on each of the edges, zeros of the gradient,
V / , in Ζ (if there is no such zero in Z, no singular points like
bifurcations, crossings, or isolated points or contour pieces lie in
Z)).

The geometric meaning of these expressions is described in Sec. 2 and may be
used directly to control and direct the plotting procedure. To unify all these
issues is a combinatorial puzzle rather than a mathematical activity and it is up
to the user's requirements which of these issues are worthy of being included.
Therefore we restrict ourselves to give a few examples.

Before we do this, it is reasonable to distinguish between touching points
and crossing points of the contour. By touching points, we mean a point where
the contour only touches the edge, but remains locally on the same side of the
edge, i.e., outside or inside the cell, on the same side of or on the edge. By
crossing points, we mean that the contour enters the interior of the cell from
the outside or vice versa. Generally, one can distinguish between the two cases
computationally and figure out their number on each edge of the plotting cell,
if the situation is not too involved.

�� �� �� �� ��

210 The SCCI-Hybrid Method

We now give a few examples for the plotting:

1. Touching points which are also singular points, are plotted as points.
Touching points which are not singular points are part of an interpolation
procedure for curves outside or inside the cell, or perhaps on the edge
itself, and are plotted at this overriding level.

2. If there are exactly two crossing points lying on two different edges and
if 0 0 VF(Z), (where VF(Z) is an abbreviation for (FX(Z), FV(Z))), we
plot a straight connection line between the two points.

3. If there are exactly two crossing points lying on the same edge and if
0 0 VF(Z), we do a rough search for a third point in the cell lying on
the symmetry line between the two edge points and use piecewise linear
approximation (resulting in a cone) or quadratic interpolation.

4. If there are exactly two crossing points and one inside touching point on
the edges, and if 0 0 VF(Z), again a cone is plotted by connecting the
touching point with each of the crossing points.

5. If there are exactly four crossing points on the edges and if 0 £ VF(Z), we
have a case which may cause headache for users of the sampling strategy.
In contrast, this case can be solved easily with the interval mode.

Without loss of generality, we assume that 0 0 Fy(Z). (Otherwise the
x-and ^-coordinates have to be swapped.) We have already seen that
then the equation f(x, y) = 0 can be resolved for y in Z, such that the
curve in Ζ can be represented by a function y = h(x) with a derivative
h'(x) = -fx(x,h(x))/fv(x,h(x)), cf. (6.9). This means that the slope
can never reach an infinite value such that contours of the type shown in
Fig. 6.4a) are excluded. We have further seen, that if the curve leaves
the cell at the upper [lower] edge, a reentry can happen only on the same
edge, cf. Fig. 6.3d, so that the configurations as shown in Fig. 6.4d
cannot happen. This leads to following definite answer:

Enumerate the four crossing points on the edges by increasing x-values,
that is, z\, z2,z3,z4, when xi < xi < £ 3 < £ 4 . Then the curve in Ζ is
split into two isolated parts, where one part connects z\ and z2, the other
one connects z3 and 2 4 , cf. Fig. 6.11

Hence, the plotting instructions are obvious. If the two points connected
lie on different edges, connect them with a straight line, as also done in
Ex. 2.
Otherwise connect them with a piecewise straight line (cone) or a quadratic
curve, as done in Ex. 3.

These few examples could show the great variety of cases that could be
recognized by interval computations. The user has finally to decide yet, when

�� �� �� �� ��

The Parts of the SCCI-Hybrid Method 211

a) b) c) d)

Figure 6.11: Two curve pieces

to start to colour the whole cell black. We do it, for example, if more than four
crossing points or inside touching points are in the cell, provided 0 £ V(Z).

Up to now, we avoided the case 0 G VF(Z), since the computational effort
is very high in order to reach decisions that are as definite as in the case
0 0 VF(Z). Certainly, one could continue the subdivision (for improving the
mathematical precision and not for the plotting) until 0 £ F(Z) or 0 £ VF(Z)
is arrived at. For the remaining cells, a search for singular points (satisfying
Vf(z) = 0 and f(z) = 0) would make sense and also to clarify which kind of
singular point had been found. In our code, we chose a very simple procedure
in the case 0 € VF(Z) being aware that we are confronted with a rare case:
We just subdivide Ζ into 4 or 9 congruent sub-rectangles, and we colour a
sub-rectangle, Zj black when 0 G F(Zi), that is, if we cannot exclude that Zj
contains no curve points.

F. Consideration of rounding errors
Up to now, the development of the parts of the hybrid method took place in
the space of reals, that is, in the real plane. If the calculations are performed in
a floating point environment, the occurrence of rounding errors will falsify the
results. The execution of the computations with machine interval arithmetic
with its outward rounding helps to control the rounding errors as usual.

The inclusions which occurred above and which were checked whether they
contain zero or not were primarily F (X , Y) , F X (X , Y) , and F Y (X , Y).

As an illustrative example, let us focus on the inclusion F (X , Y). Let the
machine interval arithmetic evaluation of this inclusion be F M (X , Y). Then the
outward rounding implementation guarantees that F (X , Y) C F M (X , Y) holds.
So if a computation results in 0 £ F M (X , Y), one knows that 0 £ F (X , Y), and
the discussions for the case 0 £ F (X , Y) are applicable.

Conversely, if a computation results in 0 G F M (X , Y), it is likely that
0 G F (X , Y) holds, but one cannot rely on it. But this does not matter,
because not even the situation 0 G F (X , Y) allows to conclude that 0 is in the
range of the function f(x, y) over the rectangle X xY. This was the reason
for introducing the check of the signs at the corners of the rectangle in order

�� �� �� �� ��

212 The SCCI-Hybrid Method

to get a definite answer. These corner checks have to be done now as well.
However, the evaluation of the function values at the corners is also subject

to floating point errors. This means that for a corner (xi,yi) of the rectangle
XxY the true but usually unknown function value /(xi, j/i) is contained in an
including machine interval, say /Λ / (xi , J/ι)· In most of the cases this interval will
be strictly positive or strictly negative so that the true but unknown function
value /(xi,j/i) will be of the same sign as its including interval. But what
happens if, for example, fn{(xi,yi) is equal to [-10 - 3 , +10 - 4]? Practically,
all can happen: A zero could be the corner exactly, it could lie outside the
rectangle, and it could lie inside the rectangle.

In such cases it is reasonable to subdivide the rectangle as was done in case
0 G FX(X,Y) and 0 G Fy(X,Y), cf. case IV of part C and to put the halves
onto the list WL for further processing. But if the rectangle XxY has already
cell width one can either

(i) use data (like signs of the derivatives and signs of corners) of adjacent
rectangles to get a decision about the site of the zero, which is frequently
possible,

or
(ii) put it on the plotting list, PL, with a mark that indicates a suspected

zero. Such a mark could be, for instance, different colouring of the cell or
plotting a cross instead of filling the cell black. Another way is to plot the cell
like a zero. In this case the interpretation of the contour should be so that no
zero is lost in the plotting, but that not every plotted point is really a zero.
Those problems arise only with functions which are very sensitive to evaluate,
but nevertheless, such situations cannot be excluded.

A similar procedure could be provided for the two other inclusions, FX(X, Y)
and Fy(X,Y). One only has to keep in mind that the computational result
that, for instance, 0 is contained in the machine interval arithmetic evaluation
of FX(X,Y), means only that it is not proven that Fx(x,y) φ 0 for all χ G
X,y€Y.

6.3 Examples

We present a few numerical and graphical results out of a larger collection of
mainly ill-posed problems.

For each of the examples the input information provided is the function
defining the contour implicitly, the function gradient, the function domain
which is of interest, and the cell-widths for controlling the quality of the plot
ting. No other information is made available to the SCCI-hybrid method. If
further information about the class of objects to be plotted would be provided
the method probably could be replaced by a more effective one. For example

�� �� �� �� ��

Examples 213

if the function is

f(x,y) = x2 + y2 - 1

then the fact that its zero set defines a circle of radius 1 centered at the origin is
assumed to be completely unknown to the performance of the method. If such
information were made available then there are many methods in the literature
that will plot the circle much faster than the SCCI method.

The first example consists of two disconnected circles with a relatively low
distance between them. Again, knowledge that it is two circles is not provided
and would mean that any one of a number of circle generating algorithms could
be used to generate the contours. In that case, the circles could touch, intersect
or be disjoint and the circle generating algorithms would be able to plot the
contours without any problems.

The second example consists of two straight lines crossing each other so
that the contour has a double point. Similarly, only the function defining the
line pair implicitly and the gradient are known. If it would be known that
the objects which are plotted are straight lines any straight line generating
algorithm could be used to draw the lines and the configuration of the lines
(intersecting or not, parallel, etc.) would pose no problems. The cell-width in
this example was chosen as 1 0 - 3 (in contrast to the other examples where 1 0 - 2

was chosen) in order to demonstrate that a small size of the cell-width has no
negative influence to the plotting result as the average pixel size on a common
screen is about 0.05cm. The robustness of the SCCI method is demonstrated
by this parameter value and could be observed at the other examples of this
section too. Several other contour tracing methods would have dissolution
problems in such situations.

The third and fourth example show three straight lines crossing in a point
which is once defined exactly and the other time denned within some artificially
generated tolerance. As one can see the dissolution of the plotting result is very
satisfactory.

The fifth example discusses a function which defines a curve with a crossing
point where the last example shows a function which defines two circles which
touch each other that is, they have the same tangent line in the critical point.

The reason for presenting these examples is that they clearly highlight how
the SCCI method overcome the prototype difficulties encountered in contour
tracing caused by various kinds of singular points, crossing points and disjoint,
but close contours. We also note that the plotting domain for the input data
was partially oversized in the examples in order to show that the method easily
handles areas without contours.

A computer code for the SCCI method was written in PASCAL-XSC, the
contours were drawn by GNU-PLOT.

In the following examples the statistical parameters are as follows:

�� �� �� �� ��

214 The SCCI-Hybrid Method

Counter name Counter Description
nbis

nfe
ngrad
nNBisect

nNewton
nNStep/nNewton

nplottinglist

Number of bisections
(excepting bisections done in Newton steps)
Number of function evaluations
Number of gradient evaluations
Number of bisections done in the
interval Newton algorithm
Number of calls of the interval Newton algorithm
Average number of iterations at each call of
the interval Newton algorithm
Number of points in the plotting list

Two concentric circles with midpoint (0,0) and radii 1.0 and (1.2) 1/ 2 are
represented by the equation

}{x,y) = (x2+y2 - l)(x2 + y2 - 1.2) = 0.
The SCCI method was applied with the following input data:
Search domain: Ζ = Χ χ Υ, Χ = [-5,7], Υ = [-6,9]
Plotting cell width: Ι Ο - 2 .

Statistics of the computation:

Counter name Counter Counter name Counter
nbis 1027 nNewton 1988
nfe 7373 nNStep/nNewton 1.6
ngrad 5336 nplottinglist 1693
nNBisect 206

It should be emphasized that the discretization of the circles is comparable to
that which would have been achieved if the class of geometric objects, that is,
circles, would have been available such that specialized circle algorithms could
be used.

The contour consisting of two straight lines crossing each other in the point
(0,0) is represented by the equation

/(«,») = {x + y)(x - y) = 0.
SCCI was applied with the following input data:
Search domain: Ζ = Χ χΥ,Χ = Y = [-2,2]
Plotting cell width: 10~3 (The width was made especially small in order to

demonstrate the high dissolution ability of the method.)
Statistics of the computation:

�� �� �� �� ��

Examples 215

Figure 6.12: Two close co-centric circles

Figure 6.13: A cross with a singular point, small cell width

Counter name Counter Counter name Counter
nbis 375 nNewton 11980
nfe 29445 nNStep/nNewton 2.3
ngrad 28268 nplottinglist 11848
nNBisect 0

The result of the plotting is shown in Fig. 6.13. Again, if the complete
geometric information would have been available that is, that the objects to
be plotted are straight lines then the resulting plotting of appropriate methods
would be comparable and certainly not significantly better.

In Figure 6.14 the contour defined implicitly by f(x,y) = (y-x)(y+z)y = 0
consisting of three lines crossing at a triple point (0,0) is plotted.

The input for the plotting routine was a cell width of 1 0 - 2 . The plotting

�� �� �� �� ��

216 The SCCI-Hybrid Method

Figure 6.14: Plotting of a curve with a triple point

domain was [-2,2] χ [-2,2].
The plotting statistics were

Counter name Counter Counter name Counter
nbis 2555 nNewton 1616
nfe 8383 nNStep / nNewton 1.8
ngrad 6964 nplottinglist 2540
nNBisect 72

In Figure 6.15 the contour defined implicitly by the equation f(x,y) =
(y — x)(y + χ +p)(y — p) = 0 consisting of three lines is plotted with the value
of ρ = 0.1 This contour has an approximate triple point at (0,0).

The input for the plotting routine was a cell width of 10~2. The plotting
domain was [-2,2] χ [-2,2].

The plotting statistics were

�� �� �� �� ��

Examples 217

Figure 6.15: Plotting of a figure with an approximate triple point

Counter name Counter Counter name Counter
nbis 1615 nNewton 1564
nfe 6798 nNStep/nNewton 1.7
ngrad 5281 nplottinglist 1984
nNBisect 120

In Figure 6.16 the contour implicitly defined by the equation f(x,y) =
y2 — x 2((l + x)/(l - x)) = 0 is plotted. This contour has a crossing point at
(0,0).

The input for the plotting routine was a cell width of 10~2. The plotting
domain was [-2,0.9] χ [-0.9,0.9].

The plotting statistics were

Counter name Counter Counter name Counter
nbis 349 nNewton 585
nfe 2143 nNStep/nNewton 1.8
ngrad 1692 nplottinglist 541
nNBisect 16

In Figure 6.17 the contour defined implicitly by the equation f(x,y) =

�� �� �� �� ��

218 The SCCI-Hybrid Method

Figure 6.16: Plotting of a curve crossing point

Figure 6.17: Plotting of a circle touching another circle

(x2 + y2 - l)(x 2 + (y - l) 2 - 4) =0 is plotted. This contour consists of a circle
touching another circle at (—1,0).

The input for the plotting routine was a cell width of 1 0 - 2 . The plotting
domain was [-2,2] χ [-3,1].

The plotting statistics were

Counter name Counter Counter name Counter
nbis 781 nNewton 1516
nfe 5075 nNStep/nNewton 1.6
ngrad 3804 nplottinglist 1522
nNBisect 66

�� �� �� �� ��

Chapter 7

I n t e r v a l V e r s i o n s o f
B e r n s t e i n P o l y n o m i a l s ,
B e z i e r C u r v e s a n d t h e d e
C a s t e l j a u A l g o r i t h m

7.1 Introduction

Bernstein polynomials and Bezier curves are well known and widely used in
computer-aided design (see for example [46,15], although there are still ways in
which they are being further developed (see [46,109] for overviews). During the
last years the extension to interval Bernstein polynomials and interval Bezier
curves has also attracted the attention of researchers (cf. for example, [110,
243, 242]).

It is therefore reasonable to provide an introduction to this interesting area.
A complete coverage of the area would fill another book, however, the key to
the area is the basic interval arithmetic principles, tools and ideas which are
explained in detail that lead from the point-view to the interval-view. If the
reader has understood this introduction it is not too difficult for him to apply
these principles to other geometric, algebraic or analytical situations.

In Sec. 7.2, we introduce some elementary concepts relating to the definition
and manipulation of curves in the plane R2 with emphasis on polynomial forms
and Bernstein polynomials. These concepts are used in Sec. 7.3 to define sets
of curves called interval curves with interval tools, i. e. interval Bernstein
polynomials. The techniques for manipulating curves are similarly generalized
to interval curves. Bezier curves and their extension to interval Bezier curves
are considered in Sec. 7.4. The interval version of the de Casteljau algorithm

219

�� �� �� �� ��

220 Interval Bozier Curves

is explained in Sec. 7.5, and a new proof is provided showing that the interval
version has similar properties with respect to subdividing the curve and creating
new control points as the point version.

7.2 Plane Curves and Bernstein Polynomials
In this section we first introduce some elementary concepts relating to the
definition and manipulation of curves in the plane R2. These concepts are then
used to define sets of curves called interval curves with interval tools. The
techniques for manipulating curves are similarly generalized to interval curves.

We are particularly interested in interval curves useful in computer graphics,
solid modeling as well as the other areas mentioned in the introduction to this
monograph.

Further material on curves of interest for this section can be found in the
excellent book by Farin [46]. Because of the aims of the monograph, only curves
and interval curves in 2 dimensions, that is, plane curves will be considered.
Most of the results are also valid for higher dimensions.

2-dimensional curves can be defined in a non-parametric (implicit) or in a
parametric form. The standard parametric form is

(x(t), y(t)), t G Τ

where Τ is the parameter interval. Frequently is Τ = [0,1]. An important
special case occurs when there is an explicit functional connection between
x(t) and y(t) such as

y = f{x), χ G T.

which is equivalent to the form

(t, /(*)), t G T.

An implicit functional definition of the curve can be done via an equation

g(x,y) = 0, (x ,y)GD

where D is a domain in the plane. The well-known implicit function theorem
says when the representation g(x,y) = 0 can be transformed to an explicit
connection like y = f(x). Unfortunately, this theorem can only be applied
locally in most of the cases. For example, the implicit form for the unit circle
curve,

x2 + y2 - 1 = 0

is only locally representable in the forms

�� �� �� �� ��

Plane Curves and Bernstein Polynomials 221

with 0 < x,y < 1. A more convenient and probably most frequently used form
is the parametrization

When considering curves in the sequel we think of the standard parametrized
form.

Curves are often defined by polynomials or rational (quotient of polyno
mials) functions and can thus be evaluated using only the four fundamental
arithmetic operations. That is, the coordinate functions of the curve, x(t) and
y(t) are then either a priori polynomials or rational functions or are at least
approximated by polynomials or rational functions. Especially for these rea
sons polynomials have become an attractive standard vehicle for numerically
computing with curves.

A given polynomial may be written down in a number of explicit expressions
or forms. (We prefer to say form instead of expression because of its common
use in the interval arithmetic literature.) As an example p(x) = x 2 — 4 can also
be written as p(x) = (x - 2)(x + 2) and p(x) = x 2 — 8 + 4. These three forms
are all identical as functions. However, when they are evaluated using fixed
length floating point arithmetic or when evaluated as interval expressions (see
also Sec. 2.8) they will in general be different (where by evaluation we mean
the execution of operations as given by the form).

This leads us to consider forms which allow, for example, a numerically sta
ble or robust computation of polynomial values. Another reason for studying
various kinds of forms is that polynomials are representable as linear combina
tions of basis polynomials. Depending on the mathematical or computational
purpose for using polynomials the one or other set of basis polynomials is ad
vantageous for the purpose in mind. The set of basis polynomials is frequently
chosen so, that special theories or properties of the polynomials can be derived
from properties or theories of the basis polynomials. One might for example
think of Lagrange, Newton and Hermite polynomials for interpolation prob
lems, Chebyschev and Bernstein polynomials in approximation theory, and the
many other forms, supplemented by weights, for numerical integration. In the
area of computational geometry and solid modeling, we need to consider the
power (or standard) form, Bernstein polynomials, and Bezier curves.

We will deal with the power form and the Bernstein polynomials as far
as needed in the remainder of this section, and with Bezier curves and their
interval variants in the next sections.

The power form (also called standard or normal form) for a real polynomial
in one variable of degree η is

(cost, sint), t e [0,2π].

η

(7.1)

�� �� �� �� ��

222 Jntervai Bozier Curves

where the basis polynomials are the powers 1, x,..., xn and where a, G R, i =
0,1, . . . ,η with an φ 0, are the coefficients. This representation is usually
preferred because of its simplicity.

Another representation of ρ is the Bernstein form. Here ρ is expressed
as linear combination of the so-called Bernstein basis polynomials of a given
degree fc > n. Then this form of ρ is defined by

k
p(x) = Yb\k)Blk)(x) (7.2)

«=o
where the k functions

Bik)(x)= (· "*)*-' , « = 0 ,1 , . . . ,* (7.3)

are the Bernstein basis polynomials of degree k and where 6j, i = 0,1, . . . , k are
the coefficients. Since the real degree of ρ (that is the degree of the polynomial
in the power form) is almost never needed when Bernstein forms are considered
and since misunderstandings occur rather seldom the Bernstein form (7.2) is
said to be of degree k as the degree of the basis polynomials is of degree k even
if the real degree of ρ is η.

A polynomial written down in the form (7.2) is also called a Bernstein
polynomial of degree k. Many important results of approximation theory origi
nate from dealing with Bernstein polynomials. An extensive discussion of how
to compute with them is found in [48]. The use of Bernstein polynomials in
analysis was discussed in the monograph by Lorenz [151].

It became clear early that it was sometimes quite difficult to evaluate poly
nomials in the power form in fixed length floating point arithmetic within a
certain accuracy [271]. A theory of conditioning of polynomials therefore devel
oped and it turned out that polynomials that are ill-conditioned in the power
form could be better conditioned in other bases. This is particularly true for
Bernstein polynomials [47].

It was also realized early that the Bernstein polynomials had some interest
ing properties useful in designing curves for CAGD (computer-aided geometric
design). For example, they form a partition of the unity, cf. (7.8), they have
only one local maximum, and they form a possible basis for Bezier curves [46]
as will be seen in the next section. This property in particular explains the
close relationship between these polynomials and the curves.

Let p(x) = ΣΓ=ο α » χ < again be a polynomial of degree η in the power form.
A short calculation shows that p(x) can be converted to the Bernstein form of
degree fc > η by setting

ρ(χ) = Σι>?)Β?)Μ (7·4)
»=0

�� �� �� �� ��

Plane Curves and Bernstein Polynomials 223

with

(:)
Qi, i = 0,1 (7.5)

Conversely, if a polynomial of degree η is represented in the Bernstein form
(7.2) as p(x) = T,i=ob<ik)Bik)(χ) o f degree k > η then it can be converted
to the power form by computing the power form coefficients by means of the
formulas

Note that o„ φ 0 and o< = 0, i = η + 1 , . . . , k.
It is obvious that the real degree of a polynomial can be recognized imme

diately if it is written down in the power form. The situation is different if a
Bernstein polynomial such as (7.2) is given. In this case one can only say that
the real degree η is not larger than the degree of the basis polynomials, that
is k. In order to determine the degree η the computation of the power coeffi
cients (7.2) seems to be unavoidable. If η is known it is possible to represent
the polynomial as a Bernstein polynomial of degree n, cf. [47]. This process is
called degree reduction, since the degree of the basis polynomials is reduced.

Degree reduction and also its inverse process, degree elevation can be exe
cuted step by step. The formulas required for this procedure are obtained if a
polynomial ρ of real degree η is expressed with Bernstein basis polynomials of
degree k > η and of degree k + 1,

where B\ ' (x) and B\ ' (x) are the basis polynomials of order k and fc + 1
respectively and where the oj*̂ and the b\k+1^ are the corresponding coeffi
cients. In order to determine the relationship between the coefficients the basis
polynomials of degree A; + 1 are expanded forO<i<fc + las follows:

(7.6)

ρ(Χ) = Σίν)Βΐ,')(*) = Σι>?+ι)Β?+1)ω

x < + i (l _ x) * + i - « + i)

fc + 1 (k

�� �� �� �� ��

224 Interval Buzier Curves

After some smaller manipulations we get

k+1 i + l [h

+ (i -
2

i = l,...,k (7.7)
Jfc + 1

and b 0

k + l) = b0

k) and 6 & ι > = 6<*>
This is one stage of degree elevation. Similar formulas can be derived for

degree reduction.
Degree elevation and reduction are extensively applied in computer graph

ics and CAGD. Degree elevation is, for example, used to enable a finer control
and modeling of the shape of Bezier curves, which are introduced in Sec. 7.4
and have Bernstein polynomials as coordinate functions. For example, typo
graphical fonts can be described and modeled with Bezier curves, cf. [136],
p. 116. If the Bezier curve cannot describe the design of a font satisfactory,
two steps are executed: First, the number fc of control points of the curve
is increased which means degree elevation for the coordinate functions, that
is, the Bernstein polynomials. Second, the new control points are adjusted
by moving them around until the shape of the font is more satisfactory than
before. Although the degree elevation does not increase the real degree η of
the polynomials the adjustment of the control points will, cf. formula (7.6).
Executing these two steps is rather involved but is generally accepted because
of the extreme robustness of this procedure.

An extensive collection of formulas and properties for Bernstein polynomials
can be found in [75]. The following two formulas are emphasized because
of their importance and because they can be used to estimate the range of
polynomials, see [212]: The first is

i=0
i.e. the basis polynomials of a certain degree, fc form a partition of the unity
(this follows from the expansion of (i + (1 - x))k), and the second is

where the basis polynomials are strictly positive on the open interval (0, 1).
Some computations and formulas involving Bernstein polynomials are sim

plified if the binomial coefficients (* Y cf. (7.3), and the coefficients of the
Bernstein polynomial, cf. (7.2), are combined. Then p(x) can be written down
in a slightly different form called the scaled Bernstein form,

k
(7.8)

B\ (x) > 0, 0 < x < 1. (7.9)

�� �� �� �� ��

PJane Curves and Bernstein Polynomials 225

k
p(x) = Y)d\k)xi(l-x)k-i. (7.10)

i=0

Accordingly, a scaled Bernstein polynomial is a polynomial expressed in the
scaled Bernstein form.

As an example of this concept we show how one step of degree elevation
works. Let again η be the real degree of the polynomial p. We denote its scaled
form with the basis polynomials x'(l -χ)* - * for i = 0 , f c , which are of degree
fc > η as described by (7.10), by p*. Analogously, denote the scaled form with
the basis polynomials of degree fc + 1 by Pk+ι, etc. If we consider that p* and
Pk+ι are identical as functions we obtain

Pk+i(x) =
pk(x)x +p*(x)(l - x) =

4k)xk + £ (d j f c) + < O x i + 1 (l - *) * " ' + d f >(1 - x)k+l (7.11)
»=o

(see also [48]). One recognizes that formula (7.11) is so constructed that the
coefficients d[* + 1 \ which are required for the representation of ρ*+ι, can be
obtained immediately.

For a degree elevation that amounts I single steps the following calculation,
which uses (7.8) leads from p* to Pk+i-

\i=0 / i=0

= kt(t/k)(3[r))-r(l--)k+'-r- (7-12)

The expression (7.12) is of type pk+t(x) so that the determination of the
coefficients is obvious.

Since Bernstein polynomials are stable with respect to evaluation and other
types of manipulations (see [48]) it is recommended that any algebraic ma
nipulation of polynomials in the Bernstein form should be done either in the
original Bernstein form or in the scaled Bernstein form rather than converting
them to power form, performing the manipulation and then reconverting to
one of the two Bernstein forms as is often done.

�� �� �� �� ��

226 Interval Bezier Curves

7.3 Interval Polynomials and Interval Bernstein
Polynomials

In the last section we considered polynomial forms and Bernstein polynomials.
In this section we discuss these concepts in an interval arithmetic setting. This
viewpoint is caused by the requirement of having intervals instead of real num
bers as coefficients for the various kinds of polynomials. The introduction of
intervals is mostly due to two requirements: The first is that rounding errors
occur as side product of numerical computations and numerical manipulations.
As the impact of scientific computation becomes larger and larger one can no
tice a trend towards developing techniques for a reasonable error analysis. Such
a technique is interval arithmetic, and the interval coefficients can thus be seen
as localization of the exact but unknown values combined with bounds for the
errors. Second, a polynomial with interval coefficients can be interpreted as a
collection of non-interval polynomials in the same way as an interval as a col
lection of real numbers. This interpretation offers new ways of modeling curves
as the interval polynomial is a notation which on the one hand stands for a
set of non-interval polynomials, cf. (7.14), which are provided for the use of
modeling curves for a special purpose, and on the other hand, the manipulation
of the curves is much easier if done in the context of an interval polynomial
than as a set of functions.

Interval polynomials, or more precisely interval valued polynomials are func
tions Ρ : R -¥ I of the form

η
P(x) = Y/Aixi (7.13)

»=o
where A< € I, i = 0,1,2,... ,n. The form in which Ρ is written down in (7.13)
is called the power form of P. If An φ 0 then Ρ is said to be of degree n.

The most important relationship between an interval polynomial Ρ and real
polynomials is given by

P(x) = ^ A i x < = l ^ a i x i : a jGAj , i = 0 , . . . , n l (7.14)
i=0 I i=0 J

for any χ G R.
Arithmetic operations for interval polynomials are defined point-wise in the

same manner as the arithmetic operations for functions. That is, if Q is another
interval polynomial, the arithmetic operations are

(P*Q)(x)=P(x)*Q(x)

for any χ G R, where the symbol * represents each of the four arithmetic oper
ations. Clearly, division is only defined if no division by an interval Q(x) that

�� �� �� �� ��

Intervai Polynomials 227

contains zero occurs. Unfortunately, the familiar formulas for the arithmetic
operations for non-interval polynomials can extended to interval polynomials
only in case of addition, subtraction and in special cases of the other operations.
That is, if

m
Q(x) = Y/BiX

i,
i=0

and if we assume for simplicity that η < τη and that non-defined coefficients
are set equal to zero, we get

P(x)±Q(x) = Yl(Ai±Bi)x\
i=0

P(x)Q(x) C Σ AiBj + l Σ AiBj] χ +
i+j=0 \»+j=l

+ ί 2 AiBj j x m + n . (7.15)

We are confronted with an inclusion instead of an equality in the product
formula due to the subdistributive law in interval arithmetic, cf. [206]. Equal
ity can only be expected in exceptional cases, which nonetheless occur in our
context, for example, if the variable χ ranges over a nonnegative interval only,
and if additionally, the coefficients of Ρ are all nonnegative or all nonpostive,
and the coefficients of Q are all nonnegative or all nonpostive.

Let again be the interval polynomial Ρ be defined by (7.13) and set Ai =
[ui, Vi] for t = 0, ...,n, and let ρ and q be the lower and upper boundary
functions of P, that is,

P(x) = [p(s), </(*)]·

It is to emphasize that in general, ρ and q are no longer polynomials but only
piecewise polynomials. For example, if

P(x) = [0, 1]

then

p(x) = 0, if χ > 0,
= x, if χ < 0,

q(x) = x, if χ > 0,
= 0, if χ < 0.

�� �� �� �� ��

228 Interval Bezier Curves

As one can see, neither ρ nor q is a polynomial, but their restrictions to the set
of nonnegative numbers and to set set of nonpositive numbers are polynomials.
This holds, by the way, for all interval polynomials.

Since we are only interested in the representation of an interval polynomial
in a Bernstein form and since Bernstein forms operate on the interval [0, 1],
we can forget about these nonsmooth cases and have

η η

P(x) = [p(x), q(x)] = Σ^ί*] if x > 0.
i=0 i=0

This formula is in particular true if χ € [0, 1].
The next step is to transform the polynomials ρ and q to their Bernstein

form with basis functions of degree k. Formulas (7.1), (7.4) and (7.5) will do it
and one obtains

p M ^ ^ ^ i x) (7.16)

with

(7.17)

«(s) = £ W (x) (7.18)
«=0

with

^ = Σ τ4τ"'' »' = 0 , 1 , . . . , * . (7-19)

It remains to show that

k

P(x) = Σ C^B^ (x) for 0 < χ < 1 (7.20)
t = 0

where C\k) = [bf \ c{k)\ e / , t = 0 , 1 , . . . ,n.
As first part of the proof we show that the left hand side of formula (7.20)

is contained in the right hand side: Let

�� �� �� �� ��

Intervai Polynomials 229

η

r(x) = Σ α » χ ' w i t n c*i G R
i=0

be a polynomial which is included in P{x). Because of (7.14) it follows that
Qi e At = [UJ, Vi] for ι = 0,1, . . . , n. By (7.4) and (7.5) the Bernstein form of
r with basis polynomials of degree k is

r(x) = ^ 7 i *) B { ' , (x)
«=o

where

Since u4 < η, < v{ we have b\ ' < 7,' ' < c\> and finally

r (s) e £ e | f c) B < f c) (s) .
»=o

This proves the inclusion from the left hand side to the right hand side.
In order to show the converse inclusion of formula (7.20), one proceeds

analogously and uses formulas (7.4), (7.6) and (7.1). We can drop the details.
The representation of the interval polynomial Ρ in the form (7.20) is called

its Bernstein form of degree k. Interval polynomials written down in the form
of (7.20) are called interval Bernstein polynomials of degree k.

Conversely, not each interval Bernstein polynomial can be written in power
form. For example, the interval Bernstein polynomial of degree 1 with the
coefficients = [0, 1] and c[l) = 0 is

P(x) = [0, 1], B£](X) = [0, 1], x°(l - x) 1 = [0, 1 - *].

I. e., P(0) = [0, 1] and P(l) = 0. As one can check for oneself there is
no interval polynomial in power form that satisfies these two values. If one
would extend the definition of interval polynomials to expressions like P(x) =
Σ"=ο -^«(Χ' — χό) the given interval Bernstein polynomial could still be written
in power form. But there are then counter examples of higher degree, which
can be found easily, even if one neglects the areas outside the interval [0, 1].

We emphasize the fact that interval Bernstein polynomials cannot always
be brought to power form since some authors define an interval Bernstein poly
nomial already as an interval polynomial, cf. [243].

�� �� �� �� ��

230 Interval Bezier Curves

The arithmetic operations of interval Bernstein polynomials are subsumed
to the arithmetic operations of functions in general, that is, the operations are
executed point-wise. Interval Bernstein polynomials can be added and sub
tracted just by adding and subtracting their coefficients, since the distributive
law holds in this case as the polynomial values B^ (x) are nonnegative reals.
In order to compute the product of two interval Bernstein polynomials, Ρ and
Q one has first to compute the values P(x) and Q{x) and then multiply them.
If one would multiply the Bernstein forms of the two polynomials as it, for
example, was done on the right hand side of the formula (7.15), one only would
get a superinterval of P(x)Q(x), as it was shown in formula (7.15) for the case
of the power form.

Further aspects of multiplication and division of interval Bernstein polyno
mials can be found in [243].

7.4 Real and Interval Bezier Curves
Bezier curves are curves that are numerically extremely stable with respect
to variations of their shape by means of special parameters called the control
points, cf. [47]. Bezier curves are therefore important in computer graphics
and CAGD, cf. [46]. They were discovered by Bezier around 1963, while he
was working for Renault and they have been given the name Bizier curves.
He used these curves in in an early design program called UNISURF (see [18]
for a historical account). Similar, but unpublished work, had been done by de
Casteljau at Citroen. The formulation commonly used in the literature was
developed by Forrest about ten years later, cf. [25].

Bezier curves are 2-dimensional parametric curves, their coordinate func
tions are Bernstein polynomials and they are constructed in the following man
ner:

Assume η + 1 points ζο,···,ζη are given in the plane. Furthermore let

p(t) = (Px(t), P „ (t)) = f > (?) ί < (1 " <) η _ < ' 0 - ' - L (7 · 2 1)

· = 0 ^ '

Then ρ(ί) is called a Bizier curve of degree η with control points z$,..., zn-
Bezier curves can be expressed in terms of Bernstein polynomials,

p(t) = f > B < n) (t)

where the functions B^ are the Bernstein basis polynomials of degree η as
introduced in Sec. 7.2. The coordinate functions px and pv are thus Bernstein

�� �� �� �� ��

Real and nerval Bezier Curves 231

3

2 . 5

2

1 . 5 5

Figure 7.1: Bezier curve of degree 3

polynomials of degree n. By definition of the basis polynomials, cf. (7.3), one
has p(0) = zo and p(l) = zn. Hence zo and zn always lie on the curve.

The control points can be viewed as tools for changing the shape of the curve
in a controlled manner. In [71] this is called pseudolocal control meaning that
if a Bezier curve p(t) is specified by a sequence of control points zo, zm and
if some control point Zj is moved a little bit, the curve is most affected around
the points with parameter value close to t = i/n. Important is that the change
of the curve by moving the control points is a numerically stable process. This
is one of the main reasons for working with Bezier curves. If the coordinate
functions px and pv of the curve would have a form different from the Bernstein
form, for example, if they were Lagrangian interpolation polynomials, and if the
modeling of the curve would be done via the Lagrangean knots (also known as
Lagrangean interpolation points) this would also be possible but would lead to
numerically unstable results. One has, however, to pay a price for the stability
of the Bezier curves, that is, the control points will in general, not lie on the
curve although they clearly effect the shape of the curve. The disadvantage is
not serious, however, as shown by the use of these curves in several well-known
curve designing software programs like ADOBE or TGIF.

Since any polynomial can be represented as a Bernstein polynomial and any
Bernstein polynomial converted to the power form, cf. Sec. 7.2, any parametric
polynomial curve can be represented as a Bezier curve and any Bezier curve
can be reformulated as a polynomial curve with the coordinate functions in
power form.

In Figure 7.1 an example of a Bezier curve in the plane with 4 control points
is given. They are

The control points zo and z3 are on the curve, z\ and z2 are not. The Bezier

zo = (1, 1), Z l = (3, 3), z2 = (4, 3), z3 = (4, 1).

�� �� �� �� ��

232 Interval Bozier Curves

curve is given by

p(t) = 1(1, l)r3 + 3(3, 3)t2(l - i)
+ 3(4, 3) ί (1 - ί) 2 + 1(4, 1) (1 - ί) 3 ·

The two coordinate functions of ρ are

Pt(t) = i 3 + 9 t 2 (l - t) + 1 2 t (l - t) 2 + 4 (l - t) 3 ,
P v i t) = i3 + 9 i 2 (i - t) + 9 t (i - i) 2 + (i _ t) 3 .

The control points shape the curve globally even if they are not on the
curve. By that we mean that the overall shape of the curve can be modeled
by moving the control points around. If we for example move the point z 2 to
the other side of the curve it should pull towards that point. This is shown in
Figure 7.2.

If finer control of the shape of the curve with η control points is required
then the process of degree elevation can be employed. That is, one uses a
larger number of control points for designing the curve, say η 4- 1 or more.
These points then determine a Bezier curve of degree η +1 or higher according
to eq. (7.7).

Although it is easy to guide the overall behavior of the curve via the control
points it is much more difficult to ensure that the curve passes through one or
more given points (interpolation). To achieve this two or more Bezier curves
are usually pieced together at the given points and some smoothness conditions
are added. The resulting curves are called Bezier splines.

A further important property of Bezier curves is that the curve is contained
in the convex hull of its control points as shown in the example in Figure 7.3.
This implies that a bounding polygon for the curve can be constructed by
connecting control points. Testing if two Bezier curves intersect is therefore
best done by first testing for intersection between the bounding polygons.

The length of a Bezier curve is discussed in [79] and a quick way to draw
Bezier curves is given in [162].

Interval Bezier curves are obtained if the control points are rectangles, that
is, two-dimensional interval vectors, which are commonly called interval control
points.

Thus, if Zi G J 2 , i = 0,...,η then

is called an interval Bizier curve of degree η with interval control points Zi, i =
0,...,n.

«=o
0 < t < 1 (7.22)

�� �� �� �� ��

Real and Interval Bezier Curves

�� �� �� �� ��

234 Interval Buzier Curves

7.5 Interval Version of the de Casteljau Algo
rithm

The de Casteljau algorithm is a recursive scheme to determine the value of a
Bezier curve at a given point and to subdivide the curve at this point. There
is no need for giving explanations or developing its theory since it has already
been satisfactorily done by other authors, for example, [46, 15, 71]. Instead we
discuss the basic features of extending the de Casteljau algorithm to interval
form in this section, partially following [243]. The main result will be that the
conclusions of the algorithm is valid even when the control points are replaced
by rectangles, that is, two-dimensional interval vectors.

We first describe the non-interval form of the algorithm. The crucial step
of the algorithm is to determine a point between two given points, say z' and
z" with a given ratio, cf. [46]:

Let z' and z" be points in the plane and let a parameter value t G [0, 1].
be given. Then the point

ζ = C(z',z",t) = tz" + (1 - t)z' (7.23)

lies on the straight line connecting z' and z". Formula (7.23) says that the
distance from z' to ζ related to the distance from z' to z" has the ratio t.
Formula (7.23) means further that ζ is a convex or barycentric combination
of the points z' and z", cf. Fig. 7.4. One also finds the statement that the
assignment ζ(ζ', ζ", t) is an affine mapping. This is only correct if t is a variable
of the mapping, but not z' and z" and the assignment maps the unit interval
[0, 1] onto the straight connection line between z' and z" by the function
prescription 11-> ζ(ζ',ζ",ί) with constant points z' and z". Or, if one extends
the domain of the variable t to R, the assignment maps R onto that straight
line which goes through z' and z", provided the two points are different.

Let a Bezier curve ρ be given by η 4-1 control points ZQ, ..., zn G R2. Then
the de Casteljau algorithm computes the numerical value of the curve point
p(f) and subdivides the curve at p(t) into two parts. For each of the parts n + 1
control points are determined. The outline of the algorithm is as follows:

A L G O R I T H M 20 (De Casteljau Algorithm)

Step 1. Set z[0) = zk for k = 0,... ,n,

Step 2. Set z£+l) = ζ ^ Λ , 4°- t) for r = 0,... ,n - 1; k = r + 1 , . . . ,n.

The final result z^ after the termination of the algorithm is the value
p(i). The algorithm also splits the curve into two parts, the first being p(s) for
s G [0, t], the second p(s) for s G [t, 1]. Further, the points z0°\ z[l\..., z i n)

�� �� �� �� ��

Interval de Casteljau Algorithm 235

y
ί z>

z"

" - χ

Figure 7.4: Convex combinations

are control points for the first-mentioned curve segment, and the points zn

n\
zn

n~l\..., Zn^ for the second curve segment, cf. for example, [46].
The interval version of the de Casteljau algorithm is formally the same as

above. The only difference is that the control points are replaced by rectangles
(two-dimensional interval vectors) and are called interval control points. For
the interval version let first Z' and Z" be such rectangles and let the parameter
value t G [0, 1] be given. Then the interval vector

Ζ = ζ(Ζ', Z",t) = tZ" + (1 - t)Z' (7.24)

is the convex or barycentric combination of Z' and Z" with respect to the ratio
t. There is no need to distinguish between the interval and non-interval convex
combination and thus both are denoted by ζ. In the same manner as an interval
polynomial can be seen as a collection of real polynomials as specified in (7.14),
the interval point Ζ can be seen as the collection of all convex combinations
ζ = C(z',z",t) = tz" + (1 - t)z' with z' G Z' and z" G Z", cf. Fig. 7.5.

One can also read in the literature that the assignment ζ{Ζ',Ζ",ι) is an
affine mapping. In this case Z' and Z" are not variables of the mapping, but
constants, and the function prescription is t >-> ζ(Ζ'',Ζ",t).

Let an interval Bezier curve Ρ now be given by η +1 control interval vectors
Zo,...,Zn G I2. Then the interval de Casteljau algorithm determines the
interval curve value P(t) and subdivides the curve at P(t) into two parts. For
each of the parts η + 1 interval control points are determined. The outline of
the algorithm is as follows:

ALGORITHM 21 (Interval de Casteljau Algorithm.)

Step 2. Set Z£> = Zk for k = 0,... ,n,

�� �� �� �� ��

236 Interval Bezier Curves

*" χ

Figure 7.5: Interval convex combinations

Step 2. Set Z k

r + i) = C (4 - i . Zk \ t) for r = 0,... ,n - 1;

k = r + 1 , . . . ,n.

The final result after the termination of the algorithm is the interval
value P(t). The interval curve is also split into two parts, the first being P(s)
for s G [0, t], the second P(s) for s G [t, 1]. Further, the rectangles Z Q ° \
ZJ1^,..., ζή"' are interval control points for the first-mentioned curve segment,
and the rectangles Zn"\ z£n_1\..., Zn°* for the other curve segment, cf. for
example, [243]. We now provide a proof for this proposition since we could not
find one in the literature. We will not repeat a proof of the validity of the point
version of the de Casteljau algorithm, since there are many descriptions of such
a proof in the literature, see for example [71]. The output of the algorithm is,
however, that:

(i) p(t) = 2 < n) ,
(ii) the points z0°\..., are control points

for the curve segment p(s) for β G [0, t],
(iii) the points z i n - 1 \ . . . , are control

points for the segment piece p(s) for β G [t, 1]

The proof for the interval version can be reduced to the point version. One
only has to choose two point curves that characterize the interval curve. This
can be the midpoint and width curve of P, as well as the two boundary curves
of P. We prefer the latter for reasons we which we will explain at the end of
this section.

For this purpose it is reasonable to extend the simple interval notation [a, b]

�� �� �� �� ��

interval de Casteljau Algorithm 237

by I

a = (a x / a y)

b = (b x , b y)

Figure 7.6: Two-dimensional interval

to interval vectors in order to avoid overly complex formulas. Let

α = (αχ, αν) 6 Β?, b = (bx, bv) 6 R2, ax < bx, and ay < by.

Then we introduce the quite natural notation

[a, b] = [ax, bx] χ [ay, by] = ([ax, bx], [ay, by]).

It says that [a, b] is a rectangle where the projections to the two coordinate axes
are [ax, bx] and [ay, by], or equivalently, [a, b] is a two-dimensional interval
vector having the components [ax, bx] and [ay, by], cf. Fig. 7.6. We sometimes
will say that a and b are the boundary points or the generating points of [a, b].

This notation of a two-dimensional interval is the set theoretic analogue to
the one-dimensional notation because of

[a, b} = {c = (cx, cy) : a < c < 6}

where the inequalities between the vectors are understood component-wise.
The interval curve is then described by

P(t) = [p(t), ,(«)],

where p(t) = (px(t), py(t)), q(t) = (qx(t), qy(t)) and t G [0, 1], cf. Fig. 7.7.
Since the main steps of the algorithm are convex combinations we first show

that the convex combination of the two-dimensional interval vectors

Z' = [a1, b'], Z" = [a", 6"] with ratio ί £ [0, 1]

�� �� �� �� ��

238 Interval Bezier Curves

Figure 7.7: An interval curve

can be determined just by computing the convex combinations of the boundary
points of Z' and Z", that is, the convex combinations of a', a" with ratio t
and of b', b" with ratio t.

We need the following formulas for the calculation which are direct conse
quences of the interval arithmetic operations and vector operations: If a > 0
and ο = (ax, av), b = (bx, i>„), then

α[α', b'] = (a[a'x, b'x), a[a'v, b'v})

= {[aa'x, ab'x], [aa'v, ab'v}) = [αα', ab'].

We now are ready for considering the convex combination of Z' and Z"
with respect to the ratio t,

Ζ = ζ(Ζ', Ζ", t)
= tZ" + (l-t)Z'
= t[a", b"} + (1 - t)[a', b'}
= [ta", tb"] + [(1 - t)a', (1 - t)b']
= [ta" + (1 - t)a', tb" + (1- t)b']
= [ζ(α\ a", t), <(*>', b", t)].

The first and the last line of this chain of equations give the proposed result,
that is, the convex combination of rectangles can be performed via the convex
combinations of their boundary points.

�� �� �� �� ��

Interval de Casteljau Algorithm 239

We return to the interval Bozier curve Ρ = [ρ, q] and its n+1 control interval
vectors Zo, • . . , Z„ G J 2 . Let Ζ* = [α*, 6/t], ak, 6* G iZ2 for k = 0,..., n. We
are ready to prove that the application of the interval de Casteljau algorithm to
Ρ and the Z* is equivalent to the application of the de Casteljau algorithm to
ρ with the control points α* and to q with the control points bk- It is sufficient
to prove that the steps of the interval and the non-interval versions of the
algorithm are equivalent.

Parts 1 of the interval and of the non-interval de Casteljau algorithm are
just the initialization or what is the same, the renaming of the input data by
adding the superscript 0. Thus, part 1 of the interval version, that is

Zk

0) = Zk for k = 0,...,n

corresponds to part 1 of the point versions, that is,

α[0) = ak, b[0) = bk for Jfc = 0,... ,n

of the point version. Since Z* = [ak, bk], we obtain

^ 0) = [a i 0) , oi0)]forifc = 0,...,n

which proves the equivalence of parts 1.
Parts 2 of the algorithms are a sequence of convex combinations. Each

maintains the proposed equivalence, as shown before, such that the relation

Z(

k

r) = [a[r\ b[r)] for fc = 0,...,n

is valid for any stage r of the computation, where Zk

r^ comes from the interval
algorithm and the points aj^ and bk

r^ from the non-interval algorithm. As a
by-product we get

4 n) = [4 n) , b^] = [p(t), «(*)],

which proves the formula Z(

n

n) = P(t).
It remains to verify that Z Q ° \ . . . , Z „ n ^ are interval control points for the

curve segment P(s) for s G [0, t], and Z„n\ ···, Z„0^ for the curve segment P(s)
for s G [t, 1].

Putting this together: It follows from the properties of the non-interval
algorithm that ak

k^ and bj^ for k = 0,..., η are control points for the curves
p(a) and q(s) for s G [0, t], resp. and that and 6^ for r = n,...,0 are
control points for p(s) and q(s) for s G [t, 1], respectively. Then, for s G [0, t]
one obtains

�� �� �� �� ��

240 Interval Bezier Curves

P(s) = \p(s),q(s)] = [J24)B\n)(s),J2^)Bln)(s)}
i=0 i = 0

η
= Y^la^B^Hs), o[°BJn)(s)] by definition of interval addition

«=o
η

= 5 [̂α,·'\ δ|̂]β{η^(β)] by definition of interval multiplication

i = 0

•=0

The first and the last expression in this chain of equations proves that Z\
for ι = 0, . . . ,η are interval control points for the curve piece P(s) for β G [0, t].
The proof for the second curve piece is analogously.

Remark. We were using the characterization of an interval Bezier curve
by its two generating boundary curves. Some readers might prefer a character
ization of an interval Bezier curve or of other kinds of interval curves by their
midpoint and width curves. This representation is based on the midpoint -
width form of an interval As I,

A - mid (A)+w(A)[-l, l]/2,

cf. Ch. 2. We do not see too many advantages of such a representation. First,
already involved formulas become even more involved with this representation,
second, the intervals have to be reformulated from the boundary to the mid
point - width representation and converse. Third, the execution of products is
certainly possible but gives complex formulas. Fourth, the midpoint - width
representation is more sensitive with respect to rounding errors since operations
with the midpoint necessitates an upwards and downwards rounding and the
operations with the width an upwards rounding. This results in three rounding
operations. In contrast, the standard representation only needs two roundings,
that is the downward rounding of the left endpoint and the upward rounding
of the right endpoint.

There exist also some investigations about the error analysis of Bezier curve
computations, see for example, [243, 242].

�� �� �� �� ��

Chapter 8

R o b u s t C o m p u t a t i o n s o f
S e l e c t e d D i s c r e t e P r o b l e m s

8.1 Introduction
In this final chapter we select three different areas in order to show the wide
range of applications of interval arithmetic and ESSA. These are plane convex-
hull computations, Delaunay triangulations, and line simplifications where the
first two areas are in computational geometry and the last area in GIS. It is
typical for each of these areas that the rounding errors and the falsification
of the results by these errors are not easy to control. Many ideas and several
theories have been invented to make the results reliable and independent of
the numerical computations or at least to provide the results with safe error
bounds.

Each of these areas need a certain depth of knowledge which is necessary
to get an overview of the theory and to make essential improvements for the
numerical performance of the related algorithms. Therefore we will discuss the
areas in more details in order to show how interval analysis and ESSA lead to
robust results for computations in these areas.

In Sec. 8.1 we present an algorithm for computing the convex hull of a
finite set of points. The algorithm is based on a version of the Graham scan
algorithm and shows the following features:

• If the points are already (single precision) machine numbers, the compu
tation is rounding-error free, that is, the computed hull is the hull that
would have been computed if real arithmetic were available.

• If the points are arbitrary numbers, the algorithm renders the smallest
possible machine representable convex hull that includes the exact convex
hull.

241

�� �� �� �� ��

242 Robust Computations of Discrete Problems

• The worst case computation time is still 0(nlog 2n).

• Only floating point arithmetic with double mantissa length is required.
No mantissa splitting or other mantissa manipulations are needed; one
only has to know the exponent parts of the numbers. Also, no fixed point
accumulator is needed.

• Single precision interval arithmetic is recommended for accelerating the
computation, but is not necessary.

In Sec. 8.3 we present an exact and hence robust algorithm for the com
putation of Delaunay and power triangulations in two dimensions, which has
been developed in [66] The algorithm avoids numerical errors and degeneracies
caused by the accumulation of rounding errors in fixed length floating point
arithmetic when constructing these triangulations.

Most methods for computing Delaunay and power triangulations involve
the calculation of two basic primitives: the INCIRCLE test and the CCW ori
entation test. Both primitives require the computation of the sign of a deter
minant. We present an algorithm which computes the sign of the determinant
exactly based on ESSA. The exact computation of the primitives allows the
construction of the correct Delaunay and power triangulations. The method
has been implemented and tested for the incremental construction of Delaunay
and power triangulations. Tests have been conducted for different distributions
of sites for which non-exact algorithms may encounter difficulties, for example,
slightly perturbed points on a grid or on a circle. Experimental results show
that the performance of our algorithm is comparable with that of a simple
implementation of the incremental algorithm in single precision floating point
arithmetic. For random distribution of points the exact algorithm is only 4
times slower than the inexact implementation. The algorithm is easy to imple
ment, robust and portable as long as the input data to the algorithm remains
exact.

The sensitivity of computed results in GIS (Geographical Information Sys
tems) is considered in Sec. 8.3 on the example of the Ramer-Douglas-Peucker
line simplification algorithm. Using ESSA and interval arithmetic we describe
a robust version of this algorithm, where the determination of the simplifica
tion is rounding error free if the data are already machine numbers. Under
these assumptions the results are reproducible which is not the case with other
versions of the algorithm.

8.2 Convex-Hull Computations in 2D

8.2.1 Introduction
The computation of the convex hull of a finite set of points in the plane is a
fundamental problem in computational geometry. It has been considered by

�� �� �� �� ��

Convex-Hull Computations in 2D 243

a number of researchers, see for example [198] or the survey [244]. Most of
the work has been concerned with devising algorithms meeting the worst case
complexity of 0(nlog2n).

Problems regarding the accuracy of a convex hull arise when implementing
convex hull algorithms on finite precision floating point computing devices with
fixed mantissa length. The computed hull may for example be non-convex, it
may be larger than the exact hull or it may exclude some points that should be
part of the hull. These problems were considered by [147] within the framework
of strongly convex hulls. The thesis of Salesin [237] considered the same prob
lems within the notion of epsilon-geometry. Other authors proposed further
solutions ([41, 115, 116, 122]).

This section, which is based on [222] and ESSA presents an algorithm that
avoids most of these problems. As we see later, double precision execution
of ESSA suffices for our purpose as far as ESSA is applied to the left-turn
test for single precision points. We keep in mind that ESSA needs no further
expansion of the mantissa length nor any other mantissa manipulation. Only
the exponent part of the numbers must be known, which is, however, a simple
command in C or C + + . This means that if the given points are already single
precision numbers then the left-turn test executed with ESSA with double
precision gives the exact result, even if the distance between two adjacent
points is smaller than 1 ulp.

There are many convex hull methods that depend mainly on the left-turn
test. Since the left-turn test can be executed exactly with ESSA it follows that
convex hulk constructed with such methods and ESSA are exact convex hulls.
Even then it is only necessary to perform the left-turn test with ESSA in ex
treme cases. If the constellation of the 3 points is "normal," the usual left-turn
test computation with single precision would suffice. The result is, however,
not guaranteed, and further, one never knows a priori, when the standard single
precision computation is sufficient to guarantee a correct result. Therefore, we
first execute the left-turn test with single precision interval arithmetic, which
either gives a guaranteed result or provides the message that the result is un
certain. Our algorithm repeats this left-turn test with ESSA if the second
situation occurs.

Hence, if the input data for which the convex hull is required, already con
sists of machine representable numbers it follows that the application of appro
priate convex hull codes together with the exact left-turn test implementation
as described in Subsec. 8.2.3 renders the exact convex hull. If, however, the
points of the original input data are not machine representable, a conversion
error is unavoidable when the data is entered into the machine. One could
imagine that ESSA now has no effect, since for what does one need an exact
left-turn test for uncertain points? Clearly, it is no longer possible to com
pute the exact convex hull of the original data. Instead one can construct the
smallest possible machine representable convex hull which includes the original
data. This could not be achieved without exact computation devices, cf. Li-

�� �� �� �� ��

244 Robust Computations of Discrete Problems

Milenkovic [147]. For this reason we again use interval arithmetic and replace
each point of the original data which is not machine representable with the
smallest machine representable rectangle which is a two-dimensional interval
that includes this point. Then the convex hull algorithm is applied to the
totality of all corners of these rectangles. Since the corners are machine rep
resentable, the exact convex hull of the rectangles is computed rounding error
free such that this is the smallest constructible convex hull of the original point
set.

The choice of convex hull method for computing the hull is of less im
portance than ESSA since ESSA provides the essential foundation for exact
computation. We therefore use a rather simple, transparent and known convex
hull method in order to demonstrate clearly how the method and ESSA fit to
gether. I.e., we chose the version of Graham scan that is described in O'Rourke
[190], p. 85 and drop the improvements that have been published within the
last few years, cf. [1, 76, 82]. Certainly, ESSA can also be used with other
convex hull methods, no matter how sophisticated they are. In the same way,
ESSA can also turn 3D-convex hull algorithms into exact and optimal ones.

The numerical costs of 0(n log2 n) are not changed if ESSA is used in Gra
ham scan.

In Subsec. 8.2.2 we give a short description of the Graham scan version
used. In Subsec. 8.2.3 ESSA and Graham scan are merged, and a few interval
devices are included. Subsec. 8.2.4 contains well- and ill-conditioned numerical
examples. In Subsec. 8.2.5 it is shown that ESSA can be also be combined with
convex hull algorithms that are more sophisticated than Graham scan. As an
example and to point out the principles which have to be considered for such
a merging, we briefly discuss how an exact and optimal hull algorithm has to
be designed which is based on the ideas of Kao-Knott[122].

8.2.2 A Prototype Graham Scan Version
We briefly describe a simple and transparent prototype Graham scan algo
rithm [77] for the computation of a convex hull as it is found, for example, in
O'Rourke [190], p. 85 (version B), omitting refinements and improvements, in
order to have it available for discussion in the sequel. The combination of the
proper convex hull idea with ESSA and the interval devices can thus best be
demonstrated. The prototype also forms the basis for the numerical examples,
cf. Subsec. 8.2.4. For a more sophisticated combination see Subsec. 8.2.5.

The algorithm consists of a preprocessing sorting step (Steps 1 and 2) fol
lowed by the convex hull construction (Step 3) as the main part.

Let a plane point set A = {(xuVi) : i = 1,... ,n] be given. The following
algorithm constructs the convex hull of this point set, assuming exact compu
tation. More precisely, the algorithm sifts out all points of A which are vertices
of the convex hull of A.

�� �� �� �� ��

Convex-Hull Computations in 2D 245

A L G O R I T H M 22 (Prototype Graham scan)

Step 1 . Among all the points of A having minimum x-coordinate, determine
the one with maximum y-coordinate. Denote this point by po- It is already
a convex hull point.

Step 2. Sort all other points of A by the angle counter-clockwise about po
where the basic sign of the angle is the positive x-direction. Use any
sorting procedure, for example, Heapsort, cf. [199], but use the left-turn
test (cf. Subsec. 8.2.3) for comparing any 2 angles.

If two points have the same angle, drop the one which is nearer to po
(simple coordinate comparison). Denote the sorted list bypo,pi,... ,ρη-ι·
Also Pn-\ is already a convex hull point.

Step 3 . Create a stack S = (p„-i,Po)- For i = 1 , . . . ,n — 1 do:

(i) Denote the last two elements of S by ρη,Ρι (I indicates the last, and
11 the last before the last).

(ii) If pi is strictly left to the directed line frompn topi then put pi after
Pi on S else remove pi from S and return to (i).

The known improvements of Graham scan mostly relate to the preprocessing
step where "interior" points that can never become hull points are already
removed during the sorting. Other versions of sorting are also known in which
cases Step 3 sometimes has to be modified. Such changes do not influence
the worst case costs of 0(nlog 2n), but the average costs can be considerably
reduced.

8.2.3 The Exact and Optimal Convex Hull Algorithm
The Graham scan version of Subsec. 8.2.2 is taken as the prototype skeleton
for this algorithm, and nothing needs to be changed. The only items left are
two details showing how to combine ESSA and the interval arithmetic devices
with Graham scan in order to meet our claims that the resulting method is
exact and optimal.

These two items are the input of the data set and the exact execution of
the left-turn test, which is the backbone of the angular sorting as well as the
proper convex hull construction, cf. Subsec. 8.2.2.

If the input data already consists of machine points, one can skip part A
since Graham scan combined with the exact left-turn test implementation, cf.
part B, leads to the exact hull.

A. The input of the point set

If the point set for which we want to determine the convex hull has been
generated by some preceding computer program on the same machine, the

�� �� �� �� ��

246 Robust Computations of Discrete Problems

points are certainly machine representable, and hence, an exact hull of the
previously computed points can be expected when our procedure is applied.
This does not mean, however, that the convex hull is a convex inclusion of the
exact point set that is expected theoretically or geometrically. The reason is
that only computed approximations of these points are known. If one wishes to
obtain at least a convex polygon that contains the exact points then it has to be
planned in advance. It would mean that error bounds would have to be provided
from the previous computation phase, for instance, with interval arithmetic.
In this latter case, the interval boundaries are machine representable, and our
exact convex hull procedure will render the exact convex hull of all the boundary
points. This hull will, at the same time, include the originally required hull.

If the input data has not yet been entered into the machine then it is
unlikely that the points are machine numbers unless they are integers and the
exact convex hull cannot be expected. Nevertheless, a best possible including
convex hull can be determined if one proceeds as follows:

In order to handle the input data properly one should avoid the standard
input facilities of the machine since the input mode is, generally, unknown or
not very reliable. The best one could do is to use an interval software package
(such as C-XSC [132]), to represent the numbers, which are mostly decimal
numbers, as a quotient of two integers (such as 0.3 = 3/10) then enter the
integers into the machine (they will be represented exactly) and then let the
division be executed by the interval package. Good packages such as C-XSC
will return the smallest machine representable interval that includes the value
of the decimal quantity.

If one has access to a reliable directed rounded arithmetic one can also
obtain such a smallest inclusion. In this case a left rounding accompanied
with a right rounding in connection with the division will provide the desired
inclusion.

Since we deal with 2D points each of two components will be surrounded
by an interval so that the points will finally be included in rectangles. If
the Graham scan code with the exact left-turn test implementation of part Β
is applied to all these rectangle corners then we obtain the smallest possible
machine representable convex hull of the given data.

B . T h e l e f t - t u r n t e s t

The current literature on convex hull algorithms seems to be united in the opin
ion that the left turn test is the achilles heel of any 2D convex hull program. The
reason is that there has been no easy way of avoiding the inaccuracies caused
by rounding errors in this test. It is also well known that these inaccuracies are
responsible for all kinds of subsequent errors, mainly of a topological, logical
and numerical nature. Many sophisticated strategies have been developed so
far in order to avoid this chaotic influence of rounding errors.

No sophisticated considerations are necessary in this implementation, if the

�� �� �� �� ��

Convex-Hull Computations in 2D 247

left-turn test is executed with ESSA in double precision, as already explained
in Chapter 4. In this case no rounding errors can occur (provided the machine
numbers are single precision). We also show a way to avoid a double precision
ESSA, if desired, at the end of this section.

Let the different points a, 6, c in the plane be given with single precision
components α<, bi, c\ (i = 1,2). The left-turn test says that c is strictly left to
the directed line leading from α to 6 iff

D =
Οι θ2 1
bi 62 1
C l C2 1

>o,

cf. Ch. VI. There are various ways to evaluate the determinant D, for example,

D = (b\ - ai)(c2 - a2) - (62 - a2){cx - 01), (8.1)

which is certainly an optimum way to evaluate D in terms of the number of
arithmetic operations. We do not need D, however, we only need the exact
sign of D. ESSA cannot be applied to the computation of D by (8.1) since
(8.1) is not presented as a sum of numbers. Hence we have to rearrange D so
that a sum of numbers is formed, that is,

D = a,\b2 + a2C\ + b\c2 — O2C1 — a2b\ — a\c2.

ESSA computes the sign of this sum exactly if the summands are exact. Since
the components O j , bi, Ci are assumed to be single precision numbers, we have
to present the products a<6j,... in double precision to avoid the loss of being
exact. This can be coded in C or C + + without additional efforts.

Note that the left-turn test has to be applied at two different phases in the
Graham scan version of Subsec. 8.2.2. First of all at the angular sorting and
secondly, when determining the convex hull points in Step 3 of the prototype
version in Subsec. 8.2.2.

The most economical way to execute the left-turn test is probably the fol
lowing procedure which is also used in the sequel: The determinant D is com
puted explicitly using single precision interval arithmetic with formula (8.1).
Because of the obligatory outward rounding, which is incorporated in every
interval package, the computational result will be an interval D = [Di,D2]
with D G D, cf. [165]. (See also [236] for a simple implementation of interval
arithmetic and [21] for a discussion of the use of interval filters in geometric
computations). Hence, the possible results

Ζ) > 0 (i.e., Di > 0),
D < 0 (i.e., D2 < 0)

give the guarantee that D > 0 or D < 0 is, respectively. Only the third possible
result, that is

Di < 0 < D2

�� �� �� �� ��

248 Robust Computations of Discrete Problems

does not permit a decision about the sign of D. In this case it is necessary to
switch to ESSA to obtain the guaranteed information about the sign of D.

It is maybe superfluous to say that each occurring sign determination can
be executed with ESSA if one wants to avoid interval arithmetic. Similarly,
if one does not want to write a code for ESSA in double precision, it can be
avoided by the following extra step:

Since the point components O j , ο,·, Cj are single precision, the products
Oj6j, etc., are double precision and are the summands of the sum in question
in ESSA. These summands can be split into two parts which are then single
precision quantities. The splitting can be executed in C or C + + without much
ado. Now, a single precision ESSA is applicable to the sum of split summands.
The single precision version will have 12 summands, a doubling of the number
of summands from the double precision version.

8.2.4 Numerical Examples
A large number of numerical tests were made in order to make sure that there
were no flaws in the method described above. The tests were made with ran
domly generated points, with stable as well as unstable configurations, machine
representable (Fig. 8.1-8.7) as well as non-machine representable (Fig. 8.8-
8.10) points. The number of points were varied from 10 to 1000 (which gives
4000 in case the 1000 points were not machine representable) and the example
described in O'Rourke [190], p. 94, was repeated to show that the algorithm
handles collinearities and other difficult situations safely. The calculations were
done on a SUN20 workstation in C and C + + .

The following abbreviations are used in the statistics:

η number of points after the input of data (i.e., η is 4 times the
number of points one had before the input of the data in Fig.
8.8-8.10)

nHull number of convex hull points

nGr number of points after the preprocessing (that is, after having
removed collinear points discovered by the angular sorting and
after having removed equal points arisen by the replacement of
non-machine representable points with up to 4 machine repre
sentable points). Hence, nGr is the number of those points, Step
3 of Graham scan, cf. Subsec. 8.2.2, is working with.

nESSA counts the number of ESSA applications during the angular sort
ing and during the main computation (Step 3)

tESSA time spent with ESSA

t overall time computed (in microseconds)

�� �� �� �� ��

Convex-Hull Computations in 2D 249

In the graphics, the points of the input data are marked by x-like crosses.
If the points are too dense w.r.t. the plotting solvability, the related crosses
are united. Those points that are vertices of the convex hull are additionally
marked with squares, which print over the cross.

Fig. 8.1 shows the example of O'Rourke [190], p. 94, that contains several
collinearities, also on the convex hull polygon. Note that they have been dis
covered precisely and that they are not counted as convex hull points as long
they are not vertices.

Fig. 8.2, 8.3 and 8.4 show well-conditioned harmless examples with 20, 100
and 1000 randomly generated machine representable points in the area of [10,
11] χ [10, 11].

Fig. 8.5, 8.6 and 8.7 show ill-conditioned examples with 20, 100 and 1000
randomly generated machine representable points in the area of [10, 11] χ [10
000, 10 001]. The ill-conditioning arises since the j/-coordinates of the points
are all identical at five leading digits.

Fig. 8.8, 8.9 and 8.10 show ill-conditioned examples with 20, 100 and 1000
randomly generated non-machine representable points in the area [10, 11] χ
[10, 11], so that after the input all corners of the including rectangles, that is,
80, 400 and 4000 points, have to be counted. One notes a rapid increase of the
number of ESSA invocations. The ill-conditioning comes from the edge length
of the rectangles being just 1 ulp.

η nllull nGR Sorting Graham time
nESSA tESSA nESSA tESSA

19 8 14 10 0 3 0 2

Table 8.1: Data from computing with O'Rourke's example as input

�� �� �� �� ��

2 5 0 Robust Computations of Discrete Problems

Figure 8.1: Graphics for Table 8.1 (O'Rourke's example)

�� �� �� �� ��

Convex-Hull Computations in 2D 251

�� �� �� �� ��

252 Robust Computations of Discrete Problems

η nHull nGR Sorting Graham time
nESSA tESSA nESSA tESSA

100 13 100 2 0 4 0 14

Table 8.3: Data from well-conditioned example with 100 points

10 10.2 10.4 10.6 10.8 11

Figure 8.3: Graphics for well-conditioned example with 100 points

�� �� �� �� ��

Convex-Hull Computations in 2D 253

η nllull nGR Sort
nESSA

ing
tESSA

Gral
nESSA

lam
tESSA

time

1000 17 1000 176 3 92 2 208

Table 8.4: Data from well-conditioned example with 1000 points

Γ

** Χ* X Χ * * $ * * x i „ ~ X~ ~ 5 * *X " „ Χ XXJ, Χ

ΧΧ * - Χ Χ Χ Χ Ί Χ

X " ΧΧ
Χ „ Χ * Χ ί χ

 Χ
. χ * Χ » Χ*** Χ

Χ >c Χ ΧΧΧ Χ Χ
Χ > * ΧΧ Χ X*X

Ν *Χ
ΧΧ

ΧΧΚ< Χ Χ
Χ** Χ< Χ

ΧΧ .Λ Χ Χ Χ

Χ ΧΧ j « · « V x x ^ ; Χ Χ

 Χ Χ Χ « Χ Χ
ΧΧ. Χ « Χ , Χ Ί 1 » » Χ *Χ ϊ x*x x<xx χ ΧΧΧ Δ Χ Χ Χ Χ * * Χ

Χ ΧΧ « Χ Χ ^ ΧΧ X X*x *" Χ Χ > ^
- • Χ - , * Χ Χ V X X ΧΧ ΧΧ Χ * Χ Χ Χ *

Χ Χ Λ ΧΧΧ Χ Χ Χ * Χ ΧΧΧΧ Χ Χ Χ Χ Χ Χ Χ Χ ΧΧ ΧΧ ΧΧ Χ * Χ Χ

Χ Χ Χ1

Χ Χ * xXXx Χ ΧΧ Χ * * ^ »*
frf^V^x Χ - - ... ~ - xX X xV ΧΧ

Χ Χ

Λ Χ Χ Χ
Χ ΧΧ Χ * χ Χ

Χ

Χ Χ Χ ^
Χ ΧΝ

IIX
Χ
ΧΧ

Χ „ *

ι ν ^ - * * χ

ί Χ ^ Χ

Χ ΧΧ Χ Λ Χ Χ *Ν* Χ Χ*

XX
Χ Χ

ΧΧΧ

X X X X X Χ
Χ ΧΧ V *

Χ
tx* Χ Χ Χ

Χ, Χ ^ Χ -Χ

Χ Χ

XX "Χ * "Χ Χ Χ ΧΧ ΧΧ" Χ ^
* Χ Χ Χ

~ ~ " Λ « Χ ^ ^ Χ ^ Χ δ * Χ

Χ» V / Χ̂ ΧΧ Χ Χ Χ ΧΧ Χ

*ΧΧ Χ χ

Χ χ δ χ % * ^ V

Χ X « X X X X X « « Χ ^ ^ *
ΧΧ Χ * Χ Χ Χ * x V * V " ΧΧΧ

Χ Χ # Ν* ν χχ & Χ™ Χ Χ1 ΧΧ
Χ Χ ^ * Χ Χ 1<| ΧΧ * * * ~ Χ , « Χ

* x x V Χ χ * * *
* "Χ ΧΧ $ 5<ΧΧ Χ Χ ~ Χ
* # Χ Χ, Χ xy Χ Χ<

•,,ΧΧ^ΧΧ >«* Χ Χ ^ £ Χ
Χ Y ^ Η Χ Χ ** 2

ΧΧ< ^ X ΧΧΧΧΧ

<χ. χ V > ?
X< ΧΧ

4
ΧΧ)

Χ

« * * Χ Χ * Χ * Χ „ Χ Χ ^ Χ > ? Χ * * χ : ΐ

10 10.2 10.4 10.6 10.8 11

Figure 8.4: Graphics for well-conditioned example with 1000 points

�� �� �� �� ��

254 Robust Computations of Discrete Problems

�� �� �� �� ��

Convex-Hull Computations in 2D 255

η nHull nGR Sort
nESSA

ing
tESSA

Gral
nESSA

lam
tESSA

time

100 13 100 471 11 174 3 25

Table 8.6: Data from random ill-conditioned example with 100 points

10 10.2 10.4 10.6 10.8

Figure 8.6: Graphics for random ill-conditioned example with 100 points

�� �� �� �� ��

256 Robust Computations of Discrete Problems

η nHull nGR Sort
nESSA

ing
tESSA

Gral
nESSA

lam
tESSA

time

1000 19 1000 8700 112 1959 35 427

Table 8.7: Data from random ill-conditioned example with 1000 points

•xx- "*X XX Κ Χ *V A

^ X Χ X X X X x*V χ " x ** X* X * x x

& χ χ x x

^ *X *X

χ χ
χ χ Χ** x x x,

x xx* χχ χ * x x

X X X

* X X X
* *Γ X X

Χ > δ Χ χ X
5? χ -

Ι * ΧΧΧΧ Χ
* * * \ χ χ

x x χ χ" χ χ Λ Χ * * χ χ χ χ * χ

Χ χ T x 5 / Χ ^ - % χ ^
Χ Χ δ — .V. Χ .. Χ * . . . - ; Χ χ < ν ν XJK Χχ ^ Χ~ Χ XXX Λ # * ~χ

χ
 χ * χ χ * 4 Λ * χ χ * * χ * * * ; * ^ * " ^

Χ χ χ χ Λ χ Τ < " χ χ χ*ν χ χ χ ^ * *
Χχ J < * Χχ χ χ, χΧ J< $ XX Χ χ >< χ *Χ χ

χ >*£ Λ * \ * x Χ χ Χ χ Χ Χ ^ χ χ χ * * χ * Χ * ^ Χ
Χ χ χ χ χ Χ χ χ

 χ Λ « * * * * * % * χ χ * * χ >
χ χ

χ χ * χ χ χ . Χ χ Χ Χ Η χχ χ * Χ Χ χ Χ χ ~ * Χ χ — x ~ * x x χ Χ

Χ * X # Χ XX* Χ * Χ χ

, ν χ ΧνΧ χ χ χ χ χ # ΧχΧχΧ *
x S J Χ Χ χ ^Χ Χ * Χ Χ Χ ^ χ ^

.. χΧ ν χ Χ Χ χ „ χ χ . . Χ χ Χ .

XX IT '
Κ Χ*Χ ΧΧΧ -χχ

χ χ * χ χ * *< *
Χ χ χ χ χ Χ χ χ

 χ χ Χ < χ

χ χ χ χ χ η χ χ χ « χ χ χ χ

χ V χ * ν Χ ΧνΧ χ χ Χ Χ Χ *
χ χ xx yX χ X j

ΧΧ X v x XX Χ χ Χ Χ χ χ χ Χ \ " χ
χ ν x x * χ χ χ χ χ χ ~ χ ' χ χ Χ 2

?ΦΧ*~ χ χ χχ 2 χ * χ χ

Χ χ χ Χ Χ χ χ ν x ^ χΓχΧ χ * ν Χ * Χ χ * χ Λ

«κ f x χ * " * χ χ χ χ χ * * χ χ χ χ χ νΠ

x x x ^ x * > < χ Χ Χ Χ > **< χ χ Χ χ χ Χ χ Χ

 χ * χ * :

χ ϊ χ * χ χχ" $ χ V χ Χ χ χ χ χ χ χ χ χ χ χ x V x
x x ^ x ^ x x χ χ χ χ Χ Χ Χ Χ χ χ χ χ χ χ >

| XX «fc x x Χχ χ χ χ χ * χ χ Χ χ χ δ Χχ χ #
' x x χ χ χ χ ^ χ Χ χ χ χ ^ χ χ χ χ x x ^ x j χ / χ Χ χ

„ ~ χ ν.ΧΧ Χ χ „ χ Χ Χ XX _ > ? Χ „ χ>χΧ Χ

χ Χ χ χ χ χ χ Χ χ χ
• ν χ . , «χ * χ Χ Χ *

χ χ
< x<Xx ν

Χ * ~ * >*χ Χ

x ΧΧ X * XX x ~ ΧΝ Λ Ί IF " ί x j < x

ΧΧ<Χ *χ& * Χ Χ Χ Χ χ ί * * * * * * * * * / * > Χ Χ Χ Χ ΧΧΧΧ
x x x ^ I ? J"< *ΧΧ χ* * χ Κ # * Χ*ΧΧΧ «Χ

L If x \ , ΧΧ Ν Χ Ί Ν Χ x x f
η ^ ^ Χ» ι, Χ Χ- η ι χ Χ ~ Χ Χ V

10 10.2 10.4 10.6 10.8 11

Figure 8.7: Graphics for random ill-conditioned example with 1000 points

�� �� �� �� ��

Convex-Hull Computations in 2D 257

η nHull nGR Sorting Graham time
nESSA tESSA nESSA tESSA

80 12 80 241 3 110 1 14

Table 8.8: Data from random ill-conditioned example with 20 not machine
representable points

10 1 0 5 10.4 10.6 10.8

Figure 8.8: Graphics for random ill-conditioned example with 20 not machine
representable points

�� �� �� �� ��

258 Robust Computations of Discrete Problems

η nHull nGR Sorting Graham time
nESSA tESSA nESSA tESSA

400 12 400 1012 7 509 3 85

Table 8.9: Data from random ill-conditioned example with 100 not machine
representable points

Figure 8.9: Graphics for random ill-conditioned example with 100 not machine
representable points

�� �� �� �� ��

Convex-Hull Computations in 2D 259

η nHull nGR Sort
nESSA

,ing
tESSA

Gral
nESSA

lam
tESSA

time

4000 17 4000 9980 101 4141 49 1178

Table 8.10: Data from random ill-conditioned example with 1000 not machine
representable points

<Χχ x
- X X Χ ** V** * * χ

X » x * x ^ j < x χ* Χ χ χ Ικχ * χ χ* ^ χ χ χ χχ Χ
ΐ χ * „ Χ Ν Χ χΛ Χ Χ * * ^ χ* χχ*

XX .. ,Χ; -

Γ 5 * *

rs—* χ ., *—**;

χ χ χ χ χ χ χ
* Χ*

3 ί

Χ %** * Χ* ,
χΧ χ Χχ Χ

χ Χ Χ .?Sc.. „ .. # χ ΐ ϊ . . χ S χ Χχχ

Χ Λ

 W χ χ Χ< χ

XX χ**
κ , Χ χ -**

χ. χ χ * * χ * Χ χ Χ χ ^ χ

* * Χ*.* χ χ Χ '

ΧχΧχΧ χ*
χ χ χ
>χχ

χ
Ιχχ

- Χ Χ χ Χ*~ Ίχχ χ ΧχΧ * * X * X X . X X X X
ΧχΧ Χ

ΧΧΧ *

χ
Χχ

χΧΧ
* x χΧ * " χ" *"* " - Χ "χχ Χχ-xx "* χ *< Χ Χ χ Χ χ χ * *

χχχχ χ χ *" * * \ χ χ ί χ χ ? χ Χ „ ****
* * Χ Χ ! >

χΧ χ χ χ
χ Χ ΧΧ χ

<Χ ί# Χ ΓΧΧΧ

Χχ

χ
. χ χχ
' Χ * χ
Jx χ

χ χ Η

οΧνίί ν *^ *# * x x x v x x fx* Χ *ΧΧ« χ

χ χ * x x Χ * χ x ν χχχχχ χ χ Χχχ Χ Ji * ν Χ * χ χ χ χ
; * χ *χ χ χχχ χ Χ χ χ * χ Χ * χ * ΧχΧ χ χχ Χχ Χ

\ ν

χ χ ΧΧ χ ί > χ ? χ * χ χ χ χ χ # x
χ χ J< ν Χ Χ ν%. 4 χ χ .χχ χ κ χ Χ ^ χ Χ * " χ ,Χ*" " * " χ 5 Χ Χ ,

Χ Χ ^ Χ ^ Χ : Χ x \ i L Η * χ*1 Ux
' **ζ· χ ^ ? X ^ X χ ί χ « χ „ »

% χ χ χ *f χ χΐΓ # f *χ

 χ Χ

χ *χ J"^ V Χ

.,J<X „ ΧΧ XX.. *x vxxxx „ Χ * χχΧχχ χ

Χ ν χ :

XX :

St χ Χχχ

χ Χ χ Χ

XXX x

V v f ν ' χΧΧχ χ XX χ χ χ Λ " Χ Χ i
χ χ XjKXX 1

 χ χ χ χ X S

Χ Χ Χχ Χ χ χ* χ

Χ Χ χ χ
, χ χ „ Χ

' » xyx

* χ Χ χ. χχ XĴ χ <χ· χ ** „# *

χΧ
χ χ χ Χχ „

Χ Χ * Χ

χ i " ^ ^
ΧΧΧΧΧ y ν XX

" χ >xx V ν ^ Χ
1cxxxx χ

 Χ Ν < Χ Χ Χ Χ ^ Χ '

* Χ Χ ^ < χ „ χ χ χ
χ χ

χΧχ ***x
χ** χ

Χ Χ / V χ Χ * Χ '
' Χ Χ

_XTX

10 10.2 10.4 10.6 10.8 11

Figure 8.10: Graphics for random ill-conditioned example with 1000 not ma
chine representable points

8.2.5 A More Practical Version of the Algorithm
It was the aim of the previous sections to develop the exact and optimal con
vex hull construction with a simple accessible version of Graham scan as it was
found in O'Rourke's textbook [190]. Since this version furthermore requires cal
culations with extreme accuracy (high sensitivity of the angular sorting in the
preprocessing stage, occurrence of collinearities or almost-collinearities, occur
rence of points with 1 ulp distance), an opportunity was given to demonstrate
the powerful combination of ESSA and a convex hull method. Hence it is shown
completely that also worst cases and extremely ill-conditioned problems cannot
crash the methods presented here.

�� �� �� �� ��

260 Robust Computations of Discrete Problems

There are of course algorithms for the convex hull computations that are
more sophisticated than Graham scan. As examples we mention the algorithms
by Kao-Knott[122], Andrew[9], Jaromczyk-Wasilkowski[116] and Chan[24]. In
this section we show, using the version of Kao-Knott[122] as an example, that
ESSA can be applied as well to more sophisticated convex hull algorithms such
that improved, useful and applicable methods results.

The main feature of our version of the improved algorithms is:

1 Instead of an angular sorting a stair-like arrangement is executed, which
only needs coordinate comparisons instead of left-turn tests. A further
advantage of the stair-like sorting is that "many" points are discovered
and dropped that never can become convex hull points. This means that
ESSA only has to be applied to the main phase.

2 If the input data is not machine representable and if the points are internally
to be represented by machine representable rectangles, one does not need
to process all the corners of the rectangles any more, but only one corner
of each rectangle such that the computational costs are reduced by 75%
compared with the version of Subsec. 8.2.3.

Outline of the Algorithm
First, the data points have to be entered into the program and be replaced by
including rectangles of minimum size, say

S W = [*i°,*i?]x|»il,.lf8)]. i = l , . . . ,n ,

where the corners are machine representable. These rectangles can be degen
erate. The procedure consists of 2 parts:

• P a r t 1. (Preprocessing) generates up to 4 monotone stairs of points con
taining the final convex hull points, where only coordinate comparisons
are used,

• P a r t 2. (Main part) eliminates those points on the stairs that are no
convex hull points using the left-turn test with interval arithmetic and
ESSA.

Note that the algorithm works on exact machine numbers, since only compar
isons, interval arithmetic and ESSA is needed as was the case in Subsec. 8.2.3.
Let S = {S^ : t = l , . . . ,n} . Then the algorithm will determine the exact
convex hull of 5.

The steps of P a r t 1 are:
Step 1. Construct the rectangle hull of all the including rectangles, that is,

the smallest axes parallel rectangle, RHs that covers S. The coordinates of
the corners are

�� �� �� �� ��

Convex-Hull Computations in 2D 261

= mm

--• max

{ 4 ° :
{·<£

= min {y<° :

= max ·

= l , - . . , n j ,

i = l , . . . , n | ,

= l , . . . , n j ,

i = l , . . . , n j ,

cf. Fig. 8.11.
Step 2. Determine 4 sub-rectangles of RHs that already contain the final

convex hull of S. For that reason, we need the following anchor points lying
on the edges of RHs:

xB =

XB =
ι

XT =

VR =

VR =

Vi =

VL =

{ * ί ? :

i n { x ? :

i n { ^ :

max

min

max

min

max

min

max

min

= lf
= y

y i < }

v{£

vli =
x(i) -xR —
JA -
XR — -

«» = Χ

Ι = 1,

, t = l , . . . , n | ,

\ i = l , . . . , n | ,

m a x , i = l , . . . , n } ,

; m a x , i = l , . . . , n } ,

m a x , i = l , . . . , n

* i 4) =
, i = l , . . . ,

i m i n , i = l , . . . , n | .

Hence, x B and χ Β are the rightmost and leftmost corners, respectively, of
the input rectangles that lie on the basis edge of RHs, etc. Now, let

PB

PT

PL

PR

(xB,ymiD),

(*T,ym a x),

(xmax,y«),

P B =

P' =

-min

P » =

.yi,)>

, iLi are defined as follows: Then the four subrectangles denoted by R\,.
Ri shall be spanned by P R and PB,

R2 by PR and PT, R3 by PT and PL, and
Λ4 by Pi and P B ,

cf. Fig. 8.12. From the geometry of this figure it is obvious that all convex
hull points of 5 lie in Ri to R4 • Note that Ri to R4 can be degenerate.

Step 3 is applied to each of the 4 subrectangles. It deletes further points
that cannot be convex hull points, and it arranges the remaining points of each
Ri in a stair-like shape connecting the 2 points which we used to span Ri.

�� �� �� �� ��

262 Robust Computations of Discrete Problems

.max

,mm

•
•

π

.max

Figure 8.11: Rectangle hull of 5

.max
Ρ Ρ
I I ?

, m i n

Ρ
Β

mm ,max

Figure 8.12: The four subrectangles

�� �� �� �� ��

Convex-Hull Computations in 2D

Figure 8.13: Stair in Ri

Figure 8.14: The four stairs

�� �� �� �� ��

264 Robust Computations of Discrete Problems

The parts of Step 3 focused on Ri are:
(i) Initialize a list Coo = 0.

(ii) For i = 1 , . . . , n: If x^ > x'B and y^ < yR then enter [x(£ ,ν^)
onto C\.

(iii) Sort Coo with respect to increasing values of y^ obtaining an
ordered list C{ = {(x^'\y^) :i = l , . . . ,m} of length m < η
where y^ < for i = 1 , . . . ,m — 1.

(v) For t = 1 , . . . , m : If χ^' > x C U r r then set x c u r r = χ('* and enter
(xW,j/W) onto list Mi after the last element.

(vi) Enter P R onto list Mi after the last element.

The list Coo created in (ii) consists of all south-east corners of the rectangles
of S which lie in the (topological) interior of Ri. The other 3 corners (in the
case of a non-degenerate rectangle) cannot be convex-hull points, and hence
they are dropped. The stair-shape finally comes out by (v) since only points
with strictly increasing x-values are admitted (cf. Fig. 8.13). The treatment of
i ? 2 , i?3 and R4 is analogous and results in stair shaped lists Mi, M3 and Mi,
respectively (cf. Fig. 8.14).

Part II. (Main part) is nothing more than the proper convex hull con
struction acting on the ordered lists Mi to Mi, in exactly the same way as
it is shown in Subsec. 8.2.2 with the list po,...,pn-i. The hull construction
can be applied to each of the lists Mi separately, or to that whole list which
Mi,...,Mi as sublists (in this order).

Summing up, this algorithm provides on the average a reasonable compro
mise between coding effort (overhead), computational cost and effective com
putation. If the sorting of the lists in Part I is executed with a 0(nlog 2n)
method (such as Quicksort), the whole algorithm also has worst case cost of
0(nlog2 n).

8.3 Exact Computation of Delaunay and Power
Triangulations

8.3.1 Introduction
The requirement for creating a triangulation of a point set or other sets of
objects (usually called sites) in the plane is common to scientific fields such as
numerical analysis, computer graphics and geographical information systems,
to name a few. Roughly spoken, a triangulation of a set 5 is a subdivision of S
into subsets whose bounded faces are triangles. Some introductory references

(iv) Set x, c u r r = x'B and initialize a list Mi = \PB

�� �� �� �� ��

Exact Delaunay and Power Triangulations 265

are [198], [30], [42].
There are many possible triangulations of the given set 5 which depend

on the request which of the sites should be considered as a unit and be put
together in one subset. Among these the Delaunay and the power triangulation
have special interesting properties. For example it has been shown that the
Delaunay triangulation of a terrain map is the triangulation that minimizes
the roughness of the resulting terrain, no matter what the actual height data
is, cf. [228]. It has also been shown that various graphs (such as the Euclidean
minimum spanning tree) defined on a set of points, say S, are subgraphs of the
Delaunay triangulation of S. More specifically, the Delaunay triangulation,
which is concerned with point sets) is used in numerical analysis, CAGD, etc.,
and the power triangulation, which subdivides set of sites which are objects in
the plane, for example, geometric figures, has found practical applications in
crystallography, metallurgy, economics, etc.

The Delaunay triangulation is closely related to the Voronoi diagram in the
sense that the Delaunay triangulation is the dual of the Voronoi diagram in the
sense of graph theory. Similarly, the power diagram is the dual of the power
triangulation. If the Voronoi diagram for a set of η points has been computed
then the Delaunay triangulation can be found with complexity O(n).

The problems which are caused by the numerical computation of Delaunay
and power triangulations are nearly the same as for other geometrical computa
tions. Thus, there is often a large gap between theoretically correct geometric
algorithms and practically valid computer implementations [107]. For example,
a recent paper states that rapid progress of computational geometry in the past
two decades has resulted in many geometric algorithms, some of which are op
timal in the worst-case sense [187]. However, most of them are designed under
the assumption that numerical computation can be done precisely. In actual
computation errors are inevitable. These errors often generate inconsistencies
in the topological structure creating degenerate situations, which can some
times be worse than numerical errors. This has led to a number of approaches
for dealing with the problems caused by the errors. Below they are classified
into three groups.

Group A consists of approaches that investigate the bounds of possible
errors in the construction. One of the general approaches from Group A is
to obtain symbolic bounds on numerical errors so that the stability of the
computation can be guaranteed. As shown in [49], it can be difficult to obtain
bounds that are tight enough to be useful. Another approach is topologically-
oriented and it ensures the consistency of the system topology, i.e. the topology
of the triangulation, during the process of computation, rather than controlling
the numeric precision [187, 260]. The result is a system free of inconsistency,
constructed for any imprecise data set, which is only an approximation of the
correct result. Moreover, this result is not free from all the consequences of
numerical errors described above.

�� �� �� �� ��

266 Robust Computations of Discrete Problems

Group Β in our classification includes degeneracy-oriented methods, back
ward error-analysis methods and epsilon- tolerance methods. The degeneracy-
oriented methods employ the idea of avoiding degenerate special cases (which
require extensive and correct computation) instead of dealing with them. This
can be achieved by conceptual perturbation of the input data [41, 274]. This
simplifies the algorithm, but might change the topology of the system, which
violates an essential feature of a Voronoi diagram.

One of the methods popular among programmers is the epsilon tolerance
approach, where two geometric elements are considered to be at the same
location if the distance between them is less than a tolerance e [108, 147]. The
shift of any of the points within the e-distance would not change the system
topology. The originality of the input set is also lost in this approach, and it is
not free from inconsistencies (when, for example, three or more elements come
close to each other). Other applications of e-geometry and e-arithmetic have
also been considered by some authors [59, 61, 237]. Although the algorithms
are numerically stable, they compute approximate solutions.

In the error-analysis approach computational results are classified accord
ing to the fuzzy logic as true, false or inconclusive (unreliable) [158, 237]. Only
conclusive results are used, and the number of inconclusive ones can be lim
ited, but not completely eliminated, by applying backward error analysis. The
computation of the most appropriate error bound is also quite complicated.

Group C, which includes the algorithm proposed in this section, represents
a different approach to the problem [120, 123]. Instead of trying to avoid or to
deal with the numerical error, the problems are simply eliminated by perform
ing exact operations on the data. This should be done under the reasonable
assumption that data items under consideration are already machine numbers.
Then, in each step of the algorithm, the exact values of all the components are
calculated, which eventually will lead to the correct result. The only question is
how expensive this exact computation can be. As stated in one paper devoted
to exact computation:

Exact computation provides simplicity and assured robustness at
the expense of the computational efficiency. It provides simplic
ity in the sense that algorithms map directly to implementations,
without need to treat numerical error. Moreover, the handling of ge
ometric degeneracies is vastly simplified by the absence of complex
interactions between numerical errors and tests for degeneracies.
[123]

In our approach we suggest using fixed-precision floating point arithmetic to
solve the efficiency dilemma. We apply the approach to the exact computation
of Delaunay and power triangulations. First, we apply the economic variation
of ESSA, cf. Ch. IV for the exact computation of the necessary primitives.
Then we apply a floating-point filter based on interval analysis to improve the
performance of the algorithm. Our method is then tested on the algorithm for

�� �� �� �� ��

Exact Delaunay and Power Triangulations 267

incremental construction of the Delaunay and power triangulations [86]. We
show that the worst-case performance of the exact algorithm is the same as for
the inexact algorithm, that is 0(n2), since the exact computation of each single
primitive takes only 0(1). The average time complexity is, therefore 0(n) [86].
However, the time required for the exact algorithm presented here to perform
the operations is on average 4 times longer than that of the inexact algorithm
(as shown below).

Independent of the statistical analysis of the numerical examples, there
arises a very surprising insight to triangulations as a side effect. The examples
show drastically how large the number of wrong edges is if no error control is
implemented. This number ranges from 1% in stable constellations up to 50%
at close to degenerate constellations. The conclusion is that error control is
unavoidable if one wants to obtain reliable triangulations.

8.3.2 Definitions and Methods for Computing Voronoi
Diagrams

We consider d-dimensional Euclidean space Rd and a set of points, S C Rd.
The Voronoi diagram of S which is one of the most important geometrical data
structures in computational geometry, stores proximity information for the set
5 by dividing the space into Voronoi regions V(p) for points ρ G S according
to the nearest-neighbor rule. They are defined as

V(p) = {x G Rd\p(x,p) < p(x,q), Vg G S\ {p}}.

where ρ denotes the Euclidean distance [12]. Voronoi regions for different points
of S are disjoint. In two dimensions, the Voronoi regions are open polygonal
regions. In order to define the Voronoi diagram we collect first all points of the
Voronoi regions in the open set

VoriS) = [J{V(p)\ptS}.

Each point of the space Rd is then either a point of Vor(S) or a boundary
point of Vor(S), but not both. If d = 2, that is, the space is the plane, the
Voronoi diagram of S is defined as the set of boundary points of Vor(S),

VD(S) = R2 \ Vor{S).

The Voronoi diagram is a regular planar graph of degree three under the
assumption that no four points of S are co-circular [188]. The vertices of
the graph are called Voronoi vertices. They are boundary points of exactly 3
Voronoi regions.

A very important property for the algorithms in the sequel is that each
Voronoi vertex is the center of a circle defined by three points of the set S and

�� �� �� �� ��

268 Robust Computations of Discrete Problems

that no other points of S lie in the interior of the circle, cf. Sec. 8.3.5. This
is known as the empty circle condition.

Many interesting properties of Voronoi diagrams are known. A listing of se
lected properties can be found in [188]. The Voronoi diagram also has numerous
applications in different mathematical and industrial fields [188].

Numerical errors in finite-precision arithmetic are inevitable in the con
struction of the Voronoi diagram, as stated in the paper by Sugihara and Iri
[260]. For example, if any coordinate of the vertex of the VD(S) is a rational
number, infinite precision floating point numbers may be required to repre
sent the coordinate. This cannot be implemented in finite precision arithmetic.
Therefore, the authors introduce a robust topology-oriented incremental algo
rithm for Voronoi diagram construction, where a higher priority is placed on
the topological structure of the diagram rather than on the numerical values.
The numerical stability of the algorithm is guaranteed in the sense that no
matter how poor the precision may be, the algorithm will always produce a
topologically consistent output. The diagram becomes "closer" to the correct
Voronoi diagram as the precision becomes higher. The same idea has been ap
plied to the construction by the divide-and-conquer method. However, as was
mentioned above, this method of Sugihara and Iris while topologically correct
only produces an approximation of the real diagram. Moreover, degenerate
input can increase the time required to perform the task as well as degrading
the accuracy of the result.

We overcome the hurdle of the rounding errors in the following manner:
Instead of computing the Voronoi diagram VD(S) as precisely as possible, we
will calculate the exact Delaunay triangulation (abbreviated Del(S)), which is
defined as the straight line dual of the Voronoi diagram. Del(S) is a graph that
can be obtained by connecting each two points S whose Voronoi regions share
an edge point which is not a vertex. Under the assumption that the points of S
are already machine numbers we construct the Delaunay triangulation in aver
age 0(n2) time, no matter how degenerate the input data, 5, is, since VD(S)
and Del(S) are planar graphs embedded in the plane, so that their complexity
is 0(n), and once we get Del(S), it can be transformed into VD(S) in O(n)
time. We always obtain the exact diagram as a result, which in this connection
means, that the resulting VD(S) will be topologically correct. Numerically it
may, however, be only an approximation of the real VD(S).

Up to now the geometric sites we were dealing with were points. We turn
now to sites which already are geometrical objects, i. e. we focus on spheres in
the space Rd . Let S therefore be a set of such spheres, then a diagram which
corresponds to the Voronoi diagram is the power diagram. (We use the notation
S for sets of spheres too since the steps of the algorithm we will establish are
the same for both kinds of sets.)

First we need some measure for the distance of a point χ of the space to a
given sphere p. This is done by the power function which is defined to be

�� �� �� �� ��

Exact Delaunay and Power Triangulations 269

pow{x,p) = (x - c(p))T(x - c(p)) - r2(p)

(see [12]) where χ G Rd, but χ does not lie in the interior of the sphere, and
where c(p) and r(p) are the center and radius of the sphere.

The power function can be interpreted in the following manner: Draw a
tangent line from χ to the sphere p. Let the tangent touch p, say at the point
y. Then, by the law of Pythagoras, y/pow(x,p) is the Euclidean distance from χ
to y. Or, with other words, y/pow(x,p) represents the distance from the sphere
ρ to the point χ outside the sphere measured along a tangent line through the
point x.

Corresponding to the Voronoi regions in the case of point sites, one considers
in the case, where the sites ρ are spheres, the power cells of ρ G S. They are
defined by

cell(p) = {x G Rd\pow(x,p) < ροιυ(χ,ί), Vt G 5 \ {ρ}}.

In order to define the power diagram of S we collect first all points of the
power cells in the open set

Pcl(S)=\J{V(p)\peS}.

Each point of the space Rd is then either a point of Pcl(S) or a boundary
point of Pcl(S), but not both. If d = 2, that is, the space is the plane and the
spheres are circle (lines), the power diagram PD(S) of S is defined as the set
of the boundary points of Pcl(S),

PD(S) = R2 \ Pcl(S).
In the planar case the sites of S are circles. In this case the power diagram

of 5 is a regular planar graph of degree three under the assumption that no
four sites of S are co-circular [12], that is, there is no solid circle (the boundary
of which need not be a site!) that is outside of the four circles of S and touches
each of the four circles.

When the straight-line dual graph of power diagram PD(S) is drawn be
tween the centers of the circles, it yields a planar triangulation of set of sites,
which we will refer to as a power triangulation (abbreviated Pow(S) in the
sequel).

8.3.3 Methods for Constructing Delaunay and Power Tri
angulations

The correctness of many computational geometry algorithms depends on the
exact computation of one or more simple algebraic expression. The algorithm

�� �� �� �� ��

270 Robust Computations of Discrete Problems

C i r c l e g

χ

chor(p, g) C i r c l e ρ

Figure 8.15: Power diagram

for the exact computation of the Delaunay and power triangulation is a good il
lustration of this fact. We will focus our attention on two methods for Delaunay
triangulation construction, namely, the divide-and-conquer and the incremental
method. The well known divide-and-conquer algorithm, introduced by Guibas
and Stolfi [85], runs in optimal O(nlogn) time. The simple modification of
this algorithm suggested by Dwyer [39] runs in 0(n log log n) expected time,
improved to 0(n) by Katajainen and Koppinen [124]. Both algorithms use
only two geometric primitives: the CCW (Counter Clock Wise) orientation
test and the INCHICLE test. The CCW orientation test is used to find for a
current point of the input set that triangle of the actual state of the triangula
tion which contains the point. The INCIRCLE test enables the determination
of whether a triangle which occurs during the computation belongs to Del(S).
The algorithms for constructing the power triangulation are similar to those
for the Delaunay triangulation. Only the INCIRCLE test has to be modified
for the power triangulation while the CCW test remains the same.

Among the incremental algorithms we can distinguish algorithms based on
incremental construction and on incremental search. The incremental con
struction algorithms (one of which we have chosen for the tests) starts with a
triangle the area of which covers S. This triangle is seen as a Delaunay tri
angulation of itself which commences the initialization of a recursive process.
The recursion consists of adding one point of S after the other and subdividing
the triangle at the same time maintaining the Delaunay triangulation property
till all points of S are subsumed. Then the triangulation of S is terminated
after deleting the initializing triangle, cf. for example, [86, 237].

The incremental search algorithms [40, 147] start already with one triangle
of the final triangulation, and grow the diagram by one valid triangle after the
other, till all points of S are subsumed.

We note that only two primitives, the CCW and the INCIRCLE test, are
used in the described approaches. The result of each test depends on the

�� �� �� �� ��

Exact Delaunay and Power Triangulations 271

computation of the sign of a determinant. If we want to construct a correct
Delaunay triangulation, the value of the determinant has to be computed ex
actly. The approaches used to solve this problem in the literature are based
on an arbitrary-precision arithmetic or integer arithmetic or both. Jiinger et.
al. [120] represent the input data as integers in the range from 0 to Μ and
prove that the result of the determinant computation lies in the range from
0 to 6M 4 . Karasick et. al. [123] use adaptive-precision rational arithmetic.
They represent the data as integers and use an interval filter to improve algo
rithm performance. The algorithm is four times slower than the floating-point
implementation. Fortune and Wyk [62] also implement a number of Delaunay
triangulation algorithms in adaptive-precision arithmetic with interval analysis
as filter. They test their model on some incremental and divide-and-conquer
algorithms and show that the performance of the algorithm has a cost close to
that of floating-point arithmetic.

There are, however, some disadvantages to using integer and adaptive-
precision arithmetic. One of these comes from the fact that not many processors
can perform operations on the arbitrary precision numbers. Therefore, these
operations have to be implemented at the software level and, consequently, they
will be slower than those performed at the hardware level. Another problem
with integer arithmetic is when the precision of the input data increases, the
amount of space and time required for the algorithm grows exponentially, in
proportion to the complexity of the expression. For example, the space required
to store the result of calculation of a 4 χ 4 determinant is 4 times larger than
that for its operands. In fact, if the operands are of single precision, the result
is of the maximum possible precision in most computers - quadruple.

In our case we are interested in developing robust and reliable algorithms
for the computation of Del(S) and Pow(S). We therefore chose the incremental
algorithm of McLain [152] for the exact construction of the Delaunay and the
power triangulation, based on standard floating-point arithmetic. The input
data, S is represented by machine numbers. This is a reasonable assumption
since a triangulation is usually computed as an intermediate part of a larger
computation such that the input data for the triangulation is the output of a
previous computation.

The incremental algorithm has complexity Ο (η2), it is simple to implement
and it is based on only two primitives, the CCW orientation test and the
INCIRCLE test. Both of the two primitives require the exact computation of
the sign of determinants which is done by ESSA. As already done at other
geometrical computations we improve the performance of the algorithm by
using an interval filter before executing ESSA. The reason for doing this is that
if the computation of the CCW or the INCIRCLE tests is well-conditioned, i.e.,
the configurations are not close to being degenerate, then the less expensive
interval evaluation of the determinants will provide the exact sign.

The approach has been tested on the algorithm for incremental construc
tion of the Delaunay triangulation described in [86]. The performance of the

�� �� �� �� ��

272 Robust Computations of Discrete Problems

algorithm is verified by computational experiments described below. The fixed
mantissa length is never exceeded during the computation and can be single
or double precision, etc., depending on the purpose. For simplicity, we assume
single precision computation with mantissa length t. The algorithm we intro
duce will render the exact result provided the input data consists of machine
numbers.

8.3.4 Exact Computation of the C C W Orientation Test
The CCW orientation test is almost identical to the left-turn test, cf. Ch.
IV and is used to locate that triangle among the current triangles during the
computation which contains in its interior a given point, which is, depending
of the class of sites, either the next point of S or the midpoint of the next circle
of S to be processed. This test is seen as a primitive and decides whether a
point lies to the left, right or on a directed line defined by two other points.
The result of the test can be calculated as the sign of a 3x3 determinant. We
assume the coordinates of the points from the input set are machine numbers.
Let P I , P 2 , P 3 be 3 points in the plane such that ρ,· = (xi,yi),i = 1,2,3. If pTpT
denotes the directed straight line segment from pi to pi, then p 3 is to the left,
on or to the right of ρϊρΐ iff

is positive, zero or negative, cf. the description of the left-turn test in Ch. IV.
We know that the determinant is already a sum,

Since pj = (x«,j/i) ,t = 1,2,3 are represented in single precision arithmetic,
the products appearing in (8.2) can be computed exactly using double precision
arithmetic. Thus, we can apply a double precision version of ESSA to the sum
(8.2) and get the correct sign. In order to achieve better performance, we
use again the interval filter. That is, we first apply interval arithmetic to the
expression (8.2). Thus, if the (single precision) interval arithmetic computation
of D gives the interval result D1, then,

When 0 € DT it is not possible to decide the sign of D with the chosen accuracy
of the representation of the intervals and we apply ESSA to compute the sign

1 xi yi
D = 1 x2 1/2

1 X3 J/3

D = XiJ/2 + X2J/3 + X3Vl ~ XlJ/3 - X2J/1 ~ X3J/2- (8.2)

if D1 > 0 then D > 0,
if D1 < 0 then D < 0,
if D1 = 0 then D = 0.

of D.

�� �� �� �� ��

Exact Delaunay and Power Triangulations 273

8.3.5 Exact Computation of the I N C I R C L E Test
We first consider point sites S. When the circle defined by three given points
Pi)P2,P3 £ S does not contain any other point from S, the empty circle con
dition is satisfied, the interior of the triangle pi,P2,P3 does not contain any
further point of S, and the triangle Pi,p2,P3 is a Delaunay triangle.

The INCIRCLE test enables to check whether the current triangles which
occur during the computation, already belong to Del(S). It is performed on a
diagram which consists of a quadruple of points generating 2 adjacent triangles.
The test decides whether the inner edge of the two triangles remains or has to
be flipped so that the triangulation of these 4 points satisfies the conditions of
the Delaunay triangulation.

As the algorithm proceeds recursively, the INCIRCLE test is applied to the
current state of the recursion so that S will then mean the current state of the
point set.

In order to determine which situation occurs, the sign of a 4 x 4 determinant
has to be calculated. Let pt = (ii,y<),i = 1, . . . ,4 be four points in the plane
and assume Pi,pi,P3 (not collinear) define a circle C. Then the relationship of
Pi to C is determined by the sign of the determinant

D =

y\ χϊ + νϊ 1
Xl χΐ + νϊ 1
X3 Ϊ/3 χ\ + νΙ 1
X i V4 x\ + y\ 1

Assume that pi,P2,P3 in this order lie clockwise on the circle. (This is checked
with the CCW test.) Then

if D > 0 then p4 is inside C,
if D = 0 then p4 is on C,
if D < 0 then pA is outside C.

If now D > 0, the diagram consisting of the 2 adjacent triangles {pi,P2,P3j
and {pi,P2,P4} is a Delaunay triangulation of the set {ρι,Ρ2,Ρ3)Ρ4}· If D <
0, the diagram is not a Delaunay triangulation of this set, but the diagram
consisting of the 2 adjacent triangles {p3 ,P4,Pi} and {P3,P4,P2} is (flipping
operation), cf. [30].

Numerically, we have to determine the sign of D. When the determinant is
multiplied through then products of the form

xiVj(xl + vl) = xiVixl + xiV}yl (8-3)

result. Each product of the form XiVjX2. requires quadruple precision for getting
exact results with ESSA if the points are single precision quantities. However,
those expressions could also be accomplished by 4 double precision quantities

�� �� �� �� ��

274 Robust Computations of Discrete Problems

without too much mantissa manipulations. This is done as follows: we start
with XiVjXk in single precision, compute the products Xjj/j and x\ in double
precision, but split each of them immediately in the sum of two single precision
numbers,

XiVj = (xiVj)L + ((xiVj)R, xl = (XI)L + (χ*)β. (8.4)
Finally, we execute the four products

(Χίνί)ΛχΙ)μ, v^ = L,R (8.5)

in double precision. Their exact sum is Xjj/jX2.. We perform the same operations
to calculate Xjj/jj/2.:

XiVi = (xiyj)L + ((Χ < ^) Λ , vl = (VDL + {VDR- (8.6)

Finally, we execute the four products

{χ*νί)ΛυΙ)μ, v^ = L,R. (8.7)
Hence, the determinant is the sum of 192 double precision quantities and the
computation of the sign of D can be done exactly by ESSA. When computing
the determinant, we first apply interval arithmetic as explained in the previous
section and ESSA is only executed when an inconclusive result occurs.

Let us now turn to the case where the sites are circles, that is, the power
triangulation is the target of the computation. Then the form of the 4x4
determinant in the ENCIRCLE test is changed [66]:

xi yi Xi+yl-rl 1
X2 V2 xl + vi-rl 1
xs yz xl + vl-rl ι
X4 i/4 x\ + 2/4 - Λ 1

D =

where c< = (χ*, j/j), i = 1 , . . . , 4 are the centers of circles, and r<, i = 1 , . . . , 4
are the radii of the circles, let ρ = (c, r) be a circle (not necessarily belonging
to S) which does not contain the circles Pi, P 2 , and p3 in its interior (but ρ can
belong to the interiors of one or more of the circles pi, pi, and 03) but which
touches the circles Pi, P 2 , and 03. If such a circle exists it is uniquely defined.

Then the sign of the determinant reflects the following cases: Let the points
C\, C2, and C3 be clockwise ordered. If D < 0 then the interiors of the two disks
which have P4 and ρ as boundaries are not disjoint. If D = 0 then P4 touches
p, but the interiors of the related disks are disjoint (and pi, p2, P3 and p4
are cocircular). If D > 0 then the disks which are generated by p4 and ρ are
disjoint

We have to compute the sum of products in the form

XiVjixl + vl) = XiVjxl + xiVjvl - xiVjrl (8-8)

which is done in the same way as for Del(S) and the determinant will be
computed as a sum of 288 double precision quantities.

�� �� �� �� ��

Exact Delaunay and Power Triangulations 275

8.3.6 Complexity Analysis for the Primitives
We analyse and compare the expected costs of the CCW and INCIRCLE prim
itive calculation for 3 different implementations, the straight implementation
only using single precision machine numbers, the implementation using inter
val arithmetic and the implementation which uses ESSA. In the analysis of the
implementation with ESSA we assume that the average number of iterations
performed by ESSA is one half of the initial number of summands (experiments
confirm this assumption). The total sizes of lists of summands are I = 6 for
the CCW orientation test, / = 192 for the INCIRCLE test in the Delaunay
triangulation and I = 288 for the INCIRCLE test in the power triangulation.
At each iteration of ESSA, at most two additions are performed.

C C W O r i e n t a t i o n T e s t

In the straight implementation the CCW test is calculated by the following
formula:

CCW(pi,p2,P3) = (x2-xi)(V3 - y i) - (xa - xi)(yi - yi)-

This involves 2 multiplications and 5 additions.
In the interval implementation, the calculations are performed using the

same formula, but the operands are represented by intervals. Since an interval
addition requires 2 scalar additive operations, and an interval multiplication re
quires 4 scalar multiplications and comparisons, the total number of operations
for interval CCW test is 10 additions and 8 multiplications. On the average,
the interval implementation is approximately 4 times slower than the direct
implementation, because most of the time is spent doing multiplications. For
the ESSA implementation, the preparation of the list of summands (eqn. (2))
requires 6 multiplications. The ESSA itself requires approximately 2* (6/2) = 6
additions.

I N C I R C L E T e s t for t h e D e l a u n a y T r i a n g u l a t i o n

In the straight implementation with machine numbers, the INCIRCLE test is
calculated by the following formula:

INCIRCLE(puP2,P3,P4)
= D(p!) * CCW(P2,P3,P4) - D(P2) * CCW(pi,P3,p4)

+D(P3) * CCW(pUP2,P4) - Dfa) * CCW(pUP2,P3)

where D(pi) = x2 — y2, i = 1,. . . ,4. As one can count, this requires 27
additions, 12 multiplications and 8 squares.

The interval implementation of INCIRCLE test will therefore require 54 =
2 * 27 additions and 64 = 4*12 + 2*8 multiplications (the interval square
requires only 2 multiplications).

�� �� �� �� ��

276 Robust Computations of Discrete Problems

Primitive
Straight-forward Interval ESSA

Primitive + * + * + *
CCW 5 2 10 8 6 6
INCIRCLE(Delaunay) 27 20 54 64 192 288
EMCIRCLE(Power)(S) 31 24 62 72 288 432

Table 8.11: Total number of operations

For the implementation with ESSA one has to build 48 products of the
form X j j / j X 2 . . Each of the four products need 6 multiplications. Therefore,
288 multiplications are required in total to prepare the list of summands. The
execution of ESSA will require 2 * (192/2) = 192 additions on average.

INCIRCLE Test for the Power Triangulation

In the straight implementation the INCIRCLE test for the power triangulation
is calculated by the following formula:

INCIRCLEipuPi^pi)
= £>(pj) * CCW[p2,p3,p4) - Dfa) * CCW{pupz,Pi)
-rDfa) * CCW{plyp2,Pi) - D(pA) * CCW{pup2,pz)

where p> = fan), c< = (xi,yi), D(pi) = x- - y- - r?, t = 1 , . . . ,4. This
requires 31 additions, 12 multiplications and 12 squares.

The interval implementation of the INCIRCLE test requires 62 = 2 * 31
additions and 72 = 4*12 + 2*12 multiplications.

For the ESSA implementation one has to build 72 products of the form
X i j / j X 2 . Each of the 4 products needs 6 multiplications. Therefore, 432 multi
plications are required in total to prepare the list of summands. The execution
of ESSA will require 2 * (288/2) = 288 additions on average. The performance
results for all the tests are summarized in Table 8.11.

Both the straight-forward and the interval implementations use single preci
sion operations, while the ESSA implementation uses double precision additions
and single precision multiplications.

8.3.7 The Main Scheme of the Incremental Algorithm
We only want to sketch the algorithm in order to show where the primitives
and hence demand for exact computation are located in the computation. I. e.,
we don't discuss sophisticated implementations and versions which are worked
out completely.

The algorithm we consider is based on the incremental construction method
of the Delaunay triangulation [86]. It works for sets 5 of point sites as well

�� �� �� �� ��

Exact Delaunay and Power Triangulations 277

as for classes of circle sites. In the latter case the algorithm is applied to a
set S which consists of the midpoints of the circles, and only the INCIRCLE
test has to be modified. Therefore it suffices to deal only with the Delaunay
triangulation in the sequel.

The idea of the algorithm is the following: Let S = { p i , . . . , p „ } be the set
of points (or the set of midpoints in the case of the power triangulation of sets
of circles). Then a triangle with vertices, say a, 6, c not belonging to S has
to be found the interior of which covers the set S completely. Now let Si =
{a,b,c,pi,...,pi} and TJ the Delaunay triangulation of St for i = 0,...,n. The
essential feature of the incremental construction is that r< can be constructed
using the two primitives if T J - I is known (i = 1 , n) . Since To is the Delaunay
triangulation of So and consists therefore of the triangle a, 6, c, the start of the
recursion is settled too. The final state of the recursion is r „ . Removing the
points a, b, c and all edges with these points as endpoints from this diagram
gives the Delaunay triangulation of S.

The input for the algorithm are the coordinates of the point sites of the given
set 5 in the plane resp. the coordinates of the midpoints of the circles. The
radii of the circles are hidden input parameters as they occur in the INCIRCLE
test only.

A L G O R I T H M 23 (Delaunay Triangulation)

Input: The set S = { p i , . . . , p n } of points in the plane where no 4 points
are cocircular.

Step 1. Find three points a,b,c such that all points of S lie in the interior of
the triangle defined by the three points.

Step 2. Set i = 0 and initialize Ti as the triangulation consisting of a,b,c.

Step 3. Seti = i + l.

Step 4. Find one triangle of T i , say u,v,w, containing p i by applying CCW
tests in an appropriate manner (where by triangle an atomar triangle is
meant, which contains no points of Ti in its interior).

Step 5. If
Pi lies in the interior of triangle u,v,w
then

• subdivide the triangle u, v, w by connecting Pi with each of the points
u, v, w. by a straight line. Let T j + i be that triangulation which arises
from Ti by adding Pi together with the three new triangles. (This
triangulation need not be a Delaunay triangulation. It has first to be

�� �� �� �� ��

278 Robust Computations of Discrete Problems

checked whether the edges of the triangle u, v, w satisfy the neighbor
hood relationship between the vertices also in T j + i . If not, the edges
are switched with the edges of the adjacent triangles. This is done
by calling the following procedure, which is explained below.)

• call LEGALIZEEDGE(uv,Ti+i)

• call LEGALIZEEDGE(vw,Ti+l)

• call LEGALIZEEDGE(wu,Ti+l)

else (pi lies on an edge of the triangle u, v, w, say on wo; let ζ be the third
vertex of the adjacent triangle which has pi as an edge point)

• subdivide the triangles u, v, w and u, ν, ζ by connecting pi with each
of the points w and ζ by straight lines. Let T j + i be that triangula
tion which arises from Ti by adding Pi together with the four new
triangles. (As above, this triangulation need not be a Delaunay tri
angulation and the check for the correct neighborhood relationship
has to be done for the four outer edges of the triangle pair u,v,w
and u,v,z.)

• call LEGALIZEEDGE(uz,Ti+i)

• call LEGALIZEEDGE(zv,Ti+i)

• call LEGALIZEEDGE(vw,Ti+1)

• call LEGALIZEEDGE(m,Ti+l)

S t e p 6. Seti = i + 1.

S t e p 7 . Ifi<ngo to Step 4-

S t e p 8. Discard a,b,c and all incident edges from r „ . The resulting diagram
is the Delaunay triangulation of S.

An essential part of the algorithm is the flipping operation which poten
tially has to be executed when a new point is added to the actual state of the
triangulation in order to maintain the Delaunay property of the triangulation.
This is done by the procedure LEGALIZEEDGE:

Let δΰ be an interior edge of any state of the triangulation, say τ , which
might occur during the execution of the algorithm. Then there are two adjacent
triangles which share uv as edge, say u, v, w and u, v, z. It is well possible that
the edge uv does not satisfy the neighborhood relationship which is required
for the Delaunay triangulation. Then the edge uv is replaced by the edge wz,
which then satisfies the neighbourhood relationship, cf. Fig. 8.16. This process
is frequently called flipping.

The procedure consists of the following steps (its only a finite number of
steps, cf. [30] so the procedure will terminate):

�� �� �� �� ��

Exact Delaunay and Power Triangulations 279

w w

u V u φ V

ζ ζ

Figure 8.16: Flipping the edges

LEGALIZEED GE (ΰϋ,τ) (Legalize an edge or flip it)

Input: An inner edge uv of a triangulation r, and τ itself. Let u,v,w
and u,v,z be the two triangles of τ that share the edge uv, and u,v,w (in this
order) be clockwise oriented.

Step 1 . Set D = INCIRCLE{u, v, w, z), cf. Sec. 8.3.5.

Step 2 . If D < 0 (that is, the edge ΰΰ does not obey the neighborhood rela
tionship and has to be flipped)

• Replace uv with wz (Flipping. Note that τ will be changed by the
flipping process!)

• call LEGALIZEEDGE(UZ,T)

• call LEGALIZEEDGE(ZV,T)

Output: Either the triangulation of the input or a triangulation which
arose from the input triangulation by flipping one or more edges which then
satisfy the neighborhood relationship.

There is not too much to say about the comparison of the numerical costs
of the straight implementation which performs on single machine numbers,
of the algorithm with the exact implementation with uses ESSA and interval
arithmetic as filter. The complexity order of ESSA and of the interval arith
metic operations is independent of the number of sites, say N, of S. Since

then

�� �� �� �� ��

280 Robust Computations of Discrete Problems

the complexity of the exact algorithm is 0{N), and the worst-time complexity
is 0(N2), the same holds for the straight implementation, because the two
implementations are distinguished only by ESSA and interval instead of real
arithmetic operations.

8.3.8 Test Results
Many examples were computed in order to investigate the numerical perfor
mance of the exact algorithm (the one with interval filter and ESSA). For
comparison, the performance of the straight algorithm (that is the plain im
plementation of the algorithm in machine numbers without caring about error
control). The experiments were conducted on a 486DX2/66 PC.

In the first series of experiments we tested the two implementations on
different distributions of points in the following input sets (Sites were points):

• Sites are randomly distributed in a rectangular area (further referenced
as random distribution)

• Sites are distributed at the nodes of a rectangular grid (further referenced
as grid distribution)

• Sites uniformly distributed on a circle line (further referenced as circle
distribution)

• Sites uniformly distributed on the boundary of a square (further refer
enced as square distribution)

The number of tests was 5 for each class of sets. Each set consisted of 100
points. A perturbation parameter, Ρ was also chosen for the tests except for the
random distribution. It set the distance from the original points of the input
data to perturbations in the distance of P. The perturbation was randomly
applied to the input set in question before the computation commenced in
order to generate input data with different rate of degeneracy. Note that grid,
circle, and square distributions are degenerate. The parameter was in the range
from Ρ = 0.1, where the points were significantly perturbed from their original
positions, to Ρ = IE — 9, where the points were only slightly shifted. For
Ρ = 0.1 the distribution practically becomes random.

When Ρ decreases the number of degenerate situations (when four points
are cocircular) increases. We varied the value of perturbation parameter from
IE - 9 (when coordinates of points are perturbed only in the last digit of
mantissa) to 0.1 (when points perturbed in almost all digits of the mantissa).
With small perturbations the number of degenerate situations in the input set
is significant, since the original data in the three perturbation cases is already
degenerate, and with large perturbations the distribution of points is close
to random distribution. If a perturbation had been applied to the random

�� �� �� �� ��

Exact Delaunay and Power Triangulations 281

Ρ
Grid (261 edges) Grid (197 edges]

Ρ ESSA TE TD WE ESSA TE TD WE
1E-1 0 5.71 2.92 0 1 4.67 2.81 0
1E-2 0 5.88 2.92 0 1 4.67 2.80 0
1E-3 8 6.27 2.96 0 17 4.89 2.75 0
5E-4 19 6.32 2.91 1 27 5.66 2.69 0
1E-4 60 7.64 2.91 1 81 6.97 2.64 0
5E-5 66 8.07 2.80 2 114 10.16 2.69 1
1E-5 80 8.46 2.86 9 314 11.54 2.69 3
5E-6 80 8.62 2.86 13 371 13.18 2.75 11
1E-6 83 8.68 3.24 32 362 17.75 2.80 41
5E-7 81 8.52 2.91 30 345 16.85 2.69 54
1E-7 81 8.02 2.98 32 357 17.35 2.69 73
5E-8 81 7.91 2.86 28 354 17.84 2.80 75
1E-8 81 7.91 2.97 27 410 18.89 2.90 80
1E-9 81 7.53 2.92 26 337 18.18 2.74 87

Table 8.12: Algorithm performance for perturbation values on grid

distribution it would have been still a random distribution equally, how the
size of Ρ would have been. Therefore the input data with random distribution
remains unperturbed.

We compare the performance of the exact with that of the straight imple
mentation of the incremental method. The results of the tests are presented in
Tables 8.12 and 8.13. In the table Ρ stands for the perturbation parameter,
ESSA for the number of ESSA calls, TE for the computation time of the exact
implementation (in seconds), TD for the time of the straight implementation,
and WE for the number of wrong edges produced by the straight implementa
tion.

Although it would be sufficient for an exact computation if the input date
would be single precision machine numbers, the tests were executed with double
precision machine numbers. The reason is that the statistics for the computa
tional performance in dependency of the perturbation grants more insight as
the perturbation is applied to each digit of the mantissa, and the more digits
are available the more obvious the dependency can be demonstrated.

The number of ESSA calls grows when the perturbation is decreased. Since
ESSA is the most time consuming test, the growth of TE depends entirely on
this number. The first phenomenon that we can note is that the number of

�� �� �� �� ��

282 Robust Computations of Discrete Problems

Ρ
Square (225 edges)

Ρ ESSA TE TD WE
1E-1 0 5.15 2.97 0
1E-2 0 5.16 3.18 0
1E-3 0 6.35 3.07 0
5E-4 4 6.09 3.08 0
1E-4 8 6.19 3.07 0
5E-5 23 6.01 3.07 0
1E-6 46 6.09 3.02 1
5E-6 46 6.08 3.08 2
1E-6 52 6.09 3.08 6
5E-7 64 6.18 3.07 9
1E-7 63 6.17 3.07 18
5E-8 61 6.09 2.97 24
1E-8 60 6.09 3.07 25
1E-9 58 5.55 2.97 27

Table 8.13: Algorithm performance for perturbation values on square

ESSA calls remains almost constant when the perturbation parameter reaches
some critical value Pmax-

The related statistics is printed out for grid distri
butions in Tables 8.12 and 8.13 At this value of the perturbation the straight
implementation is no longer able to produce reliable results (because it consid
ers many cases as degenerate or close to degenerate), and therefore the number
of wrong edges increases. As it can be seen from Tables 8.12 and 8.13 Pmax

lies between 5E -7 till Ε - 5 depending on the actual constellation.
Figure 4 illustrates the time ratio of the exact and the straight implemen

tation in dependence on the value of the perturbation parameter. The time
ratio is denned as

Tratio = TE/TD.
As we can see, the ratio remains constant after the perturbation reaches the

value P m a x , since the ratio also depends on the number of ESSA calls. Another
phenomenon is that for the circle distribution the ratio is much higher than
that of the grid and square distributions. This can be explained by the fact,
that any four points in the circle distribution are cocircular, hence the interval
filter gives the inconclusive result for almost all INCIRCLE tests. We have
included the ratio for the random distribution. Since the number of ESSA calls
performed for the random distribution is very low (the random distribution does
not depend on the perturbation parameter), the ratio is entirely determined by
the efficiency of interval filter.

The number of wrong edges increases significantly as the perturbation pa
rameter decreases. The straight algorithm encounters more pseudo-degenerate

�� �� �� �� ��

Exact Delaunay and Power Triangulations 283

Figure 8.17: Time ratio vs. perturbation

50%

1E-1 1E-2 1E-3 1E-4 1E-5 1E-6 1E-7 1E-8 1E-9

Figure 8.18: Percentage of wrong edges vs. perturbation

situations. Also sometimes it recognizes actual degeneracy and performs incor
rect CCW tests, which results in wrong edges inserted into the triangulation.
This in turn leads to the increase of wrong edges (see Figure 8.17 and Tables
8.12 and 8.13). The number of wrong edges reaches almost 50% for small per
turbations in the circle distribution. The number of wrong edges in the random
distribution is usually very low (less than 1%).

In the next series of experiments we investigated how the performance of
the exact implementation is affected by the number of points in the input
set. Figure 8.19 illustrates the results for different point distributions. The
time ratio grows slowly and tends to a constant. For example, for the grid
distribution this constant is approximately 10. The ratio is lower for smaller
sets of points because more time is spent in straight and exact algorithms for

�� �� �� �� ��

284 Robust Computations of Discrete Problems

Figure 8.19: Time ratio vs. number of points

miscellaneous tasks. The time ratio for the circle distribution is much higher
than for the other distributions because the circle distribution is a worst-case
example for the algorithm, i. e., the interval filter almost never gives the
conclusive answer for the INCIRCLE tests. The random distribution has the
lowest increase since it generally has only a few close-to-degenerate cases, which
can not be analysed by the interval filter, it is the situation where the straight
implementation produces a wrong result.

The percentage of wrong edges as a function of number of points also tends
to a constant (see Figure 8.18). One can note that for the worst-case example
(the circle distribution) the percentage of wrong edges is much higher than for
other distributions. For the circle distribution the straight algorithm simply
fails to produce a reliable result, generating 30% of wrong edges. For certain
values of perturbation this percentage reaches 50%. Hence, the computational
expense of the exact algorithm pays off by correcting more edges in the Delau
nay triangulation. The percentage of wrong edges for the random distribution
does not exceed 1%.

Independent of the statistical analysis of the numerical examples, one gets
a very surprising insight to triangulations as side effect. The examples have
shown drastically how large the number of wrong vertices is if no error control
is implemented. This number ranges from 1% in stable constellations up to
50% at close to degenerate constellations. One learns that error control is
unavoidable if one wants to obtain reliable triangulations.

8.4 Exact and Robust Line Simplification

8.4.1 Introduction
Line simplification is a data reduction process that occurs for example in car
tography when the scale of a map is decreased. Given a polygon V on a map a

�� �� �� �� ��

Exact and Robust Line Simplification 285

3 5 %

N u m b e r of

Figure 8.20: Percentage of wrong edges vs. number of points

line simplification algorithm generates a simplified polygon with fewer number
of vertices which lies in some neighborhood of V.

It is also used in image processing and pattern recognition as part of the
vectorization process [268, 114] and for general approximation of planar curves
[38, 203].

It is best to develop the concept for line simplification and to explain the
need for it from the point of view of GIS (geographical information systems).
Digital cartography and GIS are developments following the invention of the
electronic computer. These developments have necessitated automating tasks
that were previously manual such as map simplification and other transfor
mations between the various representations used for geographical information
(see [19, 117, 148, 150, 173, 175, 194, 272]). Initially it was thought that the
implementation of these tasks on a computer would lead to representations
of geographical data which would be reproduced without error on any device.
This was found to be optimistic for example by Visvalingam-Whyatt [268] who
discussed the influence of rounding errors on a version of the Ramer-Douglas-
Peucker [34, 203] algorithm for (straight) line simplification (abbreviated the
R-D-P algorithm in the sequel).

The reason for simplification is that details easily visible in a cartographic
map at a given scale can often not be displayed effectively at a smaller scale
due to cluttering. When a scale was decreased in manual cartography, line
simplification was done by a cartographer who would simplify using a pen,
an erasing tool or both. These tools were employed to bring out important
features of a map eliminating unwanted detail. The implementation of this
process on a computer resulted in the development of a number of algorithms
dealing with various aspects of simplification. Each of the algorithms delivers
different results. The choice of algorithm depends on the user's experience
and preference as well as factors such as purpose, database issues versus map
simplification, and even the geomorphology of the data being simplified. An

�� �� �� �� ��

286 Robust Computations of Discrete Problems

optimal approach might be to develop an artificial intelligence based algorithm
using knowledge elicited from skilled cartographers.

A reasonable requirement could be that the results should be reproducible
for a given algorithm, It was shown by [268] that even this reasonable goal was
not easily achieved due to numerical errors. We quote [273] discussing GIS
data bases:

A major problem with spatial data is the control of error propaga
tion under spatial operations. Further research is needed on finite
precision geometry and multiple resolution techniques.

This problem might taken on greater importance in web environments when
GIS is distributed and issues of reproducibility and correctness of algorithms
are becoming essential.

As a hypothetical example from another area suppose that in a military
campaign the troops rely on a cartographic database that is distributed to the
troops in the field over a communications network. Unfortunately, the informa
tion can only be displayed on a low resolution device so that line simplification
has to be performed. If the simplification parameters for the local displays are
all the same then the GIS information should be identical. It is easy to envision
situations where conflicting information would lead to disastrous results.

Almost all of the problems which are due to rounding errors can be avoided
in the R-D-P algorithm if variable precision arithmetic is used, cf.[273]. How
ever, the computational costs are then high since the length of the intermediate
results can increase exponentially. In this paper, based on [223], we propose an
approach to the rounding error problem in GIS algorithms that achieves the
same result as variable multiple precision arithmetic at a much lower compu
tational cost.

The R-D-P algorithm is not uniquely defined since there are a number of
versions that differ in some of the details of the algorithm and since some of
the implementation details are left open in all of the published versions. In this
paper we therefore first define a prototype algorithm that specifies the details
of implementation in order to be precise and able to guarantee reproducibility
of the exactly computed result.

The R-D-P algorithm was chosen since it is widely used and hence a suitable
vehicle for a discussion of stability, robustness and reproducibility in the field
of GIS. The choice of the R-D-P algorithm does, however, not imply that we
maintain that it is the most suitable algorithm for line simplification now and
in the future. If there is another algorithm that can be shown to be more
suitable from the GIS point of view then we would maintain that it also should
be subject to the same demands for stability, robustness and reproducibility as
we have established for the R-D-P algorithm.

To deliver the exactly computed result we proceed as follows: The compu
tations of the prototype algorithm are first executed using interval arithmetic.

�� �� �� �� ��

Exact and Robust Line Simplification 287

In this manner rounding errors are kept under control and the computations
produce intervals as results which are guaranteed to include the results of the
underlying exact, that is, error free computations, cf. [165], [132], [212]. (Any
other software or hardware which is able to produce guaranteed bounds for
the numerical errors can also be used as an alternative to interval arithmetic.)
During the interval arithmetic computation each interval result will be checked
to see if it is small enough to make a guaranteed decision with respect to the
flow of the computation. If a decision is not possible then the part computation
which leads to such an interval is reformulated so that ESSA can be applied.
The decisions which are obtained with ESSA are then completely correct. The
logical flow as well as the mathematical underpinnings of the R-D-P algorithm
are not changed by this reformulation.

This particular implementation of the R-D-P algorithm is therefore robust,
rounding error free and produces reproducible results, provided the input data
is represented exactly.

A recent paper by Franklin [65] calls for such algorithms. He states that
α fragile implementation may process small test cases, while failing on large,
realistic examples, perhaps because a neglected round-off error deep inside the
code caused a topological inconsistency that, much later was fatal. The robust
version of the R-D-P algorithm presented in this paper avoids these inconsis
tencies.

The remainder of this section consists of two parts. That is, Subsec. 8.4.2
describes a prototype R-D-P algorithm and Subsec. 8.4.3 shows how to re
formulate certain parts of the prototype R-D-P algorithm so that it can be
handled with ESSA. An interval filter is incorporated which accelerates the
computation.

8.4.2 The Ramer-Douglas-Peucker Line Simplification Al
gorithm for Polygons

Cartographic line simplification is a surprisingly delicate task which has turned
out to be rather difficult to quantify. A review of some of the algorithms can
be found in [160] or in [161]. Most of the algorithms compute simple geometric
primitives for the line (which is generally a polygon, also called a broken line),
which are then used to decide whether the line should be simplified or not. For
our purposes we selected the R-D-P algorithm as the vehicle for our discussions
since it is probably the most popular algorithm due to its simplicity and early
publication.

The original R-D-P algorithm was described rather informally [34] where the
first vertex of a polygon was called an anchor point and where a second vertex
of the polygon selected according to some rule was called a floater. Several
interpretations of the algorithm are possible depending on how the floater is
selected. For example, consider simplifying the polygon in Figure 8.21.

�� �� �� �� ��

288 Robust Computations of Discrete Problems

Figure 8.21: A non-unique R-D-P simplification

�� �� �� �� ��

Exact and Robust Line Simplification 289

Figure 8.22: An e-strip

Points P, Q, S and Τ are equidistant from the line connecting A and B.
The anchor point is chosen as A and the remaining points have been chosen
in turn to be the floater. The procedure procedure described in [34] is then
followed obtaining a simplified line from A to the floater (using a tolerance
slightly less than the distance from the line to the floater). The polygon from
the floater to Β is also simplified in the figure. There are four choices of floater
and hence there are four different simplified polygons as shown in 8.21.

Because of the ambiguity in selecting the floater and because of the problems
that can occur in numerical computations a precise definition of a version of
the R-D-P was needed.

We focused on a precise recursive prototype version since one of the aims of
the paper is to present an algorithm that delivers reproducible results. This is
clearly not possible unless the computational steps are completely determined
in the algorithm.

Let A and Β be two points in the plane. Then a straight line segment
between A and Β is denoted by AB. If X\, Xi,..., Xn is a sequence of points
and Ci = XiXi+i, then V = C\ U Ci U . . . U Cn-i is a polygon.

If Ρ is a point and C a straight line segment then by d(P, C) we mean
the Hausdorff distance between Ρ and C defined as min ||P — Λ"|| w.r.t. all
X G C where the norm is the Euclidean standard norm. Furthermore the region
formed by points X satisfying d(X, C) < e is called an epsilon-strip around C
or, better, an epsilon-neighborhood of C , cf. Figure 8.22 following Perkal [193].

The typical computations in cartography are executed so that questions
such as "is point Ρ closer to line C than point Q in Figure 8.22"? can be
answered. The subsequent flow of the algorithm depends strongly on the answer
to this question. If Ρ and Q are approximately equidistant to C then small
perturbation in P, Q or C can have a large effect on the final simplification.
Examples of this are found in [268] where the implementation of the R-D-P
algorithm for different computer systems is explored.

Let the polygon V to be simplified be given by the vertices A, Xi,...,Xn,
B, in this order. Then A and Β are the two endpoints of V, and V = Ci L)Ci U

�� �� �� �� ��

290 Robust Computations of Discrete Problems

Figure 8.23: Line to be simplified

. . . U Cn+i where C\ = ΑΧχ, Ci = Xi-\Xi,i = 2,.. .n and Cn+i = XnB, The
line segment Β = AB is known as the base line or the anchor-float line of the
polygon [268]. If all points X\,...,Xn lie in an e-strip around B, we say the
epsilon criterion w.r.t. Β is satisfied.

The essence of the R-D-P algorithm is that the polygon V = C\ L)C2 U · -. U
C„+i is deleted and replaced by β as simplification if the points X\,...,Xn

satisfy the epsilon criterion w.r.t. B. If the epsilon criterion is not satisfied,
the polygon is divided into two smaller polygons, Vi = C\ U C2 U . . . U Cj and
Vr = Cj+ι u £ j + 2 U . . .υ£„+ι· The dividing point is selected as a point with
maximum distance to the anchor line, B, see Figure 8.23. If there is more than
one with maximum distance to the line then the point with minimum index is
chosen. The algorithm is now recursively executed for each of the two smaller
polygons.

The prototype version of the R-D-P algorithm we present differs slightly
from the version given in [102] or in [161] when choosing the unique division
point. The execution of the computational steps of the algorithm are, however,
completely different in our case, since the computation of distances is avoided
(real valued) and replaced by comparisons of distances (Boolean valued), which
can be done rounding error free, cf. Subsec. 8.4.3. The cycles dealt with in
[268] are not considered since we wanted a precise, but not overly complex
prototype algorithm which is transparent and easy to describe and discuss.

ALGORITHM 24 (Ramer-Douglas-Peucker)
Input: Points Α, Χι,...,Xn, Β and tolerance c.

�� �� �� �� ��

Exact and Robust Line Simplification 291

Step 1. Set Β = AB and V = Α Χ Λ U XiX2 U · • • U Xn-iXnXnB.

Step 2. If η = 0 then ^oto 5.

Step 3 . Compute j s.t. d(Xj,B) > d(Xi,B),i = l , . . . ,n and d{Xj,B) >
d{Xi,B),i = \ , . . . , j - \ .

Step 4. Ifd{Xj,B) < e then replace the polygon V with Β and go to 8.

Step 5 . LetBL = AX~, VL = AXjJJ U · · · Xj-iXj, BR = XjB, V R =
XjXj+ι U · · · U X„-iXn U XnB.

Step 6. Co// iZomer-Doup/as-Peucfcer with input A, X\,..., A j - i , Xj and ep-
silon resulting in straight line segments Ci,..., Ck as output such that
VL = Ci U · · · U Ck is a polygon with endpoints A and Xj.

Step 7 . Call Ramer-Douglas-Peucker with input Xj, Xj+i, • • • ,Xn, Β and
epsilon resulting in straight line segments Ck+ι > - ·, Cm as output such
that V R = Ck+ι U · · · U Cm is a polygon with endpoints Xj and B.

Step 9 . Output: Lines C\,...Cm such that V = Ci U · · · U C m is a polygon
with endpoints A and B.

Note that the output in Step 8 is not necessarily the result of the complete
simplification process since it might just be an intermediate result from Step 2
or from Step 4 in some branch of the recursive process. When this branch is
terminated then this intermediate result is dealt with by another branch.

If one reflects for a moment on the flow of the algorithm it is clear that the
only floating point operations in the algorithm which are subject to rounding
errors are the evaluations of distances. An unstable calculation of these dis
tances will therefore cause an instability in the determination of the index
in Step 3 and also for the Boolean statement of whether Xj lies in the e-strip
around Β or not. It can in each singular case easily be decided by interval arith
metic whether the influence of the rounding errors is significant because of the
guaranteed error bounds which are part of the interval arithmetic computation:

For example, let the interval results of the computations when entering Step
3 be Di for d(Xi, B) for t = 1 , . . . , η and Dj > Di for t φ j . Clearly, for this
case Xj is the point with maximum distance to B, and no further processing is
necessary.

If we have the situation that Di = [10,10.001], D9 = [10.001,10.002] and
Di < Dg for all t φ 1,9, it cannot be decided whether j = 1 or j = 9 at the
current state of the computation: Certainly, it is most likely that j = 9, but
j = 1 would be the result in the rather rare case that d(X\,B)= d{X9,B)=
10.001. In order to satisfy the claim for robustness and reproducibility, it has
to be decided which of 1 or 9 is the real dividing index. In this case, a rounding
error free comparison of the two distances d{X\,B) and d(Xg, B) is necessary.

�� �� �� �� ��

292 Robust Computations of Discrete Problems

Note, however, it is only one comparison, independent of the number of vertices
of the polygon.

We sum up and proceed as follows in order to determine the point Xj of
Step 3 of Alg. 24 where the polygon is divided:

1. Determine an interval, say D*, which has the largest lower boundary
among the inclusions Di, i = 1 , . . . ,n. (This is the same work as deter
mining the largest number out of a set of numbers.)

2. All the intervals where the upper boundary is (strictly) smaller than the
lower boundary of D* are removed since they cannot contain Xj.

3. For the remaining intervals it is suspected that they contain d(Xj,B).
Generally, only one interval is remaining which then must contain d(Xj,B),
and Xj and the splitting index j has been found. If several intervals re
main, simple interval arithmetic is no longer helpful, and the distances
which correspond to these intervals are compared rounding error free with
ESSA as will be explained below.

The execution of the e-criterion in Step 4 of Alg. 24 is very simple. Note that
Step 4 always has to start with Dj even if ESSA had to be used to determine
3'

1. If the upper boundary of Dj is smaller or equal to e, the e-criterion is
guaranteed to be satisfied.

2. If the lower boundary of Dj is (strictly) larger than e, the e-criterion is
guaranteed not to be satisfied.

3. Hence, if e € Dj, no decision is possible so far, and the comparison has
to be made rounding error free with ESSA.

How this can be incorporated into the algorithm is explained in the next
section.

8.4.3 Exact Computations of the Comparisons
The comparisons which are listed at the end of the previous section are now
translated into algorithmic steps that can be processed using ESSA. We start
with some general facts about the orientation and the area of a triangle and
relate these to the computational steps required for the algorithm.

Let points A = (αχ,αν), Β = (bx,bv), C = (cx,cv) and the line segment
C = AB be given and consider the determinant

8

a t bx cx

= Oy by Cy (8.9)
1 1 1

�� �� �� �� ��

Exact and Robust Line Simplification 293

This determinant can be interpreted in two ways. The first interpretation
is that s/2 provides the oriented area of the triangle with vertices A, B, and
C (in this order). The second interpretation is that the sign of s provides the
orientation of the three points. More precisely, if s > 0 the points A, Β and
C are ordered counter clockwise, if s = 0 then they lie on a line and if s < 0
they are ordered clockwise. This is called the orientation test. Equivalently,
the sign of s determines on which side of C the point C lies. In this case,
the line segment C is assumed to be directed from A to B. More precisely, if
s > 0 the point C lies to the left of the line C, if s < 0 the point C lies to
the right of the line C. If, s = 0 the point C lies exactly on the straight line
(but not necessarily on the line segment) going through A and B. These tests
are well-known in computational geometry, see for example Preparata-Shamos
[198]. One recognizes that we have the same formalism as at the left-turn test
in Ch. 4.

We will need the orientation test to find out on which side of the base line
the polygon points Xi lie which will be needed for determining the sign of s.
The area of the triangle given by its corners A, B, and Xi will be needed since
it is proportional to the normal distance from the segment AB to the point Xi.

As one can see, the computation of the determinant is subject to rounding
errors even if the entries of the determinant are exactly representable in the
machine. Hence intermediate results and also the final simplification can be
falsified. We again emphasize that the purpose of ESSA is to avoid the rounding
errors.

In order to use ESSA the determinant (8.9) has to be expanded as a sum.
We obtain

s = axby + bxCy + cxay — axcy — bxay — cxby. (8.10)

If the quantities ax,ay,bx,by,cx,cy are all stored as single precision machine
numbers the products axby etc. require double precision for their exact rep
resentation and the sign of (8.10) can be computed using a double precision
version of ESSA. Alternately, each double precision product can be split into
two single precision parts so that (8.10) is a sum of 12 single precision numbers
and only a single precision version of ESSA in needed.

We now need an executable formula for the distance of a point Ρ to the
anchor line Β = AB, which can be found for example, in [161]. The formula
provides a decision as to where Ρ lies with respect to the line Β with reference
to Figure 8.24:

• d(P, B) = ||P - A||, if Ρ is outside A.

• d{P,B) = ||P - B||, if Ρ is outside B.

• d(P,B) = \s\/\\A - B\\, Ρ is inside both A and B.

The third case of this formula is also valid in the boundary case where A
or Β is nearest and Ρ — A resp. Ρ — Β is orthogonal to B.

�� �� �� �� ��

294 Robust Computations of Discrete Problems

Figure 8.24: The three regions

The cosine of the angle between the vectors Β — A and Ρ — A as well as
between the vectors A — Β and Ρ — Β gives a criterion to decide which of the
three cases for the distance formula applies, cf. [161].

Ρ is outside Β iff
(P-A)-(B-A)
| | P - A I I I I S

where "·" is the standard inner product in the plane, R2, and the norm is the
Euclidean norm. Hence, Ρ is outside A iff

(Px - ax)(bx - ax) + ipy - av){by - a„) < 0. (8.11)

It is easy to see that (8.11) can be represented exactly as a sum of eight numbers
in double mantissa length, so that (8.11) can be handled with ESSA.

Similarly, Ρ is outside Β iff

(Px - bx)(ax - b x) + (p v - bv){ay - b y) < 0. (8.12)

Finally, Ρ is inside A and Β iff neither (8.11) nor (8.12) holds.
With these formulas, it is possible to decide precisely which of the 3 cases

of the formula for the distance d(P, B) is applicable. Since the distance formula
is only used for comparisons and its value is never computed, we have to know
the sign in order to make the distance formula accessible to ESSA. That is, if
sign a > 0 then |s| = a, and if sign s < 0 then |e| = —a. The sign can first
be determined with interval arithmetic, and if not successful, with ESSA using
(8.10).

If the comparison of distances d(P, B) and d(Q, B) of 2 points Ρ and Q is
required one proceeds as in the following steps:

�� �� �� �� ��

Exact and Robust Line Simplification 295

1. One has to determine, which cases of the distance formulas are valid for
Ρ and Q.

2. If the comparison is involved in the cases \\P - A||, \\P - B\\, \\Q — A\\
or \\Q — Β|| just raise the norm to the power 2 (then the square roots
vanish), multiply through, and apply ESSA.

3. If the comparison is involved in the cases |sp|/||A - B\\ and | S Q | / | | A - B\\
where a ρ and sg are the determinants for Ρ and Q, resp., cancel the
denominators, determine the signs of ap and S Q , replace \ap\ by ±sp
and | S Q | by ±8Q in order to avoid absolute values, and apply ESSA for
the comparison.

4. If one of the first two cases of the distance formula is connected with the
third case, for example, ||P - A|| with |ag|/||A - 1 ? | | the comparison is
executed via ||P - A|| 2 | |A - B | | 2 and | S Q | 2 = S Q . These expressions are
multiplied through and ESSA is applicable. The occurring summands
are of quadruple mantissa length, but can be split up into summands of
double or single mantissa length as explained before.

The comparisons in Step 4 of Alg. 24 are processed analogously.
The ideas presented above have been implemented in Java and the program

can be tested at

h t t p : / / w w w . u c a l g a r y . c a / " r o k n e

�� �� �� �� ��

http://www.ucalgary.ca/%22rokne

296 Bibliography

�� �� �� �� ��

B i b l i o g r a p h y

[1] Akl, S. G., Toussaint, G. T.: A fast convex hull algorithm. Info. Proc.
Letters 7, pp. 219-222 (1978).

[2] Alander, J.: On interval arithmetic range approximation methods of poly
nomials and rational functions. Computers and Graphics 9, pp. 365-372
(1985).

[3] Albrycht, J., Wisniewski, H. (eds.): Proc. Polish Symp. Interval and Fuzzy
Math. Inst. Math., Tech. Univ. Poznan (1985).

[4] Alefeld, G.: Intervallrechnung Uber den komplexen Zahlen und einige An-
wendungen. Dissertation, Universitat Karlsruhe (1968).

[5] Alefeld, G., Herzberger, J.: Einfuhrung in die Intervallrechnung. Bibli-
ographisches Institut, Mannheim (1974).

[6] Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Aca
demic Press, New York (1983).

[7] Alefeld, G., Rokne, J.: On the interval evaluation of rational functions in
interval arithmetic. SIAM Journal on Numerical Analysis 18, pp. 862-870
(1981).

[8] Allgower, E. L., Georg, K.: Numerical Continuation Methods. An Intro
duction. Springer-Verlag, Berlin (1990).

[9] Andrew, A. M.: Another efficient algorithm for convex hulh in two di
mensions. Information Processing Letters 9, pp. 216-219 (1979).

[10] Arvo, J.: Transforming axis-aligned bounding boxes. In: [69], pp. 548-550
(1990).

[11] Arvo, J.: A simple method for box-sphere intersection testing. In: [69], pp.
335-339 (1990).

[12] Aurenhammer, F.: Power diagrams: properties, algorithms, and applica
tions. SIAM Journal of Computing 16, pp. 78-96 (1987).

297

�� �� �� �� ��

298 Bibliography

[13] Avnaim, F., Boissonanat, J-D., Devillers, 0., Preparata, F.P., Yvinec,
M.: Evaluation of a new method to compute signs of determinants. Proc.
of the Eleventh Symposium on Computational Geometry. ACM Press, pp.
C16-C17 (1995).

[14] Bao, P., Rokne, J.: Low complexity k-dimensional Taylor forms. Applied
Mathematics and Computation 27, pp. 265-280 (1988).

[15] Bartels, R., Beatty, J., Barsky, B.: An Introduction to Splines for Use in
Computer Graphics and Geometric Modeling. Morgan Kaufmann (1987).

[16] Bauch, H., Jahn, K.-U., Oelschlagel, D., Siisse, H., Wiebigke, V.: Inter-
vallmathematik - Theorie und Anwendungen. Math.-Nat. Bibl., Bd. 72,
BSB B.G. Teubner Verlagsges. Leipzig (1987).

[17] Baumann, E.: Optimal centered forms. Freiburger Intervall-Berichte 87/3,
Institut fur Angewandte Mathematik, Universitat Freiburg, pp. 5-21
(1987).

[18] Bezier, P.: The first years of CAD/CAM and the UNISURF CAD system.
In: [195], pp. 13-26 (1993).

[19] Blakemore, M.: Generalization and error in spatial data bases. Carto-
graphica 21, pp. 131-139 (1987).

[20] Bohm, W., Farin, G., Kahmann, J.: A survey of curve and surface methods
in CAGD. Computer Aided Geometric Design 1, pp. 1-60 (1984).

[21] Bronnimann, H., Burnickel, C. and Pion, S.: Interval arithmetic yields ef
ficient dynamic filters for computational geometry. Proc. of the fourteenth
annual symposium on computational geometry. ACM Press, pp. 165-174
(1998).

[22] Biihler, K.: Fast and reliable plotting of implicit curves. Proc. of the
Workshop of Uncertainty in Geometric Computations, The University of
Sheffield, 5-6 July 2001. Kluwer, forthcoming.

[23] Burnickel, C , Funke, S., Seel, M.: Exact geometric predicates using cas
caded computation. Proc. of the fourteenth annual symposium on compu
tational geometry. ACM Press, pp. 175-183 (1998).

[24] Chan, Τ. M.: Output-sensitive results on convex hulls, extreme points and
related problems. Proc. of the eleventh annual symposium on computa
tional geometry. ACM Press, pp. 10-19 (1995).

[25] Chandler, R.: Bezier Curves. 1990 Mathematical Sciences Calendar, pp.
Jan.-March, Rome Press Inc. (1989).

�� �� �� �� ��

Bibliography 299

[26] Chazelle, Β., Dobbin, D. P.: Intersection of convex objects in two and three
dimensions. Journal of the Association for Computing Machinery 34, pp.
1-27 (1987).

[27] Conte, S. D., de Boor C : Elementary Numerical Analysis, An Algorithmic
Approach. Third Ed., McGraw-Hill, New York (1980).

[28] Csendes, T.: Convergence properties of interval global optimization algo
rithms with a new class of interval selection criteria. J. Global Optim. 19,
pp. 307-327 (2001).

[29] Csendes, T., Ratz, D.: Subdivision direction selection in interval methods
for global optimization. SIAM J. Numer. Anal. 34, pp. 307-327 (2001).

[30] de Berg, M., van Krefeld, M., Overmars, M., Schwarzkopf, O.: Computa
tional Geometry. Algorithms and Applications. Springer-Verlag, New York
(1997).

[31] De Lorenzi, M.: The XYZ GeoServer for geometric computation. In: IGIS
'94: Geographic Information Systems, LNCS 884, Springer-Verlag, Berlin,
pp. 202-213 (1994).

[32] Dobkin, D., Silver, D.: Recipes for geometry and numerical analysis, Part
I.: An empirical study. Proc. of the Fourth ACM Symp. on Computational
geometry, pp. 93-105 (1988).

[33] Dobkin, D., Silver, D.: Applied computational geometry: towards robust
solutions of basic problem. Journal of Computer and System Science 40,
pp. 70-87 (1990).

[34] Douglas, D. H., Peucker, Τ. K.: Algorithm for the reduction of the num
ber of points required to represent a digitized line or its caricature. The
Canadian Cartographer 10, pp. 112-122 (1973).

[35] Douglas, D.: It makes me so CROSS. In: D.J. Peuquet and D.F. Marble
(eds.): Introductory readings in Geographic Information Systems. Taylor
and Francis Ltd., London, pp. 303-307 (1990).

[36] Drabek, K.: Plane curves and constructions. In: K. Rektorys (ed.): Survey
of Applicable Mathematics, The M.I.T. Press, Mass., pp. 150-204 (1969).

[37] Duff, T.: Interval arithmetic and recursive subdivision for implicit func
tions and constructive solid geometry. Computer Graphics 26, pp. 131-138
(1992).

[38] Dunham, J. G.: Optimum uniform piecewise linear approximation of pla
nar curves. IEEE Tran. Pattern Anal, and Machine Intelligence PAMI-8,
pp. 67-75 (1986).

�� �� �� �� ��

300 Bibliography

[39] Dwyer, R.: A fast divide and conquer algorithm for constructing Delaunay
triangulations. Algorithmica 2, pp. 137-151 (1987).

[40] Dwyer, R.: Higher-dimensional Voronoi diagrams in linear expected time.
Discrete and Computational Geometry 6, pp. 343-367 (1991).

[41] Edelsbrunner, H., Miicke, E.P.: Simulation of simplicity: A technique to
cope with degenerate cases in geometric algorithms. Proc. of the Fourth
Annual Symposium on Computational Geometry. ACM Press, pp. 118-
133 (1988).

[42] Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cam
bridge University Press, Cambridge (2001).

[43] Ely, J. S.:The VPI Software package for variable precision interval arith
metic. Interval Computations 1993, pp. 135-153 (1993).

[44] Enger, W.: Interval ray tracing - a divide and conquer strategy for realistic
computer graphics. The Visual Computer 9, pp. 91 - 104 (1992).

[45] Espelid, T. O.: On floating point summation. SIAM Review 37, pp. 603-
607 (1995).

[46] Farm, G.: Curves and Surfaces for CAGD. (Fourth edition) Academic
Press, Boston, (1997).

[47] Farouki, R. T., Rajan, V. T.: On the numerical condition of polynomials in
Bernstein form. Computer Aided Geometric Design 4, pp. 191-216 (1987).

[48] Farouki, R.T., Rajan, V.T.: Algorithms for polynomials in Bernstein form.
Computer Aided Geometric Design 5, pp. 1-26 (1988).

[49] Farouki, R. T.: Numerical stability in geometric algorithms and represen
tations. In: D. C. Hanscomb (ed.): Proceedings Mathematics of Surfaces
III, Oxford University Press, New York (1989).

[50] Farouki, R. T.: Computing with barycentric polynomials. The Math. In
telligencer 13, pp. 61-69 (1991).

[51] Farouki, R. T.:' Pythagorean-hodograph curves in practical use. In: R.
Barnhill (ed.): Geometry Processing for Design and Manufacture, SIAM,
Philadelphia, pp. 3-33 (1992).

[52] Faux, I. D., Pratt, M. J.: Computational Geometry for Design and Man
ufacture. John Wiley, New York (1979).

[53] de Figueiredo, H., Stolfi, J.: Adaptive enumeration of implicit surfaces
with affine arithmetic. Computer Graphics Forum 15, pp. 287-296 (1996).

�� �� �� �� ��

Bibliography 301

[54] Foley, J. D., Van Dam, Α., Feiner, S. K., Hughes, J. F.: Computer Graph
ics, Principles and Practice (Second edition). Addison-Wesley, Reading,
pp. 431-445 (1990).

[55] Fomia, N.: A robust and fast convergent interval analysis method for the
calculation of internally controlled switching instants. IEEE Trans, on Cir
cuits and Systems 43, pp. 191-199 (1996).

[56] Forrest, A. R.: Geometric computing environments: Computational geom
etry meets software engineering. In: R. A. Earnshaw (ed.): Theoretical
Foundations of Computer Graphics and CAD. NATO Advanced Study
Institute Series Vol 40, Springer Verlag, New York, pp. 185-197 (1987).

[57] Forsythe, G.: What is a satisfactory quadratic equation solver. In: B.
Dejon and P. Henrici (eds.): Constructive Aspects of the Fundamental
Theorem of Algebra. Wiley-Interscience, New York, pp. 53-61 (1969).

[58] Forsythe, G.: PitfalU in computation, or why a math book isn't enough.
American Math. Monthly 77, pp. 931-956 (1970).

[59] Fortune, S.: Stable maintenance of point set triangulations in two dimen
sions. 30th Symposium on Foundations of Computer Science, pp. 494-499
(1989).

[60] Fortune, S.: Numerical stability of geometric algorithms. In: P. J. Lau
rent, A. Le Mehauto and L. L. Schumaker (eds.): Curves and Surfaces.
Academic Press, Boston, pp. 189-192 (1991).

[61] Fortune, S.: Numerical stability of algorithms for 2D Delaunay triangula
tions. International Journal of Computational Geometry and Applications
6, pp. 193-213 (1995).

[62] Fortune, S., Wyk, C : Efficient exact arithmetic for computational ge
ometry. Proceedings of the Ninth Annual Symposium on Computational
Geometry. ACM Press, pp. 163-172 (1993).

[63] Fortune, S., Wyk, C : Static analysis yields efficient exact integer arith
metic for computational geometry. ACM Transactions on Graphics 15, pp.
223-248 (1996).

[64] Franklin, W. R.: Efficient polyhedron intersection and union. Proc. Graph
ics Interface 82, Canadian Information Processing Soc, Toronto, pp. 73-80
(1982).

[65] Franklin, W. R.: Applications of analytical cartography. Cartography and
Geographic Information Science 27, pp. 225-237 (2000).

�� �� �� �� ��

302 Bibliography

[66] Gavrilova, Μ., Rokne, J.: An efficient algorithm for construction of the
power diagram from the Voronoi diagram in the plane. International Jour
nal of Computer Mathematics 11, pp. 3-4 (1996).

[67] Gavrilova, M., Rokne, J.: Reliable line segment intersection testing.
Computer-Aided Design 32, pp. 737-745 (2000).

[68] Gavrilova, M., Rokne, J.: Computing line intersections. Int. J. of Image
and Graphics 1, pp. 217-230 (2001).

[69] Glassner, A.S.: Graphics Gems. Academic Press, New York (1990).

[70] Gagnet, M., Hervo, J.-C, Pudet, T., Van Thong, J.M.: Incremental com
putation of planar maps. Computer Graphics (SIGGRAPH' 89) 23, pp.
345-354, (1989)

[71] Gallier, J.: Curves and Surfaces in Geometric Modeling, Theory and Al
gorithms. Morgan Kaufmann, San Francisco (1999).

[72] Garloff, J.: Interval mathematics. A bibliography. Freiburger Intervall-
Berichte 6, pp. 1-122 (1985).

[73] Garloff, J.: Bibliography on interval mathematics. Continuation.
Freiburger Intervall-Berichte 2, pp. 1-50 (1987).

[74] Goldstein, A. J., Richman, P. L.: A midpoint phenomenon. Journal of the
A.C.M. 20, pp. 301-304 (1973).

[75] Goldman, R. N.: Identities for the univariate and bivariate Bernstein basis
polynomials. In: [192], pp. 149-162 (1995).

[76] Golin, M. and Sedgewick, R.: Analysis of a simple yet efficient convex
hull algorithm. Proc. of the fourth annual symposium on computational
geometry. ACM Press, pp. 153-163 (1988).

[77] Graham, R.: An efficient algorithm for determining the convex hull of a
finite planar set. Information Processing Letters, 1, pp. 132-133 (1972).

[78] Grandine, Τ. Α.: Computing zeroes of spline functions. Computer Aided
Geometric Design 6, pp. 129-136 (1989).

[79] Gravesen, J.: The length of Bizier curves. In: [192], pp. 199-205 (1995).

[80] Greene, D., Yao, F.: Finite-resolution computational geometry. Proceed
ings of the 27th Annual Symposium on Foundations of Computer Science.
ACM Press, pp. 143 - 152 (1986).

[81] Greene, N.: Detecting intersection of a rectangular solid and a convex
polyhedron. In: [101], pp. 74-82 (1994).

�� �� �� �� ��

Bibliography 303

[82] Gries D. and Stojmenovic I.: A note on Graham's convex hull algorithm.
Inform. Process. Lett. 25, pp. 323-327 (1987).

[83] Griewank, Α., Corliss, G. (eds.): Automatic Differentiation of Algorithms.
SIAM, Philadelphia (1991).

[84] Guddat, J., Vazquez, F. G-, Jongen, Η. T.: Singularities, Pathfollowing,
and Jumps. Wiley, Chichester (1990).

[85] Guibas, L., Stolfi, J.: Primitives for the manipulation of general subdi
visions and the computation of Voronoi diagrams. ACM Transactions on
Graphics 4, pp. 74-123 (1985).

[86] Guibas, L., Knuth, D., Sharir, M.: Randomized incremental construction
of Delaunay and Voronoi diagram. Algorithmica 7, pp. 381-413 (1992).

[87] Hansen, E. R. (ed.): Topics in Interval Analysis. Oxford University Press,
Oxford (1969).

[88] Hansen, E. R.: The centered form. In: [87], pp. 102-105 (1969).

[89] Hansen, E. R.: A globally convergent interval analytic method for comput
ing and bounding real roots. BIT 18, pp. 153-163 (1978).

[90] Hansen, E. R.: Global optimization using interval analysis - the multi
dimensional case. Numer. Math. 34, pp. 247-270 (1980).

[91] Hansen, E. R.: Global Optimization using Interval Arithmetic. Marcel
Dekker, New York (1992).

[92] Hansen, E. R.: Bounding the solution of interval linear equations. SIAM
J. Numer. Anal. 29, pp. 1493-1503 (1992).

[93] Hansen, E. R.: The hull of preconditioned interval linear equations. Rel.
Computing 6, pp. 95-103 (2000).

[94] Hansen, E. R., Greenberg, R. I.: An interval Newton method. Applied
Math, and Comp. 12, pp. 89-98 (1983).

[95] Hansen, E. R., Sengupta, S.: Global constrained optimization using inter
val analysis. In: [184], pp. 25-47 (1980).

[96] Hansen, E. R., Sengupta, S.: Bounding solutions of systems of equations
using interval analysis. BIT 21, pp. 203-211 (1981).

[97] Hansen, E. R., Smith, R. R.: Interval arithmetic in matrix computations,
part II. SIAM Journal on Numerical Analysis 4, pp. 1-9 (1967).

[98] Hanson, A. J.: Geometry for N-dimensional graphics. In: [101], pp. 149-
170 (1994).

�� �� �� �� ��

304 Bibliography

[99] Haines, Ε.: Essential ray tracing algorithms. In: A. Glassner (ed.): An
Introduction to Ray Tracing, Academic Press, New York, pp. 33-78 (1989).

[100] Hanrahan, P.: A survey of ray-surface intersection algorithms. In: A.
Glassner (ed.): An Introduction to Ray Tracing, Academic Press, New
York, pp. 79-120 (1989).

[101] Heckbert, P. S.: Graphic Gems IV. Academic Press, Boston (1994).

[102] Hershberger, J., Snoeyink, J.: Speeding up the Douglas-Peucker line sim
plification algorithm. In: Proceedings of the 5 t h International Symposium
on Spatial Data Handling, International Geographical Union, Columbia,
pp. 210-218 (1992).

[103] Herve, C , Morain, F., Salesin, D., Serpette, B. P., Vullemin, J., Zim-
mermann, P.: BigNum: A portable and efficient package for arbitrary-
precision arithmetic. INRIA Report 1016, Rocquencourt, (1989).

[104] Higham, N. J.: The accuracy of floating point summation. SIAM J. Sci.
Computation 14, pp. 783-799 (1993).

[105] Hill, K. J.: Matrix-based ellipse geometry. In: [192], pp. 73-77 (1995).

[106] Hobby, J., Baird, H.: Degraded character image restoration. Proceed
ings of the Fifth Annual Symposium on Document Analysis and Image
Retrieval, pp. 233-245 (1996).

[107] Hoffmann, C : 77ie problem of accuracy and robustness in geometric com
putation. IEEE Computer 22, pp. 31-42 (1989).

[108] Hoffmann, C : Geometric and Solid Modeling. An Introduction. Morgan
Kaufmann Inc., San Mateo (1989).

[109] Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric
Design. A.K.Peters, Wellesley, Mass. (1993).

[110] Hu, C.-Y., Maekawa, T., Patrikalakis, Ν. M., Ye, X.: Robust interval
algorithm for surface intersections. Computer-Aided Design 29, pp. 617-
627 (1997).

[Ill] Hyvonen, E., DePascale, S.: InC++ library family for interval com
putations. In: Reliable Computing, Supplement (Extended Abstracts of
APIC'95), pp. 85-90 (1995).

[112] Institute of Electrical and Electronic Engineers: IEEE standard for bi
nary floating-point arithmetic. IEEE Standard 754-1985, IEEE, New York
(1985).

�� �� �� �� ��

Bibliography 305

113] Institute of Electrical and Electronic Engineers: IEEE standard for radix-
independent floating-point arithmetic. IEEE Standard 854-1987, ΓΕΕΕ,
New York (1987).

114] Janssen, D. D. T., Vossepoel, A. M.: Adaptive vectorization of line draw
ing images. Computer Vision and Image Understanding 56, pp. 38-56
(1995).

115] Jaromczyk, J. W., Wasilkowski, G. W.: Numerical stability of a convex
hull algorithm for simple polygon. Algorithmica 10, pp. 457-472 (1993).

116] Jaromczyk, J. W., Wasilkowski, G. W.: Computing convex hull in a float
ing point arithmetic. Computational Geometry Theory and Applications
4, pp. 283-293 (1994).

117] Jones, C. B., Abraham, I. M.: Line generalization in a global cartographic
database. Cartographica 24, pp. 32-45 (1987).

118] Jones, A. K.: A review of Christoph M. Hoffman: Geometric and Solid
Modeling: An Introduction. SIAM Reviews 34, pp. 327-329(1992).

119] Jou, E.: Determine whether two line segments intersect. In: Model
ing in Computer Graphics. Proceedings of the 10th Working Conference,
Springer-Verlag, Berlin, Germany, pp. 265-274 (1991).

[120] Jiinger, K., Reinelt, G., Zepf, D.: Computing correct Delaunay triangu
lations. Computing 47, pp. 43-49 (1991).

[121] Kalmykov, S. Α., Shokin, Υ. I., Yuldashev, Ζ. K.: Interval Analysis Meth
ods. NAUKA, Novosibirsk, (1986) (in Russian).

122] Kao, T., Knott, G.: .An efficient and numerically correct algorithm for
the 2D convex hull problem. BIT 30, pp. 311-331 (1990).

123] Karasick, M., Lieber, D., Nackman, L.: Efficient Delaunay triangulation
using rational arithmetic. ACM Transactions of Graphics 10, No. 1, pp.
71-91 (1991).

124] Katajainen, J., Koppinen, M.: Constructing Delaunay triangulations
by merging buckets in quadtree order. Annales Sociatatis Mathematical
Polonae, Series PV, Fundamenta Informaticae 11, 275- 288 (1988).

125] Kearfott, R. B.: Preconditioned for the interval Gauss-Seidel method.
SIAM J. Numer. Anal. 27, pp. 804-822 (1990).

126] Kearfott, R. B.: Rigorous computation of surface patch intersection
curves. Preprint (1993)

127] Kearfott, R. B.: Rigorous Global Search: Continuous Problems. Kluwer,
Dordrecht (1996).

�� �� �� �� ��

306 Bibliography

[1281 Kearfott, R. B.: INTERVAL-ARITHMETIC: A Fortran 90 module for
an interval data type. ACM Trans. Math. Software 22, pp. 385-392 (1996).

[129] Kearfott, R. B. On existence and uniqueness verification of non-smooth
functions. Reliable Computing 8, pp. 267-282 (2002).

[1301 Kearfott, R. B. and Xing, Z.: An interval step control for continuation
methods. SIAM J. Numerical Analysis 31, pp. 892-914 (1994).

[1311 , Kearfott, R. B., Dawande, M., Du, K. S., Hu, C. Y.: Algorithm 737
INTLIB. ACM Trans. Math. Software 20, pp. 447-459 (1994).

[1321 Klatte, R., Kulisch, U., Wiethoff, Α., Lawo, Rauch, M.: C-XSC.
Springer-Verlag, Berlin (1993).

[1331 Klatte, R., Kulisch, U., Neaga, M., Ratz, D., Ulrich, C : PASCAL-XSC.
Springer-Verlag, Berlin (1991).

[1341 Knott, G., Jou, D.: A program to determine whether two line segments
intersect. Technical Report CAR-TR-306, Dept. of Computer Science, Uni
versity of Maryland, MD, USA (1987).

[1351 Knuppel, 0.: PROFIL/BIAS - A fast interval library. Computing 53,
pp. 277-288 (1994).

[1361 Knuth, D. E. Metafont: The Program. Addison Wesley Publ. Co., Read
ing, Mass. (1986).

[1371 Knuth, D. E.: Axioms and Hulls. LNCS 606, Springer Verlag, New York
(1992).

[1381 Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit
Fehlerschranken. Computing 4, pp. 187-201 (1969).

[1391 Krawczyk, R.: Zur aufleren und t'nneren Einschliefiung des Wertebereichs
einer Funktion. Freiburger Intervallberichte 80/7, pp. 1-19 (1980).

[1401 Krawczyk, R.: Intervallsteigerungen fur rationale Funktionen und zu-
geordnete zentrische Formen. Freiburger Intervallberichte 83/2, pp. 1-30
(1983).

[1411 Krawczyk, R.: A class of interval Newton operators. Computing 37, pp.
179-183 (1986).

[1421 Krawczyk, R., Nickel, K.: Die zentrische Form in der Intervallarithmetik,
ihre quadratische Konvergenz und ihre Inklusionsisotonie. Computing 28,
pp. 117-132 (1982).

�� �� �� �� ��

Bibliography 307

[143] Kriegel, H.-P., Schmidt, T., Seidl, T.: 3D similarity search by shape
approximation. In: M. Scholl and A. Voisar (eds.): Advances in Spatial
Databases, LNCS 1262, Springer-Verlag, Berlin, pp. 11-28 (1997).

[144] Kulisch, U.: Numerik mit automatischer Ergebnisverification. GAMM-
Mitteilungen, pp. 39-58 (1994).

[145] Kulisch, U., Miranker, W. L. (eds.): A new Approach to Scientific Com
putation. Academic Press, Orlando (1983).

[146] Levin, J.: A parametric algorithm for drawing pictures of solid objects
composed of quadric surfaces. CACM 19, pp. 555-563 (1976).

[147] Li, Z., Milenkovic, V.: Constructing strongly convex hulls using exact
or rounded arithmetic. Proceedings of the Sixth Annual Symposium on
Computational Geometry. ACM Press, pp. 235-243 (1990).

[148] Li, Z.: Some observations on the issue of line generalization. The Carto
graphic Journal 30, pp. 68-71 (1993).

[149] Lin, Q., Rokne, J.: A family of centered forms for a polynomial. BIT 32,
pp. 167-176 (1992).

[150] Lodwick, W. Α., Monson, W., Svoboda, L.: Attribute error and sen
sitivity analysis of map operations in geographical informations systems:
suitability analysis. Int. J. Geographical Information Systems 4, pp. 413-
428 (1990).

[151] Lorentz, G. C : Bernstein Polynomials. University of Toronto Press,
Toronto (1953).

[152] McLain, D. H.: Two dimensional interpolation from random data. Comp.
Journal 19, pp. 178-181 (1976)

[153] Mantyla, M.: Boolean operations of 2-manifolds through vertex neighbor
hood classification. ACM Trans, on Graphics 5, pp. 1-29 (1986).

[154] Martin, R., Shou, H., Voiculescu, I., Bowyer, Α., Wang, G.: Comparison
of function range methods for solving algebraic equations in two variables.
Manuscript (2001).

155] Martin, R. et al.: Comparison of interval methods for plotting algebraic
curves. Computer Aided Geometric Design 19, pp. 553-587 (2002).

156] Maruyama, K.: A procedure to determine intersections between polyhedral
objects. International Journal of Computer and Information Sciences 1, pp.
255-266 (1972).

157] Maus, Α.: Delaunay triangulation and the convex hull of η points in
expected linear time. BIT 24, pp. 151-163 (1984).

�� �� �� �� ��

308 Bibliography

[158] Milenkovic, V.: Verifiable implementations of geometric algorithms using
finite-precision arithmetic. Artificial Intelligence 37, pp. 377-401(1988).

[159] Milenkovic, V.: Double-precision geometry: A general technique for cal
culating line and segment intersections using rounded arithmetic. Proceed
ings of the 30th Annual IEEE Symposium on Foundations of Computer
Science. ACM Press, pp. 500-505 (1989).

[160] McMaster, R. B.: The integration of simplification and smoothing algo
rithms in line generalization. Cartographica 26, pp. 101-121 (1989).

[161] Meek, D. S., Walton, D. J.: Several methods for representing discrete
data by line segments. Cartographica 28, pp. 13-20 (1991).

[162] Miller, R. D.: Quick and simple Bizier curve drawing. In: [192], pp.
206-209 (1995).

[163] Markov, S. M.: On the algebra of intervals and convex bodies. Journal of
Universal Computer Science 4, pp. 34-47 (1998).

[164] Moore, R. E.: Interval arithmetic and automatic error analysis in digital
computation. Ph. D. Thesis, Stanford University (1962).

[165] Moore, R. E.: Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ.
(1966)

[166] Moore, R. E.: Mathematical Elements of Scientific Computing. Holt
Rinehart Winston, New York (1975).

[167] Moore, R. E.: A test for existence of solutions to non-linear systems.
SIAM Journal on Numerical Analysis 14, pp. 611-615 (1977).

[168] Moore, R. E.: A computational test for convergence of iterative methods
for non-linear systems. SIAM Journal on Numerical Analysis 15, pp. 1194-
1196 (1978).

[169] Moore, R. E.: Methods and Applications of Interval Analysis. SIAM,
Philadelphia (1979).

[170] Moore, R. E.: Interval methods for nonlinear systems. Computing Suppl.
2, pp. 113-120 (1980).

[171] Moore, R. E. (ed.): Reliability in Computing: The Role of Interval Meth
ods in Scientific Computation. Academic Press, New York (1988).

[172] Moore, R. E., Jones, S. T.: Safe starting regions for iterative methods.
SIAM Journal on Numerical Analysis 14, pp. 1051-1065 (1977).

[173] Mower, J. E.: Developing parallel procedures for line simplification. Int.
J. Geographical Information Systems 10, pp. 699-712 (1996).

�� �� �� �� ��

Bibliography 309

[174] Mudur, S. P., Koparkar. P. Α.: Interval methods for processing geometric
objects. IEEE Computer Graphics and Applications 4, pp. 7-17 (1984).

[175] Muller, J.-C: Fractal and automated line generalization. The Carto
graphic Journal 24, pp. 27-34 (1987).

[176] Nataraj, P. S. V, Sheela, S. M.: A new subdivison strategy for range
computations. Rel. Computing 8, pp. 83-92 (2002).

[177] Nazarenko, Τ. I., Marchenko, L. V.: Introduction to Interval Methods
of Computational Mathematics. Izd-vo Irkutskogo Universiteta, Irkutsk,
(1982) (in Russian).

[178] Neumaier, Α.: The enclosure of solutions of parameter-dependent systems
of equations. In [171], pp. 269-286 (1988).

179] Neumaier, Α.: Interval Methods for Systems of Equations. Cambridge
University Press, Cambridge (1990).

[180] Neumaier, Α.: A simple derivation of the Hansen- Bliek -Rohn- Ning
- Kearfott enclosure for linear interval equations. Rel. Computing 5, pp.
131-136 (1999) .

181] Nickel, K.: On the Newton method in interval analysis. Mathematics
Research Center Report 1136, University of Wisconsin (1971).

[182] Nickel, K. (ed.): Interval Mathematics. Proceedings of the International
Symposium, Karlsruhe 1975, Springer-Verlag, Wienna (1975).

183] Nickel, K.: Die Uberschatzung des Wertebereichs einer Funktion in der
Intervallrechnung mit Anwendungen auf lineare Gleichungssysteme. Com
puting 18, pp. 15-36 (1977).

184] Nickel, K. (ed.): Interval Mathematics 1980. Proceedings of the Interna
tional Symposium, Freiburg 1980, Academic Press, New York (1980).

185] Nickel, K. (ed.): Interval Mathematics 1985. Proceedings of the Interna
tional Symposium, Freiburg 1985, Springer Verlag, Wienna (1986).

186] Ning, S., Kearfott, R. B.: A comparison of some methods for solving
lineaer interval equations. SIAM J. Numer. Anal. 34, pp. 1289-1305 (1997).

187] Oishi, Y., Sugihara, K.: Topology-oriented divide-and-conquer algorithm
for Voronoi diagrams. Graphics Models and Image Processing 57, pp. 303-
314 (1995).

188] Okabe, Α., Boots, B., Sugihara, K.: Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams. John Wiley & Sons, Chichester, West
Sussex, England, pp. 205-208 (1992).

�� �� �� �� ��

310 Bibliography

[189] Oliveira, F.A.: Bounding solutions of nonlinear equations with interval
analysis. Proc. 13th World Congr. Comp. Appl. Math., Dublin, pp. 246-
247 (1991).

[190] O'Rourke, J.: Computational Geometry in C. Cambridge University
Press, Cambridge (1994).

[191] Ortega, J. M., Rheinboldt, W. C : Iterative Solution of Nonlinear Equa
tions in Several Variables. Academic Press, Orlando (1970).

[192] Paeth, A. W. (ed.): Graphics Gems V. Academic Press, Boston, 1995.

[193] Perkal, J.: An attempt at objective line generalization. (Trans. R. Jack-
owski). Michigan Inter-University Consortium of Mathematical Geogra
phers, Discussion Paper #10, University of Michigan, Ann Arbor, MI
(1966).

[194] Peucker, Τ. K.: A theory of the cartographic line. Auto-Carto Π. Pro
ceedings of the international symposium on computer-assisted cartogra
phy. U.S. Department of Commerce Bureau of the Census and the ACSM.
pp. 508-518 (1975).

[195] Piegel, L. (ed.): Fundamental Developments of Computer-Aided Geomet
ric Modeling. Academic Press, London (1993).

[196] Pion, S.: De la giomitrie algorithmique au calcul giomatrique. These
doctorat, University de Nice Sophia-Antipolis (1999).

[197] Prautzsch, H., Boehm, W., Paluszny, M.: Bezier and B-Spline Tech
niques. Springer-Verlag, New York (2002).

[198] Preparata, F. P., Shamos, Μ. I.: Computational Geometry (Second print
ing). Springer-Verlag, New York (1988).

[199] Press, W. H., Flannery, B. P., Teukolsky, S.A, Wetterling, W.T.: Numer
ical Recipes in C. Cambridge U. P., Cambridge (1988).

[200] Priest, D. M.: On properties of floating point arithmetics: numerical
stability and the cost of accurate computations. Ph.D. Thesis, University
of California, Berkeley (1992).

[201] Rail, L. B.: Automatic Differentiation: Techniques and Applications.
LNCS 120, Springer-Verlag, New York (1981).

[202] Rail, L. B.: Mean value and Taylor forms in interval analysis. SIAM
Journal on Mathematical Analysis 14, pp. 223-238 (1983).

[203] Ramer, U.: An iterative procedure for the polygonal approximation of
plane curves. Computer Graphics and Image Processing 1, pp. 244-256
(1972).

�� �� �� �� ��

Bibliography 311

204] Ramshaw, L.: CSL notebook entry: The braiding of floating point lines.
Unpublished manuscript, Xerox PARC, Palo Alto, California (1982).

205] Ratschan, S.: Search heuristics for box decomposition methods. J. Global
Optim. 24, pp. 35 - 49 (2002).

[206] Ratschek, H.: Die Subdistributivitat der Intervallarithmetik. Z. Angew.
Math. Mech. 51, pp. 189-192 (1971).

[207] Ratschek, H.: Teilbarkeitskriterien der Intervallarithmetik. J. Reine
Angew. Math. 252, pp. 128-138 (1972).

208] Ratschek, H.: Nichtnumerische Aspekte der Intervallarithmetik. In: [182],
pp. 48-74 (1975).

[209] Ratschek, H.: Zentrische Formen. Zeitschrift fur Angewandte Mathe-
matik und Mechanik 58, pp. T434-T436 (1978).

[210] Ratschek, H.: Centered forms. SIAM Journal on Numerical Analysis 17,
pp. 656-662 (1980).

[211] Ratschek, H.: Some recent aspects of interval algorithms for global opti
mization. In: [171], pp. 325-339 (1988).

[212] Ratschek, H., Rokne, J.: Computer Methods for the Range of Functions.
Ellis Horwood, Chichester (1984).

[213] Ratschek, H., Rokne, J.: New Computer Methods for Global Optimiza
tion. Ellis Horwood, Chichester (1988).

[214] Ratschek, H., Rokne, J.: Nonuniform variable precision bisecting. In: C.
Brezinski and U. Kulisch: Computational and Applied Mathematics I,
Elsevier, Amsterdam, pp. 419-428 (1992).

[215] Ratschek, H., Rokne, J.: Test for intersection between plane and box.
Computer-Aided Design 25, pp. 249-250 (1993).

[216] Ratschek, H., Rokne, J.: Box-sphere intersection tests. Computer-Aided
Design 26, pp. 579-584 (1994).

[217] Ratschek, H., Rokne, J.: Formulas for the width of interval products.
Reliable Computing 1, pp. 9-14 (1995).

[218] Ratschek, H., Rokne, J.: Determination of the exact sign of a sum. In: G.
Alefeld and J. Herzberger (eds.): Numerical Methods and Error Bounds,
Akademie Verlag, Berlin, pp. 198-204 (1995).

[219] Ratschek, H., Rokne, J.: The relationship between a rectangle and a
triangle. The Visual Computer 12, pp. 360-370 (1996).

�� �� �� �� ��

312 Bibliography

[220

[221

[222

[223

[224

[225

[226

[227]

[228

[229;

[230;

[231

[232

[233;

[234;

[235

Ratschek, H., Rokne, J.: Test for Intersection Between Box and Tetra
hedron. Intern. J. Computer Math. 65, pp. 191-204 (1997).

Ratschek, H., Rokne, J.: Exact computation of the sign of a finite sum.
Applied Mathematics and Computation, 99, pp. 99-127 (1999).

Ratschek, H., Rokne, J.: Exact and Optimal Convex Hulls in 2D.. In
ternational Journal of Computational Geometry & Applications 10, pp.
109-129 (2000).

Ratschek, H., Rokne, J., Lerigier, M.: Robustness in GIS Algorithm Im
plementation with Application to Line Simplification. Int. J. Geographical
Inf. Systems 15, pp. 707-720 (2001).

Ratschek, H., Rokne, J.: A 2D Ellipse-Rectangle Intersection Test. Jour
nal of Mathematical Modelling and Algrithms. Forthcomming.

Ratschek, H., Rokne, J.: SCCI-hybrid methods for 2D-curve tracing. Ac
cepted by I JIG.

Reliable Computing. Formerly Interval Computations. Institute of New
Technologies in Education, St. Petersburg, Vol. 1 (1995).

Rheinboldt, W. C : Numerical Analysis of Parametrized Nonlinear Equa
tions. John Wiley and Sons, New York (1986).

Rippa, S.: Minimal roughness property of the Delaunay triangulation.
Comp. Aided Geometric Design 7, pp. 489-497 (1986).

Rodgers, D. F., Adams, J, Α.: Mathematical Elements for Computer
Graphics. McGraw Hill, New York (1990).

Rohn, J.: Systems of linear interval equations. Lin. Alg. Appls. 126, pp.
39-78 (1989).

Rohn, J.: Solving systems of linear interval equations. In: [171], pp. 171-
182 (1988).

Rokne, J.: Optimal computation of the Bernstein algorithm for the bound
of an interval polynomial. Computing 28, pp. 239-246 (1982).

Rokne, J.: A low complexity rational centered form. Computing 34, pp.
261-263 (1985).

Rokne, J.: Low complexity k-dimensional centered forms. Computing 37,
pp. 247-253 (1986).

Rokne, J., Bao, P.: Interval Taylor forms. Computing 39, pp. 247-259
(1987).

�� �� �� �� ��

Bibliography 313

[236] Rokne, J.: Interval arithmetic. In: D. Kirk (ed.): Graphics Gems ΠΙ,
Academic Press, San Diego, pp. 61-66 and pp. 454-457 (1992).

[237] Salesin, D. H.: Epsilon geometry: building robust algorithms from impre
cise computations. Ph.D. Thesis, Stanford University (1991).

[238] Samet, H.: Applications of Spatial Data Structures. Addison Wesley,
Reading (1990).

[239] Schramm, P.: Intersection problems of parametric surfaces in CAGD.
Computing 53, pp. 355-364 (1994).

[240] Schwetlick, H.: Numerische Losung nichtlinearer Gleichungen. Olden
burg, Miinchen-Wien (1979).

[241] Scott, N. R.: Computer Number Systems and Arithmetic. Prentice Hall,
Englewood Cliffs, N.J. (1985).

[242] Sederberg, T. W., Buehler, D. B.: Offsets of polynomial Bizier curves:
Hermite approximation with error bounds. In: T. Lyche and L. Schumaker
(eds.): Mathematical Methods in Computer Aided geometric Design II,
Academic Press, pp. 549-558 (1992).

[243] Sederberg, T. W., Farouki, R. T.: Approximation by interval Bizier
curves. IEEE Computer Graphics and Applications 12, September, pp.
87-95 (1992).

[244] Seidel, R.: Convex hull computations. In: J. E. Goodman and J.
O'Rourke (eds.): Handbook of Computational Geometry, CRC Press LLC,
Boca Raton, pp. 361-375 (1997).

[245] Shary, P. S.: An optimal solution of interval linear equations. SIAM J.
Numer. Anal. 32, pp. 610-630 (1995).

[246] Shary, P. S.: A surprising approach in interval global optimization. Reli
able Computing 7, pp. 497-505 (2001).

[247] Shene, C.-K.: Test for intersection between plane and a connected com
pact polyhedron. Computer-Aided Design 26, pp. 585-588 (1994).

[248] Shokin, Yu. I.: Interval Analysis. NAUKA, Novosibirsk, (1981) (in Rus
sian).

[249] Simcik, L., Linz, P.: Boundary-based interval Newton's method. Interval
Computations 4, pp. 89-99 (1993).

[250] Skelboe, S.: Computation of rational interval functions. BIT 14, pp. 87-
95 (1974).

�� �� �� �� ��

314 Bibliography

[251] Smith, R. E. (ed.): Numerical Grid Generation Techniques. NASA Lan-
gley Research Center, (1980).

[252] Snyder, J. M., Barr, A. H.: Ray tracing complex models containing sur
face tesselations. Computer Graphics 21, pp. 119-126 (1987).

[253] Snyder, J. M.: Interval analysis for computer graphics. Computer Graph
ics 26, pp. 121-130 (1992).

[254] Snyder, J. M.: Generative Modeling for Computer Graphics and CAD.
Academic Press, New York,(1992).

[255] Strip, D., Karasik, M.: SIMD algorithms for intersecting three-
dimensional polyhedra. SIAM News 27(3), pp. 1, 10, 11, 13 (1994).

[256] Su, P., Drysdale, R.: A comparison of sequential Delaunay triangulation
algorithms. In:Proceedings of the 11th Annual Symposium on Computa
tional Geometry, pp. 61-70 (1995).

[257] Suffern, K. G.: Quadtree algorithms for contouring functions of two vari
ables. The Computer Journal 33, pp. 402-407 (1990).

[258] Suffern, K. G., Fackerell, E. D.: Interval methods in computer graphics.
Computers and Graphics 15, pp. 331-340 (1991).

[259] Sugihara, K.: A simple method for avoiding numerical error and degener
acy in Voronoi diagram construction. B3ICE Trans. Fundamentals E75-A,
pp. 468-477 (1992).

[260] Sugihara, K., Iri, M.: A robust topology-oriented incremental algorithm
for Voronoi diagrams,. International Journal of Computational Geometry
and Applications 4, pp. 179-228 (1994).

[261] Sun Microsystems: Interval Arithmetic in High performance Technical
Computing. Version 1.0. Sun Microsystems,Santa Clara, California (2002).

[262] Sunaga, T.: Theory of an interval algebra and its application to numerical
analysis. RAAG Memoirs 2, pp. 547-564 (1958).

[263] Sutcliffe, D. C : An algorithm for drawing the curve f(x,y) = 0. The
Computer Journal 19, pp. 246-249 (1976).

[264] Taligent: http://hpsalo.cern.ch/TaligentDocs/TaligentOnline/ Docu-
mentRoot/l.O/Docs/classes/TGEllipse.html (1997).

[265] Taubin, G. L.: Distance approximations for rasterizing implicit curves.
ACM Transactions on Graphics 13, pp. 3-42 (1994).

[266] Toth, D. L.: On ray tracing parametric surfaces. Computer Graphics 19,
pp. 171-179 (1985).

�� �� �� �� ��

http://hpsalo.cern.ch/TaligentDocs/TaligentOnline/

Index 315

[267] Tupper, J.: Reliable two-dimensional graphing methods for mathematical
formulae with two free variables. Siggraph 2001, Los Angeles, CA., pp.
77-86 (2001)

[268] Visvalingam, M., Whyatt, J. D.: Cartographic algorithms: Problems of
implementation and evaluation and the impact of digitizing errors. Com
puter Graphics Forum 10, pp. 225-235 (1991).

[269] Walter, W. V.: FORTRAN-XSC: A portable Fortran 90 module library
for accurate and reliable scientific computation. Computing (Supplement)
9, pp. 265-286 (1993).

[270] Warmus, M.: Calculus of approximations. Bull. Acad. Polon. Sci. CI. ΠΙ,
4, pp. 253-259 (1956).

[271] Wilkinson, J. H.: Rounding Errors in Algebraic Processes. Her Majesty's
Stationery Office, London(1963).

[272] Wood, C. H.: Perceptual responses to line simplification in task-oriented
map analysis experiment. Cartographica 32, pp. 22-32 (1995).

[273] Worboys, M. F.: GIS. A Computing Perspective. Taylor & Francis, Lon
don (1995).

[274] Yap, C. K.: A geometric consistency theorem for a symbolic perturbation
theorem. Proceedings of the Fourth Annual ACM Symposium on Compu
tational Geometry, ACM Press, pp. 134-142 (1988).

[275] Yap, C. K., Dube, T.: The exact computation paradigm. In: Z. Du and
F.K. Hwang (eds.): Computing in Euclidean Geometry, second ed., World
Scientific, Singapore, pp. 452-492 (1995).

[276] Yap, C. K.: Robust geometric computations. In: J. E. Goodman and
J. O'Rourke (eds.): Handbook of Computational Geometry, CRC Press
LLC, Boca Raton, pp. 653-668 (1997).

[277] Yap, C. K.: http://cs.nyu.edu/exct/inc/nonrobustness.html (2000).

[278] Young, R. C : The algebra of many-valued quantities. Math. Ann. 104,
pp. 260-290 (1931).

[279] Zangwill, W. I., Garcia, C. B.: Pathways to solutions of fixed points and
equilibria. Prentice-Hall, Englewood Cliffs (1981).

[280] Zeid, I.: CAD/CAM Theory and Practice. McGraw-Hill, New York
(1991).

�� �� �� �� ��

http://cs.nyu.edu/exct/inc/nonrobustness.html

I n d e x

e-strongly convex hull, 82

anchor point, 287
arbitrary precision arithmetic, 82

Bezier curve of degree n, 230
Bezier curves, 219, 230
backward error analysis, 81, 82
barycentric combination, 234, 235
Bernstein basis polynomials, 222
Bernstein form, 222
Bernstein form of degree k, 229
Bernstein polynomial of degree k,

222
Bernstein polynomials, 219
bisection recipes, 56
boundary based interval Newton vari

ants, 68
boundary points, 237
box, 26
box and plane intersections, 123

centered forms, 47
co-circular, 269
continuation method, 197-199
control points, 230
convergence order, 32
conversion error, 14, 97
convex combination, 234, 235
convex hull, 244
coplanarity test in 3D, 98
counter clock wise orientation test,

117
crossing points, 209
curve contour, 186

degree elevation, 223, 232
degree reduction, 223
Delaunay triangulation, 265, 268
discarded points, 199
distillation principle, 83
distributive law, 17
divide-and-conquer, 270

empty circle condition, 268
epsilon geometry, 81
ESSA, 79, 83
exact algorithm, 280
exact computation, 244
exact hull, 83
excess-width, 32
exclusion test, 187
existence test, 75
extended arithmetic, 34

floater, 287
floating point arithmetic, 14
floating point numbers, 14
fundamental property of interval arith

metic, 31

Gauss-Seidel iteration, 70
generating points, 237
global optimization, 29
Graham scan, 260
Graham scan algorithm, 80, 244

implicit curve, 186
in-circle-test, 99
incircle test, 178
including convex hull, 246
inclusion function, 30, 187, 189

Index 317

inclusion function for the gradient,
190

inclusion isotone, 55
inclusion isotonicity, 18, 27, 33
inclusion principle of interval arith

metic, 16
inclusion principle of machine inter

val arithmetic, 19
incremental construction, 270
incremental construction algorithms,

270
incremental search algorithms, 270
inner approximations, 39
inner inclusions of the range, 40
insphere test, 178
intersection of two line segments,

115
interval Bezier curve of degree n,

232
interval Bezier curves, 219
interval barycentric coordinates, 130
interval Bernstein polynomials, 219
interval Bernstein polynomials of de

gree fc, 229
interval control points, 232
interval curves, 220
interval filter, 81
interval Gauss-Seidel step, 69
interval matrices, 27
interval matrix operations, 27
interval Newton algorithm, 65
interval Newton method, 65
interval Newton variant of Oliveira,

68
interval polynomials, 226
interval tools, 81
interval valued polynomials, 226
interval variable, 28
interval vector, 27
isothetic rectangle hull, 134

last in first out, 57
left-turn test, 45, 80, 97, 247
line segment intersection test, 116

linear interval equation, 62
Lipschitz constant, 32
Lipschitz matrices, 68

machine exact operations, 26
machine interval arithmetic, 19
machine numbers, 14
machine representable numbers, 14
meanvalue form, 48, 190
meanvalue form function, 48
midpoint, 14, 27
monotone continuous functions, 35
monotonicity, 39

natural interval extension, 31
next_floating-point_number, 21

order of 3 lines in plane, 99
oriented area, 43
outward rounding, 21

perturbation parameter, 119
pixels, 186
point intervals, 16
power cells, 269
power diagram, 269
power form, 221, 226
power function, 268
power triangulation, 269
pre-declared inclusion functions, 30
preconditioning step, 69
Prototype Graham scan, 245
pseudolocal control, 231

R-D-P algorithm, 285
range, 30
raster devices, 186
real degree, 222
rounding, 20
rounding error, 14
rounding error control, 19

scaled Bernstein form, 224
scaled Bernstein polynomial, 225
SCCI-hybrid method, 185,188,189,

212

318 Index

sign of determinant, 81
simple arithmetic, 34
simple power evaluation, 34
single interval Gauss-Seidel step, 75
Skelboe's principle, 35
slope comparisons, 82
slope of line, 81
slopes, 50
smallest machine intervals, 19
standard exclusion test, 192
standard parametric form, 220
strictly monotonically decreasing, 193
strictly monotonically increasing, 193
subdistributive law, 17
subdividing plotting cell, 199
subdivision process, 191
symmetric, 18

Taylor form, 51
Taylor form function, 51
touching points, 209
truly convex hull, 81
truncation, 20

unbounded intervals, 18

validated, 117
variable precision arithmetic, 83
Voronoi diagram, 265, 267
Voronoi regions, 267
Voronoi vertices, 267

width, 14, 26

