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Chapter	1
Introduction

Why	Imagery	and	GIS?
Imagery—it	allures	and	fascinates	us;	its	measurements	inform	us.	It	draws	us	in
to	explore,	analyze,	and	understand	our	world.	First	comes	the	astonishment	of
its	raw	beauty—the	enormity	of	a	hurricane,	the	stark	glaciers	in	Greenland,	the
delicate	branching	of	a	redwood’s	lidar	profile,	a	jagged	edge	of	a	fault	line	in
radar,	the	vivid	greens	of	the	tropics,	the	determined	lines	of	human	impact,	the
rebirth	of	Mount	Saint	Helens’	forests,	the	jiggly	wiggly	croplands	of	Asia	and
Africa,	the	lost	snows	of	Kilimanjaro.	Each	image	entices	us	to	discover	more,	to
look	again	and	again.

Then	we	start	to	ask	questions.	Why	do	trees	no	longer	grow	here?	Can	trees
grow	here	again?	How	much	has	this	city	expanded?	Will	the	transportation
corridors	support	emergency	relief?	Why	did	this	house	burn	while	the	one	next
door	is	untouched	by	flames?	What	crops	flourish	here?	Will	they	produce
enough	food	to	feed	the	people	of	this	region?	Why	has	this	landscape	changed
so	dramatically?	Who	changed	it?	When	we	bring	imagery	and	GIS	together	we
can	answer	these	questions	and	many	more.	By	combining	imagery	and	GIS,	we
can	inventory	our	resources,	monitor	change	over	time,	and	predict	the	possible
impacts	of	natural	and	human	activities	on	our	communities	and	the	world.

This	book	teaches	readers	about	the	many	ways	that	imagery	brings	value	to
GIS	projects	and	how	GIS	can	be	used	to	derive	value	from	imagery.	Imagery
forms	the	foundation	of	most	GIS	data.	Whether	it	be	a	map	of	transportation
networks,	elevation	contours,	building	footprints,	facility	locations,	vegetation



type,	or	land	use,	the	information	in	most	GIS	datasets	is	derived	primarily	from
imagery.	Alternatively,	GIS	allows	us	to	more	efficiently	and	effectively	derive
information	from	imagery.	Organizing	imagery	in	a	GIS	brings	the	power	of
spatial	information	management	and	analysis	to	imagery.

The	purpose	of	this	book	is	to	unlock	the	mysteries	of	imagery,	to	make	it
readily	usable	by	providing	you	with	the	knowledge	required	to	make	informed
decisions	about	imagery.	More	than	just	an	overview	of	remote	sensing
technology,	this	book	takes	a	hands-on,	decision-focused	approach.	Each	chapter
evaluates	practical	considerations	and	links	to	online	interactive	examples.	The
book	also	includes	multiple	real-world	case	studies	that	highlight	the	most
effective	use	of	imagery	and	provide	advice	on	deciding	between	alternative
image	sources	and	approaches.	The	book	provides	guidance	on

1. choosing	the	best	imagery	to	meet	your	needs;
2. effectively	working	with	and	processing	imagery;
3. efficiently	extracting	information	from	imagery;	and
4. assessing,	publishing,	and	serving	imagery	datasets	and	products.

Why	Now?
Humans	have	always	coveted	a	bird’s-eye	view.	The	resulting	knowledge	of
where	we	are	relative	to	others	and	the	resources	we	need	has	long	been
treasured	and	is	necessary	for	survival.	Remote	sensing,	the	science	of
measuring	the	attributes	of	an	object	from	a	distance,	provides	us	with	imagery.
Offering	valuable	insights	into	how	humans	interact	with	the	earth,	imagery	and
GIS	allow	citizens,	governments,	corporations,	and	nonprofits	to	fundamentally
understand	patterns	of	resource	status,	use,	and	change.

It	took	thousands	of	years	for	humans	to	invent	cameras	and	aircraft,	but
within	30	years	of	their	invention	they	were	combined,	and	remote	sensing	was
born.	In	the	late	1800s	and	early	1900s,	early	remote	sensing	systems	consisted
of	cameras	placed	first	on	balloons	and	kites,	and	then	on	airplanes.	Later,	the
military	operations	of	World	Wars	I	and	II	as	well	as	the	Cold	War	spurred
remote	sensing	into	a	field	of	science,	resulting	in	methods	and	technologies	that
allow	us	to	analyze	and	measure	features	from	a	distance.	Remote	sensors	are
now	everywhere—from	your	cell	phone	camera,	to	the	video	camera	above	your
bank	teller	machine,	to	satellites	hundreds	of	miles	in	space.	Imagery	and	GIS
support	a	broad	array	of	applications	including	weather	prediction,	disaster



response,	military	reconnaissance,	flood	planning,	forest	management,	habitat
conservation,	wetland	preservation,	mineral	exploration,	famine	early	warning,
agriculture	yield	estimates,	urban	planning,	wildfire	prevention	and	control,
fisheries	management,	transportation	planning,	humanitarian	aid,	climate
monitoring,	and	change	detection.

Precision	agriculture
Information	gathered	during	harvest,	including	yield	at	any	given	location,	helps	growers	track
their	results	and	provides	valuable	input	for	calculating	seeding	and	soil	amendment	rates	for	the
following	year.	The	images	on	this	page	and	the	next	one	are	interactive	at
thearcgisimagerybook.com.

Humanitarian	aid
Access	to	up-to-date	imagery	shows	tha	creation	of	the	Zaatari	refugee	camp	over	a	nine-day
period	in	July	2012.	Designed	to	hold	over	60,000	people,	its	population	skyrocketed	to	over
150,000	before	new	camps	relieved	some	of	the	pressure.	The	story	map	The	Uprooted	tells	the
tale.

http://thearcgisimagerybook.com


Forestry
Dynamic	access	to	data	on	forests	in	Europe	is	derived	from	the	Corine	Land	Cover	2006
inventory.	Corine	means	“coordination	of	information	on	the	environment”.

Mining
The	geologic	nature	of	the	landscape	comes	to	life	using	earth-orbiting	satelites.

Natural	disaster	assessment
This	scene	shows	the	destruction	of	Hurricane	Sandy’s	storm	surge	in	Seaside,	New	Jersey.	The
active	swipe	map	compares	pre-	and	postevent	imagery	from	the	National	Oceanic	and
Atmospheric	Administration	(NOAA).



Climate	and	weather	study
This	short	map	presentation	from	NOAA	answers	many	of	the	quations	about	the	effects	of	El
Niño.	Scroll	down	to	learn	more	about	this	climate	feature	and	its	characteristics.

Engineering	and	construction
Development	projects	actively	under	construction	in	the	City	of	Pflugerville,	Texas,	are	displayed
here.

Oil	and	gas	exploration
This	geologic	map	compiled	by	the	Kentucky	Geological	Survey	relates	theme	of	land	use,
environmental	protection,	and	economic	development.



The	Urban	Observatory	is	an	ambitious	project	led	by	TED	founder	Richard	Saul	Wurman	to
compile	data	that	allows	comparison	of	metro	areas	at	common	scales.

Remote	sensing	has	always	been	a	rapidly	changing	field	with	technologies
readily	adopted	as	they	become	operational	and	cost	effective.	However,	recently
the	pace	of	adoption	has	quickened.	Long	a	staple	of	military	operations,
remotely	sensed	imagery	has	recently	exploded	for	civilian	use	as	availability
and	access	have	increased	while	prices	have	declined.	This	rapidly	quickening
pace	of	change	results	from

the	evolution	of	sensors	from	capturing	images	on	film	to	capturing	them
on	digital	arrays.	As	a	result,	storing,	accessing,	and	analyzing	imagery
have	become	much	easier	and	faster.	As	microelectronic	performance
continues	to	improve,	sensors	will	continue	to	become	lighter,	smaller,
more	powerful,	and	less	expensive.
platform	improvements	resulting	in	more	agile	and	smaller	platforms	that
are	less	expensive	to	operate.	Besides	airplanes	and	large	satellites,
imagery	is	now	collected	from	unmanned	airborne	systems	(sometimes
called	drones)	and	constellations	of	small	satellites.
increasing	accessibility	because	of	growing	supply,	policy	changes,	and
the	ability	to	quickly	serve	cached	imagery	across	the	web.	While	much
high-resolution	satellite	imagery	is	license	restricted,	both	the	United
States	and	the	European	Union	offer	global	imagery	at	no	cost	in	the
public	domain	from	their	moderate-resolution	systems	(Landsat	and
Sentinel),	and	high-resolution	airborne	imagery	is	freely	available	from
many	local,	state,	or	federal	agencies	across	the	United	States.
Additionally,	archived	high-resolution	imagery	is	readily	available	for	free
viewing	on	many	web	services,	including	ArcGIS	Online,	Google	Earth,
and	Bing.
improved	positional	accuracy.	GPS	and	other	technologies	allow	for
precise	registration	of	imagery	to	the	ground,	which	supports	the	easy



integration	of	imagery	with	other	GIS	datasets.	Additionally,	humans	can
now	easily	locate	themselves	on	web-served	imagery	using	the	GPS	in
their	cell	phones.
the	advent	of	cloud	storage	and	the	plummeting	cost	of	computer	disk
space	and	memory.	Imagery	is	Big	Data	and	the	files	can	be	very	large,	but
Big	Data	becomes	less	and	less	of	a	barrier	to	use	as	the	cost	of	data
storage	continues	to	decline	and	accessibility	improves.
spatial	information	becoming	mainstream.	Until	the	turn	of	the	century,
few	people	had	the	expertise	or	resources	required	to	manipulate	and
analyze	imagery,	and	maps	remained	nonintuitive.	Now,	with	spatial
information	at	our	fingertips,	many	more	people	are	spatially	aware,	and
location	has	become	a	commodity.	As	a	result,	remote	sensing	and	GIS
have	attracted	a	generation	of	brilliant	software	engineers	who	were
brought	up	using	computers	and	who	rapidly	bring	innovations	in
computer	science	and	database	management	to	the	geospatial	sciences.

Book	Organization
The	organization	of	the	book	follows	the	organization	of	a	typical	imagery
project	workflow	and	is	broken	into	four	sections.	The	first	section,	Discovering
Imagery—four	chapters—provides	the	information	needed	to	choose	the	best
imagery	to	meet	your	needs.	Chapter	2	introduces	the	structure	of	imagery	data
and	presents	a	construct	for	thinking	about	imagery	that	is	the	foundation	of	this
book,	and	also	provides	a	decision	framework	for	all	of	your	work	with	imagery.
Chapter	3	examines	the	fundamental	collection	and	organizational	characteristics
of	imagery	that	determine	what	imagery	dataset	will	bring	the	most	value	to	your
projects.	Chapter	4	provides	a	framework	for	choosing	the	best	imagery	to	meet
your	needs	and	describes	the	variety	of	imagery	datasets	available.

The	second	section,	Using	Imagery	in	a	GIS—two	chapters—focuses	on
how	to	manipulate	imagery	to	increase	its	value	within	a	GIS.	Chapter	5
discusses	imagery	storage	and	formats,	displays,	mosaicking,	and	accessing
imagery	as	web	services.	Chapter	6	reviews	the	methods	used	to	control
unwanted	variation	in	imagery	caused	by	the	earth’s	atmosphere	and	terrain.

The	third	section,	Extracting	Information	From	Imagery—five	chapters—
details	how	to	efficiently	and	accurately	extract	information	from	imagery.
Chapter	7	introduces	the	importance	of	developing	a	robust	classification
scheme	to	characterize	variation	on	the	ground.	Chapter	8	reviews	how	digital



elevation	models	are	created	from	imagery.	Chapter	9	introduces	imagery
elements	and	discusses	a	variety	of	techniques	and	tools	for	exploring	the
correlation	between	imagery	variation	and	variation	on	the	ground.	Chapter	10
reviews	image	classification	approaches	ranging	from	manual	interpretation	to
sophisticated	semi-automated	classification.	Chapter	11	discusses	the	concepts
and	methods	commonly	employed	for	using	imagery	to	monitor	change.

The	fourth	section,	Managing	Imagery	and	GIS	Data—three	chapters—
focuses	on	ensuring	the	effective	management	and	use	of	imagery	and	maps
created	from	imagery.	Chapter	12	introduces	concepts	and	techniques	for
assessing	the	positional	and	thematic	accuracy	of	imagery	products	and	services.
Chapter	13	reviews	using	ArcGIS	to	publish	and	serve	imagery,	imagery
products,	and	imagery	services.	The	book’s	concluding	chapter	lists	experience-
proven	tips	for	successfully	deriving	the	most	value	from	imagery.

This	book	is	illustrated	with	over	150	figures	which	clarify	many	of	concepts
presented.	Over	30	of	these	figures	are	linked	to	interactive	applications,	which
allow	you	to	explore	the	concepts	in	more	depth.	If	a	figure	is	linked	to	an
application,	you	will	see	a	blue	Esri	url	in	the	figure	caption.

Case	Study	of	Sonoma	County,	California
During	the	writing	of	this	book,	the	authors	also	had	the	pleasure	of	creating	a	high-
resolution	 vegetation	 type	 map	 of	 Sonoma	 County,	 California	 (approximately	 1
million	 acres)	 for	 the	 Sonoma	 County	 Agricultural	 Preservation	 and	 Open	 Space
District	and	its	partners.	A	map	of	85	vegetation	types	at	a	1-acre	minimum	mapping
unit	(or	smaller	for	some	wetland	and	riparian	features)	was	created	using	a	variety
of	imagery	and	nonimagery	sources	including	Landsat,	National	Agricultural	Imagery
Program	 (NAIP)	 imagery,	 hyperspectral	 imagery,	 digital	 elevation	 models,	 wildfire
history,	 weather	 measurements,	 previously	 created	 vegetation	 maps,	 and	 NASA-
funded	six-inch	multispectral	imagery	and	lidar	data1.	Additionally,	other	GIS	layers
were	created	from	the	 imagery	 including	an	 impervious-surfaces	map,	a	croplands
map,	 building	 footprints,	 and	 many	 hydrologic	 data	 deliverables	 such	 as	 stream
centerlines.	 The	 project	 products	 support	 decision	 making	 for	 natural	 resource
planning,	land	conservation,	sustainable	community	and	climate	protection	planning,
public	works	projects,	hydrologic	evaluations,	watershed	assessments	and	planning,
and	 disaster	 preparedness	 throughout	 the	 county.	 The	 timeliness,	 detail,	 and
richness	of	 the	Sonoma	vegetation	mapping	project	supported	 the	development	of
many	figures	and	case	studies	presented	in	this	book.	You	can	learn	more	about	this
project	and	download	its	imagery	and	products	at	http://sonomavegmap.org/.

http://sonomavegmap.org/


___________________________
1	Lidar	data	and	orthophotography	were	provided	by	the	University	of	Maryland	under	grant
NNX13AP69G	from	NASA’s	Carbon	Monitoring	System	(Dr.	Ralph	Dubayah	and	Dr.	George	Hurtt,
Principal	Investigators).	This	grant	also	funded	the	creation	of	derived	forest	cover	and	land-cover
information,	including	a	countywide	biomass	and	carbon	map,	a	canopy	cover	map,	and	digital	elevation
models	(DEMs).	The	Sonoma	County	Vegetation	Mapping	and	LiDAR	Program	funded	lidar-derived
products	in	the	California	State	Plane	Coordinate	System,	such	as	DEMs,	hillshades,	building	footprints,
one-foot	contours,	and	other	derived	layers.	The	entirety	of	this	data	is	freely	licensed	for	unrestricted
public	use,	unless	otherwise	noted.



Chapter	2
Thinking	About	Imagery

Introduction
This	chapter	introduces	the	fundamental	concepts	that	define	imagery—its
structure,	uses,	and	classification.	More	importantly,	the	chapter	introduces	the
four	fundamental	steps	required	to	rigorously	consider	the	type	of	information	to
be	extracted	from	imagery,	and	how	those	considerations	will	drive	all	decisions
you	make	about	acquiring,	using,	serving,	and	classifying	imagery.	These	steps
form	the	foundation	of	imagery	workflows	and	shape	the	structure	of	this	text.

What	Is	Imagery?
Images	capture	and	store	data	measured	about	locations.	Historically,	most
imagery	was	captured	on	film,	and	stored	and	displayed	on	either	film,	glass,	or
paper.	Now,	nearly	all	imagery	is	captured	digitally	and	stored	in	a	gridded	form.
Even	historical	paper	maps	and	photos	are	often	now	scanned	and	stored	as
digital	images	such	as	the	vegetation	maps	of	Sonoma	County	from	the	1960s
shown	in	figure	2.1.



Figure	2.1.	A	scanned	and	registered	soil	vegetation	map	created	from	1960s	aerial	photography
overlaid	onto	2013	imagery	in	Sonoma	County,	California.

Many	images	are	measurements	of	reflected	or	emitted	electromagnetic
energy	(discussed	more	in	chapter	3)	captured	by	a	sensor,	whether	it’s	the
camera	on	your	cell	phone,	the	magnetic	resonance	imaging	device	in	a	medical
laboratory,	or	a	sophisticated	sensor	on	an	unmanned	aerial	vehicle,	an	airplane,
or	a	satellite.	Other	types	of	imagery	data	include	scientific	measurements	of	a
location’s	properties,	such	as	its	precipitation,	temperature,	or	water	depth	and
flow.

Imagery	Data	Structure
As	measurements,	all	images	are	continuous	data.	Continuous	data	is	measured
on	a	continuum	and	can	be	split	into	finer	and	finer	increments,	contingent	upon
the	precision	of	the	sensor	making	the	measurements.	Sensors	that	capture
imagery	return	numerical	values	within	a	range	defined	by	the	sensing



instrument.
Most	remote	sensors	collect	data	in	a	rectangular	array,	and	remotely	sensed

data	not	captured	in	a	rectangular	array	is	usually	resampled	into	a	rectangular
array	after	collection.	Examples	of	image	data	include	imagery	collected	from
optical	sensors,	such	as	that	collected	by	USGS’s	Landsat	satellites	and	by
contractors	collecting	aerial	National	Agricultural	Imagery	Program	imagery	for
the	USDA.

Discreet	point	location	measurements,	such	as	those	from	weather	stations	or
buoys,	are	also	represented	in	a	rectangular	array.	Three-dimensional	(x,	y,	and
z)	point	data,	such	as	that	collected	by	lidar	sensors,	is	referred	to	as	a	point
cloud,	but	also	often	transformed	into	a	rectangular	array	for	both	visualization
and	analysis	(figure	2.2).

Figure	2.2.	Lidar	returns	from	a	Teledyne	Optech	Titan	bathymetric	lidar	system.	The	image	is
color	coded	by	elevation	for	both	topographic	height	and	water	depth.	Source:	Teledyne	Optech.

Image	files	are	structured	as	gridded	rectangular	arrays	or	raster	data,	with
each	cell	representing	a	measurement	value	captured	by	the	remote	sensing
measurement.	The	data	is	stored	as	rows	and	columns	of	contiguous	rectangular
cells	laid	out	in	a	grid	(figure	2.3).	Each	cell	contains	a	value.	The	values	may	be
integer	or	floating	point.	The	cells	of	an	image	raster	are	often	referred	to	as
picture	elements	or	pixels	and	contain	data	values	that	measure	some
characteristic	of	each	cell’s	location,	such	as	its	temperature,	elevation,	or
spectral	reflectance.

Because	each	cell	has	both	a	row	and	column	location	within	the	grid,	the
cells	have	inherent	coordinates	even	though	those	coordinates	may	still	need	to
be	converted	to	map	coordinates	if	the	imagery	is	to	be	used	in	a	GIS	with	other
GIS	layers	(see	chapter	6	for	more	information	on	georeferencing	imagery).



Figure	2.3.	A	two-dimensional	raster	grid.	Most	imagery	is	stored	as	a	raster	where	each	cell	is
referred	to	as	a	pixel	and	has	an	associated	x	and	y	coordinate.

Imagery	and	GIS
If	imagery	data	has	geographic	coordinates,	it	can	be	incorporated	into	a	GIS	as
a	layer	and	registered	with	the	other	geographic	layers	in	the	GIS.	This	overlay
capability	is	the	fundamental	concept	upon	which	GIS	operates.	When	combined
with	other	GIS	data,	imagery	transcends	its	status	as	merely	a	picture	and
becomes	a	true	data	source	that	can	be	combined,	compared,	analyzed,	and
classified	with	other	data	layers	of	the	same	area,	as	shown	in	figure	2.4.

Figure	2.4.	Imagery	as	a	GIS	layer

For	use	in	a	GIS,	imagery	is	usually	stored	as	it	has	been	collected:	in	raster
format.	Point	imagery	data	can	be	converted	to	raster	data	either	by	giving	the
cells	between	the	sample	points	values	of	zero	or	by	interpolating	between	the



sample	points.	Similarly,	line	and	polygon	data	can	also	be	converted	to	raster
representations	and	so	handled	similar	to	images.

Rasters	versus	Vectors
GIS	 data	 is	 stored	 as	 either	 rasters	 or	 vectors.	 Vectors	 represent	 the	 world	 with
points,	 lines,	 or	 polygons.	 A	 point	 is	 one	 location	 represented	 by	 x,	 y,	 and	 z
coordinates.	 A	 line	 is	 a	 linear	 connection	 between	 points.	 Sometimes	 lines	 are
connected	into	a	network	of	topologically	connected	lines.	A	polygon	is	a	set	of	lines
joined	together	to	enclose	an	area.	Polygons	are	drawn	to	outline	the	shape	of	an
object	of	interest.

Rasters	 divide	 the	 landscape	 into	 a	 grid	 of	 equal-area	 rectangular	 cells.	 The
rectangular	shape	of	an	 individual	cell	does	not	 represent	a	specific	object	on	 the
ground.	Rather,	the	cell	 is	an	arbitrary	delineation.	Lines	or	polygon	shapes	on	the
ground	are	represented	by	connected	raster	cells,	as	shown	in	figure	2.A.

Most	imagery	is	collected	as	raster	data,	which	is	why	most	imagery	is	captured	and
stored	as	rasters.	Because	of	the	simple	structure	of	rasters,	raster	spatial	analysis
is	relatively	uncomplicated.	However,	unlike	vectors,	rasters	do	not	have	meaningful
boundaries.	 In	 a	 raster,	 a	 lake	 is	 a	 cluster	 of	 spatially	 adjacent	 cells	 classified	 as
water.	 There	 is	 no	 way	 to	 analyze	 the	 lake	 as	 a	 singular	 object—it	 is	 merely	 a
collection	of	connected	water	cells.	 In	a	vector	system,	a	 lake	 is	a	polygon	object
with	 a	 defined	 boundary,	 which	 also	 carries	 information	 about	 the	 other	 objects
sharing	its	boundary.	As	a	result,	we	can	measure	the	size	of	the	lake,	analyze	the
wildlife	habitat	next	to	the	lake,	and	measure	the	distances	from	the	lake	to	cabins.
Vector	 spatial	 analysis	 is	 usually	 more	 computationally	 intensive	 than	 raster
analysis,	but	vectors	also	better	represent	the	shapes	of	the	world	as	they	actually
exist,	with	curves	and	straight	lines.	As	a	result,	vector	maps	are	more	aesthetically
pleasing.	Fortunately,	raster	maps	can	be	converted	to	vector	maps	and	vice	versa,
which	means	that	map	users	can	thoughtfully	choose	which	data	structure	will	best
meet	their	needs.	However,	conversion	from	raster	to	vector	or	vector	to	raster	data
introduces	changes	that	can	potentially	create	errors,	and	care	must	be	taken	when
this	process	is	performed.



Figure	2.A.	Representation	of	points,	lines,	and	polygons	in	vector	and	raster	formats

Characteristics	of	Rasters
Because	most	imagery	is	captured	and	stored	as	rasters,	it	is	important	to
understand	the	characteristics	of	rasters,	such	as	type,	bands,	and	cell	size.

Type
The	cells	of	rasters	can	contain	either	continuous	or	discrete	values.	As
mentioned	earlier,	image	data	is	continuous.	However,	when	we	classify	an



image	into	information,	the	resulting	values	can	be	either	continuous,	as	in	an
elevation	model	(figure	2.5),	or	discrete,	as	in	a	land	use	map	such	as	that	shown
in	figure	2.6.	Unlike	continuous	data,	discrete	data	classes	cannot	be
mathematically	divided	more	finely.	Discrete	information	can	take	on	only	finite
predefined	values	such	as	“tank,”	“lake,”	“urban,”	“forest,”	“building,”	or
“agriculture.”	Rasters	of	discrete	values	represent	information	that	has	been
classified	from	image	data;	they	are	no	longer	considered	images,	but	are	rather
now	raster	format	maps.

Figure	2.5.	An	example	of	a	continuous	raster	in	the	form	of	a	digital	elevation	model	(DEM)



Figure	2.6.	A	thematic	map	showing	discrete	land-cover	classes	present	in	the	Coastal
Watershed	in	southeastern	New	Hampshire	created	from	Landsat	8	imagery

Bands
Imagery	measurements	are	collected	and	stored	in	raster	bands.	For	example,	a
panchromatic	image	raster	includes	only	a	single	band	of	measurements,	shown
as	a	single	layer	in	figure	2.3,	and	is	typically	shown	in	grayscale.	Multispectral
imagery	contains	several	bands	of	measurements,	as	shown	in	figure	2.7.	Figure



2.8	shows	a	portion	of	Landsat	imagery	over	Sonoma	County,	California.	The
numerical	values	of	the	cells	of	three	bands	of	the	seven-band	image	are
displayed.	When	the	red,	green,	and	blue	bands	are	displayed	in	the	red,	green,
and	blue	colors	of	a	computer	screen	they	create	the	natural-color	image	of
figure	2.8.

Figure	2.7.	Multispectral	data.	If	more	than	one	type	of	measurement	is	collected	for	each	cell,
the	data	is	called	multispectral,	and	each	type	of	measurement	is	represented	by	a	separate
band.

Figure	2.8.	The	numerical	values	of	three	bands	of	Landsat	imagery	over	a	portion	of	Sonoma
County,	California.



Hyperspectral	data	contains	50	to	more	than	200	bands	of	measurements	and
is	usually	represented	as	a	cube	of	spectral	values	over	space	(figure	2.9).	Image
cubes	are	also	used	to	bring	the	temporal	dimension	into	a	set	of	images,	as
when	multiple	Landsat	images	are	analyzed	of	the	same	area	over	time.

Figure	2.9.	A	hyperspectral	data	cube	captured	over	NASA’s	Ames	Research	Center	in	California.
Hyperspectral	data	includes	50	to	more	than	200	bands	of	measurements.	Source:	NASA

Figure	2.10.	The	impact	of	raster	cell	size	on	the	level	of	detail	depicted.	The	larger	the	cell,	the
less	discernible	detail.	In	this	example	a	car	is	represented	by	three	different	image	cell	sizes	but
displayed	at	the	same	scale.	The	smaller	the	cell,	the	more	information	available	to	identify	the
rectangle	of	eight	large	reddish	pixels	on	the	right	as	a	red	sedan	on	the	left.

Cell	Size



The	cell	size,	or	spatial	resolution,	of	a	raster	will	determine	the	level	of	spatial
detail	displayed	by	the	raster.	Figure	2.10	illustrates	the	effect	of	cell	size	on
spatial	resolution.	The	cell	must	be	small	enough	to	capture	the	required	detail
but	large	enough	for	computer	storage	and	analysis	to	be	performed	efficiently.
More	features,	smaller	features,	or	greater	detail	in	the	extent	of	features	can	be
represented	by	a	raster	with	a	smaller	cell	size.	However,	more	is	not	always
better.	Smaller	cell	sizes	result	in	larger	raster	datasets	to	represent	an	entire
surface;	therefore,	there	is	a	need	for	greater	storage	space,	which	often	results	in
longer	processing	time.

Choosing	an	appropriate	cell	size	is	not	always	simple.	You	must	balance
your	application’s	need	for	spatial	resolution	with	practical	requirements	for
quick	display,	processing	time,	and	storage.	Essentially,	in	a	GIS,	your	results
will	only	be	as	accurate	as	your	least	accurate	dataset.	The	more	homogeneous
an	area	is	for	critical	variables,	such	as	topography	and	land	use,	the	larger	the
cell	size	can	be	without	affecting	accuracy.

Determining	an	adequate	cell	size	is	just	as	important	in	your	GIS
application	planning	stages	as	determining	what	datasets	to	obtain.	A	raster
dataset	can	always	be	resampled	to	have	a	larger	cell	size;	however,	you	will	not
obtain	any	greater	detail	by	resampling	your	raster	to	have	a	smaller	cell	size.
Chapter	3	discusses	cell	size	and	image	spatial	resolution	in	more	detail.

How	Is	Imagery	Used	in	a	GIS?
The	three	primary	uses	of	imagery	in	a	GIS	are

1. as	a	base	image	to	aid	 the	visualization	of	map	information,	as	shown	in
figure	2.11

2. as	 an	 attribute	 of	 a	 feature.	 For	 example,	 an	 image	 of	 vegetation	 taken
from	 the	 ground	may	 serve	 as	 an	 attribute	 of	 a	 vegetation	 survey	 point
displayed	on	a	map,	as	shown	in	figure	2.12

3. as	a	data	source	from	which	information	is	extracted	through	the	process
of	image	classification.	For	example,	imagery	may	be	interpreted	by	image
analysis	 to	determine	 the	current	state	of	situations	for	disaster	 response,
environmental	 monitoring,	 or	 military	 planning.	 Imagery	 can	 also	 be
transformed	into	informational	map	classes	through	manual	interpretation
or	semi-automated	classification.

The	focus	of	much	of	this	book	is	on	the	third	use—image	classification,	which



is	the	process	of	utilizing	imagery	in	a	GIS	to	produce	maps.

Figure	2.11.	Imagery	as	a	base	image.	This	figure	shows	airborne	infrared	imagery	as	a	base
image	with	parcel	boundaries	(in	yellow)	and	field	data	points	(in	green).	(esriurl.com/IG211).
Source:	Sonoma	County	Agriculture	Preservation	and	Open	Space	District

http://esriurl.com/IG211


Figure	2.12.	A	field-captured	image	as	an	attribute	of	the	survey	point	geodatabase.	Source:
Sonoma	County	Agriculture	Preservation	and	Open	Space	District

Image	Classification	—	Turning	Data	into	Map
Information
To	simplify	and	make	sense	of	our	world,	humans	classify	the	continuous	stream
of	data	received	by	our	sensory	system—our	eyes,	ears,	tongue,	nose,	and	skin.
We	receive	the	data	and	our	brains	turn	it	into	information.	For	example,	if	we
see	a	four-legged	animal,	shorter	than	1	meter,	with	a	long	snout	and	canine
teeth,	we	might	identify	it	as	a	dog,	wolf,	or	coyote.	If	we	determine	it	is	a	dog
and	the	dog	is	growling,	with	its	hackles	up	and	its	teeth	bared,	we	know	it	is	a
threatening	dog.	If	the	dog	is	wagging	its	tail	and	lowering	its	body	into	a
submissive	posture,	we	know	that	it	is	a	friendly	dog.	Dog,	wolf,	coyote,
threatening,	and	friendly	are	all	categories	of	information	our	brains	determine
from	the	data	we	receive.

When	we	see	an	image,	our	brains	immediately	start	to	explore	and	classify
it.	We	identify	features	and	note	how	they	are	related	to	one	another.	In	a	GIS



system,	when	the	data	of	an	image	is	“classified,”	it	is	converted	from
continuous	data	into	either	continuous	or	categorical	information	and	a	map	is
created.	Table	2.1	below	provides	an	overview	of	the	differences	between
continuous	data	such	as	an	image,	and	continuous	and	categorical	information
which	are	derived	from	imagery.

Table	2.1.	Overview	of	the	differences	between	continuous	data,	continuous	information,	and
categorical	information

Types	of	Maps	Created	from	Imagery
Three	types	of	maps	are	produced	from	the	classification	of	imagery:	digital
elevation	models	(DEMs)	and	their	derivatives,	thematic	raster	and	vector	maps,
and	maps	of	feature	locations.

Digital	Elevation	Models
DEMs	provide	continuous	information	about	the	elevation	of	the	earth—either
its	bare	surface	without	vegetation	or	structures,	or	the	elevation	of	its	terrain
including	the	height	of	the	vegetation	and	structures.	DEMs	can	be	created	from
survey	point	data	or	from	points	collected	from	imagery.	The	ability	to	create
DEMs	across	large	areas	from	imagery	offers	distinct	advantages	over	using
much	more	labor-intensive	and	expensive	ground	surveys	to	produce	DEMs.



DEMs	and	their	derivatives,	such	as	slope	and	aspect,	are	among	the	most
commonly	used	geospatial	data	layers.

Thematic	Vector	and	Raster	Maps
A	thematic	map	is	a	vector	or	raster	map	of	themes	such	as	land-cover	types,	soil
types,	land	use,	or	forest	types.	Thematic	map	classes	are	discrete,	not
continuous.	A	thematic	map	covers	the	entire	area	of	the	landscape	and	labels
everything	into	thematic	classes.	Figure	2.6	is	an	example	of	a	thematic	map	of
land-cover	types	for	an	area	of	the	Coastal	Watershed	in	southeastern	New
Hampshire.	Thematic	maps	are	created	through	manual	interpretation	of	imagery
or	semiautomated	image	classification.

Feature	Maps
A	subset	of	thematic	maps	is	feature	maps.	Rather	than	label	the	entire
landscape,	feature	maps	identify	only	a	single	object	type,	resulting	in	a	binary
map	in	which	the	feature	is	located	and	identified,	and	everything	else	is	mapped
as	null;	not	that	feature.	Often,	the	feature	of	interest	is	a	very	specific	type	of
object	such	as	an	airplane,	military	vehicle,	or	other	unique	entity	that	is	out	of
place	and	unexpected	in	a	particular	environment.	Sometimes,	the	objects	of
interest	are	common	objects	such	as	water	bodies,	roads,	or	buildings.	Feature
extraction	is	usually	performed	manually,	but	computer	algorithms	have	also
been	developed	to	automatically	extract	features.	Usually,	automated	feature
extraction	results	in	a	number	of	false	positives	(i.e.,	the	location	of	points	that
are	not	the	feature	of	interest),	which	are	then	manually	reviewed	and	corrected.

Imagery	Workflows
Incorporating	imagery	in	a	GIS	requires	first	deciding	how	you	want	to	use	the
imagery.	Is	it	as	a	base	image,	as	an	attribute	of	a	feature,	or	to	make	a	map?	If
your	goal	is	to	make	a	map,	you	must	relate	the	objects	on	the	imagery	to
features	on	the	ground.	To	do	so,	four	steps	must	be	completed.	You	must

1. understand	and	characterize	 the	variation	on	 the	ground	that	you	want	 to
map,

2. control	variation	in	the	imagery	not	related	to	the	variation	on	the	ground,
3. link	variation	in	the	imagery	to	variation	on	the	ground,	and



4. capture	 the	 variation	 in	 the	 imagery	 and	 other	 data	 sets	 as	 your	 map
information.

First,	you	must	decide	how	you	want	to	characterize	the	phenomena	on	the
earth	that	you	want	to	identify,	analyze,	and	display	on	the	map;	i.e.,	you	need	to
understand	the	variation	on	the	ground	that	you	want	to	capture	on	the	map.
Once	you	understand	the	variation	on	the	ground,	you	will	need	to	create	a	set	of
rules	that	classify	the	variation	on	the	ground	into	meaningful	categories	for	your
proposed	uses	of	the	map.	It	is	the	map	categories	and	proposed	uses	that	will
drive	your	choice	of	what	type	of	imagery	to	acquire	for	your	project.	Knowing
how	to	best	make	that	choice	is	the	objective	of	chapters	3	and	4.	Knowing	how
to	build	a	rigorous	classification	scheme	is	the	objective	of	chapter	7.

Next,	you	must	work	with	your	imagery	in	your	GIS,	register	it	to	the
ground,	and	remove	or	manage	any	spurious	variation	in	the	imagery	caused	by
clouds,	cloud	shadows,	or	atmospheric	conditions	that	could	likely	lead	to	map
errors;	i.e.,	you	need	to	control	unwanted	variation	in	the	imagery.	Chapter	5
reviews	working	with	imagery	in	ArcGIS,	and	chapter	6	discusses	registering
imagery	to	the	ground	and	dealing	with	unwanted	image	variation.

Third,	you	must	understand	the	variation	in	the	imagery	and	how	it	relates	to
the	variation	you	want	to	map;	i.e.,	you	must	link	variation	in	the	imagery	to
variation	on	the	ground.	To	do	so,	you	will	inspect	the	imagery	to	understand
how	the	image	object	elements	of	color/tone,	shape,	size,	pattern,	shadow,
texture,	location,	context,	height,	and	date	vary	across	the	landscape.	There	are
analytics	you	can	perform	on	the	imagery	to	discover	how	well	the	imagery
varies	with	the	classes	you	want	to	map,	and	you	may	decide	to	manipulate	the
imagery	data	to	produce	indices	or	derivative	bands	that	help	derive	more
information	from	the	imagery.	You	may	discover	that	some	of	the	variation	on
the	ground	that	you	want	to	map	cannot	be	derived	from	the	imagery.	In	that
case,	you	must	discover	other	data	sources	(i.e.,	ancillary	data),	such	as	DEMs,
that	will	help	you	make	the	map.	Creating	DEMs	and	their	derivatives	is	the
topic	of	chapter	8.	Understanding	how	to	link	variation	in	the	imagery	to
variation	on	the	ground	is	the	learning	objective	of	chapter	9.

Fourth,	you	will	classify	the	imagery	to	create	maps	of	digital	elevation,
feature	locations,	or	thematic	landscape	classes	by	capturing	the	variation	in	the
imagery	and	ancillary	data	that	is	related	to	your	map	classes.	This	work	may
be	performed	manually	or	with	the	help	of	a	computer.	There	are	many	methods
of	classifying	imagery.	Explaining	those	methods	and	describing	how	to	choose
which	method	to	use	are	the	objectives	of	chapters	10	and	11.	Once	the	image	is
classified	into	a	map,	you	will	want	to	assess	the	map’s	accuracy,	which	is	the



topic	of	chapter	12.	Finally,	you	may	want	to	publish	your	imagery	and	maps,
which	is	the	topic	of	chapter	13.



Chapter	3
Imagery	Fundamentals

Introduction
Imagery	is	collected	by	remote	sensing	systems	managed	by	either	public	or
private	organizations.	It	is	characterized	by	a	complex	set	of	variables,	including

collection	characteristics:	image	spectral,	radiometric,	and	spatial
resolutions,	viewing	angle,	temporal	resolution,	and	extent;	and
organizational	characteristics:	image	price	and	licensing	and	accessibility.

The	choice	of	which	imagery	to	use	in	a	project	will	be	determined	by
matching	the	project’s	requirements,	budget,	and	schedule	to	the	characteristics
of	available	imagery.	Making	this	choice	requires	understanding	what	factors
influence	image	characteristics.	This	chapter	provides	the	fundamentals	of
imagery	by	first	introducing	the	components	and	features	of	remote	sensing
systems,	and	then	showing	how	they	combine	to	influence	imagery	collection
characteristics.	The	chapter	ends	with	a	review	of	the	organizational	factors	that
also	characterize	imagery.	The	focus	of	this	chapter	is	to	provide	an
understanding	of	imagery	that	will	allow	the	reader	to	1)	rigorously	evaluate
different	types	of	imagery	within	the	context	of	any	geospatial	application,	and
2)	derive	the	most	value	from	the	imagery	chosen.

Collection	Characteristics
Image	collection	characteristics	are	affected	by	the	remote	sensing	system	used



to	collect	the	imagery.	Remote	sensing	systems	comprise	sensors	that	capture
data	about	objects	from	a	distance,	and	platforms	that	support	and	transport
sensors.	For	example,	humans	are	remote	sensing	systems	because	our	bodies,
which	are	platforms,	support	and	transport	our	sensors—our	eyes,	ears,	and
noses—which	detect	visual,	audio,	and	olfactory	data	about	objects	from	a
distance.	Our	brains	then	identify/classify	this	remotely	sensed	data	into
information	about	the	objects.	This	section	explores	sensors	first,	and	then
platforms.	It	concludes	by	discussing	how	sensors	and	platforms	combine	to
determine	imagery	collection	characteristics.

A	platform	is	defined	by	the	Glossary	of	the	Mapping	Sciences	(ASCE,
1994)	as	“A	vehicle	holding	a	sensor.”	Platforms	include	satellites,	piloted
helicopters	and	fixed-wing	aircraft,	unmanned	aerial	systems	(UASs),	kites	and
balloons,	and	earth-based	platforms	such	as	traffic-light	poles	and	boats.	Sensors
are	defined	as	devices	or	organisms	that	respond	to	stimuli.	Remote	sensors
reside	on	platforms	and	respond	“to	a	stimulus	without	being	in	contact	with	the
source	of	the	stimulus”	(ASCE,	1994).	Examples	of	remote	sensing	systems
include	our	eyes,	ears,	and	noses;	the	camera	in	your	phone;	a	video	camera
recording	traffic	or	ATM	activity;	sensors	on	satellites;	and	cameras	on	UASs,
helicopters,	or	airplanes.

Imagery	is	acquired	from	terrestrial,	aircraft,	marine,	and	satellite	platforms
equipped	with	either	analog	(film)	or	digital	sensors	that	measure	and	record
electromagnetic	energy.1	Because	humans	rely	overwhelmingly	on	our	eyes	to
perceive	and	understand	our	surroundings,	most	remote	sensing	systems	capture
imagery	that	extends	our	ability	to	see	by	measuring	the	electromagnetic	energy
reflected	or	emitted	from	an	object.	Electromagnetic	energy	is	of	interest
because	different	types	of	objects	reflect	and	emit	different	intensities	and
wavelengths	of	electromagnetic	energy,	as	shown	in	figure	3.1.	Therefore,
measurements	of	electromagnetic	energy	can	be	used	to	identify	features	on	the
imagery	and	to	differentiate	diverse	classes	of	objects	from	one	another	to	make
a	map.



Figure	3.1.	Comparison	of	example	percent	reflectance	of	different	types	of	objects	across	the
electromagnetic	spectrum	(esriurl.com/IG31)

The	type	of	sensor	used	to	capture	energy	determines	which	portions	of	the
electromagnetic	spectrum	the	sensor	can	measure	(the	imagery’s	spectral
resolution)	and	how	finely	it	can	discriminate	between	different	levels	of	energy
(its	radiometric	resolution).	The	type	of	platform	employed	influences	where	the
sensor	can	travel,	which	will	affect	the	temporal	resolution	of	the	imagery.	The
remote	sensing	system—the	combination	of	the	sensor	and	the	platform—
impacts	the	detail	perceivable	by	the	system,	the	imagery’s	spatial	resolution,	the
viewing	angle	of	the	imagery,	and	the	extent	of	landscape	viewable	in	each
image.

Sensors
This	section	provides	an	understanding	of	remote	sensors	by	examining	their
components	and	explaining	how	different	sensors	work.	As	mentioned	in	chapter
1,	a	wide	variety	of	remote	sensors	have	been	developed	over	the	last	century.
Starting	with	glass-plate	cameras	and	evolving	into	complex	active	and	passive
digital	systems,	remote	sensors	have	allowed	us	to	“see”	the	world	from	a
superior	viewpoint.

http://esriurl.com/IG31


All	remote	sensors	are	composed	of	the	following	components,	as	shown	in
figure	3.2:

Devices	that	capture	either	electromagnetic	energy	or	sound,	either
chemically,	electronically,	or	biologically.	The	devices	may	be	imaging
surfaces	(used	mostly	in	electro-optical	imaging)	or	antennas	(used	in	the
creation	of	radar	and	sonar	images).
Lenses	that	focus	the	electromagnetic	energy	onto	the	imaging	surface.
Openings	that	manage	the	amount	of	electromagnetic	energy	reaching	the
imaging	surface.
Bodies	that	hold	the	other	components	relative	to	one	another.

Figure	3.2.	The	similar	components	of	the	human	eye	and	a	remote	sensor

Our	eyes,	cameras,	and	the	most	advanced	passive	and	active	digital	sensors
fundamentally	all	work	the	same	way.	Electromagnetic	energy	passes	through
the	opening	of	the	sensor	body	where	it	reaches	a	lens	that	focuses	the	energy
onto	the	imaging	surface.	Our	brains	turn	the	data	captured	by	our	retinas	into
information.	Similarly,	we	convert	remotely	sensed	image	data	into	information
through	either	manual	interpretation	or	semi-automated	image	classification.

Imaging	Surfaces
Imaging	surfaces	measure	the	electromagnetic	energy	that	is	captured	by	digital



sensors	such	as	a	charged	coupled	device	(CCD)	or	a	complementary	metal-
oxide-semiconductor	(CMOS)	array.	The	wavelengths	of	energy	measured	are
determined	by	either	filters	or	dispersing	elements	placed	between	the	sensor
opening	and	the	imaging	surface.	The	energy	is	generated	either	passively	by	a
source	(such	as	the	sun)	other	than	the	sensor,	or	actively	by	the	sensor.

The	Electromagnetic	Spectrum
Most	remote	sensing	imaging	surfaces	work	by	responding	to	photons	of
electromagnetic	energy.	Electromagnetic	energy	is	caused	by	the	phenomenon	of
photons	freeing	electrons	from	atoms.	Termed	the	photoelectric	effect,	it	was
first	conceptualized	by	Albert	Einstein,	earning	him	the	Nobel	Prize	in	physics
in	1921.

Electromagnetic	energy	occurs	in	many	forms,	including	gamma	rays,	x-
rays,	ultraviolet	radiation,	visible	light,	infrared	radiation,	microwaves,	and	radio
waves.	It	is	characterized	by	three	important	variables:	1)	speed,	2)	wavelength,
and	3)	frequency	The	speed	of	electromagnetic	energy	is	a	constant	of	186,000
miles/second,	or	3	×	108	meters/second,	which	is	the	speed	of	light.	Wavelength
is	the	distance	between	the	same	two	points	on	consecutive	waves	and	is
commonly	depicted	as	the	distance	from	the	peak	of	one	wave	to	the	peak	of	the
next,	as	shown	in	figure	3.3.	Frequency	is	the	number	of	wavelengths	per	unit
time.

Figure	3.3.	Diagram	demonstrating	the	concepts	of	electromagnetic	wavelength	and	frequency

The	relationship	between	wavelength,	wave	speed,	and	frequency	is



expressed	as

Because	electromagnetic	energy	travels	at	the	constant	speed	of	light,	when
wavelengths	increase,	frequencies	decrease,	and	vice-versa	(i.e.,	they	are
inversely	proportional	to	each	other).	Photons	with	shorter	wavelengths	carry
more	energy	than	those	with	longer	wavelengths.	Remote	sensing	systems
capture	electromagnetic	energy	emitted	or	reflected	from	objects	above	0
degrees	Kelvin	(absolute	0).

Electromagnetic	energy	is	typically	expressed	as	either	wavelengths	or
frequencies.	For	most	remote	sensing	applications,	it	is	expressed	in
wavelengths.	Some	electrical	engineering	applications	such	as	robotics	and
artificial	intelligence	express	it	in	frequencies.	The	entire	range	of
electromagnetic	wavelengths	or	frequencies	is	called	the	electromagnetic
spectrum	and	is	shown	in	figure	3.4.

Figure	3.4.	The	electromagnetic	spectrum

The	most	significant	difference	between	our	eyeballs	and	digital	cameras	is
how	the	imaging	surfaces	react	to	the	energy	of	photons.	As	shown	in	figure	3.4,
the	retinas	in	human	eyes	sense	only	the	limited	visible	light	portion	of	the
electromagnetic	spectrum.	While	able	to	capture	more	of	the	spectrum	than
human	eyes,	film	is	limited	to	wavelengths	from	0.3	to	0.9	micrometers	(i.e.,	the
ultraviolet,	visible,	and	near	infrared).	CCD	or	CMOS	arrays	in	digital	sensors
are	sensitive	to	electromagnetic	wavelengths	from	0.2	to	1400	micrometers.
Because	remote	sensors	extend	our	ability	to	measure	more	portions	of	the
electromagnetic	spectrum	than	our	eyes	can	sense,	remote	sensors	extend	our



ability	to	“see.”

Film	versus	Digital	Array	Imaging	Surfaces
The	imaging	surfaces	of	our	eyes	are	our	retinas.	Cameras	once	used	only	film,
but	now	primarily	use	digital	(CCD	or	CMOS)	arrays.	From	its	beginnings	in	the
late	1800s	to	the	1990s,	most	remote	sensing	sensors	relied	on	film	to	sense	the
electromagnetic	energy	being	reflected	or	emitted	from	an	object.	Classifying	the
resulting	photographs	into	information	required	manual	interpretation	of	the
photos.	In	the	1960s,	digital	sensors	were	developed	to	record	electromagnetic
energy	as	a	database	of	numbers	rather	than	a	film	image.	This	enabled	the
development	of	sensors	that	can	sense	electromagnetic	energy	across	the	range
from	ultraviolet	to	radio	wavelengths.	Now,	most	remote	sensing	systems	use
digital	arrays	instead	of	film.	Because	the	values	of	the	reflected	and	emitted
energy	are	stored	as	an	array	of	numbers,	computers	can	be	trained	to	turn	the
imagery	data	into	map	information	by	discovering	correlations	between
variations	in	the	landscape	and	variations	in	electromagnetic	energy.	While
manual	interpretation	is	still	very	important,	objects	that	are	spectrally	distinct
from	one	another	can	be	readily	mapped	using	computer	algorithms.

The	imaging	surface	of	a	digital	camera	is	an	array	of	photosensitive	cells
that	capture	energy	from	incoming	photons.	Each	of	these	cells	corresponds	to	a
pixel	in	the	resulting	formed	image.	The	pixels	are	arranged	in	rectangular
columns	and	rows.	Each	pixel	contains	one	to	three	photovoltaic	cells	or
photosites,	which	use	the	ability	of	silicon	semiconductors	to	translate
electromagnetic	photons	into	electrons.	The	higher	the	intensity	of	the	energy
reaching	the	cells	during	exposure,	the	higher	the	number	of	electrons
accumulated.	The	number	of	electrons	accumulated	in	the	cell	is	recorded	and
then	converted	into	a	digital	signal.

The	size	of	the	array	and	the	size	of	each	cell	in	the	array	affect	the	resolving
power	of	the	sensor.	The	larger	the	array,	the	more	pixels	captured	in	each
image.	Larger	cells	accumulate	more	electrons	than	smaller	cells,	allowing	them
to	capture	imagery	in	low-energy	situations.	However,	the	larger	cells	also	result
in	a	corresponding	loss	of	spatial	resolution	across	the	image	surface	because
fewer	cells	can	occupy	the	surface.

Source	of	Energy:	Active	versus	Passive	Sensors
Passive	sensors	collect	electromagnetic	energy	generated	by	a	source	other	than



the	sensor.	Active	sensors	generate	their	own	energy,	and	then	measure	the
amount	reflected	back	as	well	as	the	time	lapse	between	energy	generation	and
reception.	Figure	3.5	illustrates	the	difference	in	how	active	and	passive	sensors
operate.

Figure	3.5.	Comparison	of	how	passive	and	active	sensors	operate

Most	remote	sensors	are	passive	sensors,	and	the	most	pervasive	source	of
passive	electromagnetic	energy	is	the	sun,	which	radiates	electromagnetic	energy
upon	objects	on	the	earth	that	either	absorb/emit,	transmit,	or	reflect	the	energy.
Passive	energy	can	also	be	directly	emitted	from	the	earth,	as	from	the	eruption
of	a	volcano	or	a	forest	fire.	Examples	of	passive	remote	sensors	include	film
aerial	cameras,	multispectral	digital	cameras,	and	multispectral/hyperspectral
scanners.	Passive	sensors	are	able	to	sense	electromagnetic	energy	in
wavelengths	from	ultraviolet	through	radio	waves.

Passive	sensors	fall	into	three	types:	framing	cameras,	across-track	scanners,
and	along-track	scanners.	Framing	cameras	either	use	film	or	matrixes	of	digital
arrays	(e.g.,	UltraCam	airborne	sensors,	PlanetLabs	satellite	sensors).	Each
frame	captures	the	portion	of	the	earth	visible	in	the	sensor’s	field	of	view



(FOV)	during	exposure.	Often,	the	frames	are	captured	with	greater	than	50
percent	overlap,	which	enables	stereo	viewing.	Each	image	of	a	stereo	pair	is
taken	from	a	slightly	different	perspective	as	the	platform	moves.	When	two
overlapped	images	are	viewed	side	by	side,	each	eye	automatically	takes	the
perspective	of	each	image,	enabling	us	to	now	“see”	the	overlapped	areas	in
three	dimensions.	With	stereo	frame	imaging,	not	only	can	distances	be
measured	from	the	aerial	images,	but	so	can	elevations	and	the	heights	of
vegetation	and	structures,	discussed	in	detail	in	chapter	9.

Most	across-track	scanners	(also	called	whisk	broom	scanners)	move	an
oscillating	mirror	with	a	very	small	instantaneous	field	of	view	(IFOV)	side	to
side	as	the	platform	moves.	Each	line	of	the	image	is	built,	pixel	by	pixel,	as	the
mirror	scans	the	landscape.	Developed	decades	before	the	digital	frame	camera,
across-track	scanners	were	the	first	multispectral	digital	sensors	and	were	used
in	multiple	systems	including	the	Landsats	1-7,	GOES,	AVHRR,	and	MODIS
satellite	sensors,	and	NASA’s	AVIRIS	hyperspectral	airborne	system.

Along-track	scanners	(also	called	push	broom	scanners)	rely	on	a	linear	array
to	sense	entire	lines	of	data	simultaneously.	Rather	than	mechanically	building
an	image	pixel	by	pixel	or	by	groups	of	pixels,	the	along-track	scanner	builds	an
image	line	by	line.	Along-track	scanners	have	higher	spectral	and	radiometric
resolution	than	across-track	scanners	because	the	sensor	can	spend	more	time
(termed	dwell	time)	over	each	area	of	ground	being	sensed.	Like	across-track
scanners,	along-track	scanners	often	also	use	a	dispersing	element	to	split	apart
the	incoming	beam	of	electromagnetic	energy	into	distinct	portions	of	the
electromagnetic	spectrum	to	enable	the	collection	of	multispectral	imagery.
Developed	30	years	ago,	along-track	scanners	are	a	more	recent	development
than	across-track	scanners.	Many	multispectral	satellite	systems	(e.g.,
WorldView-3,	Landsat	8)	rely	on	along-track	sensors,	as	do	the	Leica	Airborne
Digital	Sensors.

Active	sensors	send	out	their	own	pulses	of	electromagnetic	energy,	and	the
sensor	measures	the	echoes	or	returns	of	the	energy	as	they	are	reflected	by
objects	in	the	path	of	the	pulse.	For	example,	consumer	cameras	with	flash
attachments	are	active	systems.	Active	remote	sensors	include	lidar	(light
detection	and	ranging)	systems,	which	generate	laser	pulses	and	sense
electromagnetic	energy	in	the	ultraviolet	to	near-infrared	regions	of	the
spectrum,	and	radar	(radio	detection	and	ranging)	systems,	which	generate	and
sense	energy	in	the	microwave	range.	An	advantage	of	active	systems	is	that
they	do	not	rely	on	the	sun,	so	acquisitions	can	be	made	at	times	when	the	sun
angle	is	low	or	at	night.	An	additional	advantage	of	radar	systems	is	that	the	long



wavelengths	of	microwaves	can	penetrate	clouds,	haze,	and	even	light	rain.

Wavelengths	Sensed

Passive	Sensors
Most	images	are	collected	by	panchromatic	or	multispectral	passive	sensors	that
are	able	to	sense	electromagnetic	energy	in	the	visible	through	infrared	portions
of	the	electromagnetic	spectrum.	To	separate	different	optical	and	midinfrared
wavelengths	from	one	another,	passive	remote	sensors	place	filters	or	dispersing
elements	between	the	opening	and	the	imaging	surface	to	split	different
wavelengths	or	“bands”	of	the	electromagnetic	spectrum	from	one	another.
Filters	are	usually	used	with	framing	cameras	and	include	the	following:

Employing	a	Bayer	filter	over	the	digital	array,	which	restricts	each	pixel
to	one	portion	of	the	electromagnetic	spectrum,	but	alternates	pixels	in	the
array	to	collect	at	different	wavelengths.	The	computer	then	interpolates
the	values	of	the	non-sensed	wavelengths	from	the	surrounding	pixels	to
simulate	their	values	for	each	frequency	at	each	pixel.	This	is	how
consumer	cameras	and	many	of	the	high-resolution	small	satellite
constellations	(e.g.,	Planet	Doves)	collect	multispectral	imagery.
Placing	separate	filters	on	multiple	cameras,	each	filtered	to	accept	energy
from	a	distinct	portion	of	the	electromagnetic	spectrum,	allows	each	focal
plane	to	be	optimized	for	that	portion	of	the	spectrum.	Many	four-band
(red,	green,	blue,	and	infrared)	airborne	image	sensors	(e.g.,	Microsoft
Ultracam	and	Leica	DMC	sensors)	use	this	approach,	which	requires	that
the	images	simultaneously	captured	with	the	separate	cameras	be
coregistered	to	one	another	after	capture.
Placing	a	spinning	filter	wheel	in	front	of	one	camera	so	that	each
exposure	of	the	image	surface	is	in	one	portion	of	the	electromagnetic
spectrum.	This	approach	is	very	useful	for	fixed	platforms,	however	it
requires	very	complex	postcollection	registration	for	systems	with	moving
platforms	and	is	rarely	used	in	remote	sensing	systems.

Alternatively,	a	dispersing/splitting	element	can	be	placed	between	the	lens
and	a	series	of	CCD	arrays	to	split	the	incoming	energy	into	its	discrete	portions
of	the	electromagnetic	spectrum.	Many	multispectral	and	most	hyperspectral
sensors	employ	dispersing/splitting	elements	(e.g.,	Leica	Airborne	Digital
Sensors,	NASA	AVIRIS).

Figures	3.6	to	3.8	illustrate	how	Bayer	filters,	framing	cameras,	and
dispersing	elements	are	typically	used	to	create	multispectral	images.	In	general,



because	pixel	values	are	interpolated	for	two	values	out	of	every	three,	Bayer
filters	will	always	have	lower	spectral	resolution	than	multiheaded	frame
cameras	or	systems	using	dispersing	elements.

Figure	3.6.	How	a	Bayer	filter	framing	camera	system	works.	While	the	figure	shows	a	true	color
image,	Bayer	filters	can	also	be	used	to	collect	in	the	near-infrared	portions	of	the	electromagnetic
spectrum,	resulting	in	infrared	imagery.

Figure	3.7.	How	a	multilens	multispectral	framing	camera	system	works



Figure	3.8.	How	a	push	broom	multispectral	scanner	works	with	a	dispersing	element

Active	Sensors
The	most	common	active	remote	sensors	are	lidar	and	radar	systems.	As
mentioned	earlier,	all	active	instruments	work	similarly	by	transmitting
electromagnetic	energy	that	is	bounced	back	to	the	sensor	from	the	surface	of	the
earth.	Because	active	sensors	generate	their	own	energy,	they	can	capture
imagery	at	any	time	of	the	day	or	night.

Radar	imagery	is	often	used	to	create	digital	surface	and	digital	elevation
models	over	large	regions,	and	to	map	sea	or	land	cover	in	perpetually	cloudy
areas	where	optical	imagery	can’t	be	effectively	collected.	Figure	3.9	shows	an
example	of	a	radar	image	of	Los	Angeles,	California.	Radar	imagery	is	collected
over	a	variety	of	microwave	bands,	which	are	denoted	by	letters	and	measured	in
centimeters	as	follows:	Ka,	0.75	to	1.1	cm;	K,	1.1	to	1.67	cm;	Ku,	1.67	to	2.4
cm;	X,	2.4	to	3.75	cm;	C,	3.75	to	7.5	cm;	S,	7.5	to	15	cm;	L,	15	to	30	cm;	and	P,
30	to	100	cm.	Usually,	radar	imagery	is	collected	in	just	one	band,	resulting	in	a
single	band	image.	Bands	X,	C,	and	L	are	the	most	common	ranges	used	in
remote	sensing.	Some	radar	systems	are	able	to	collect	imagery	in	several	bands,
resulting	in	multispectral	radar	imagery.

Varying	antenna	lengths	are	required	to	create	the	radar	signal	at	these
different	wavelengths.	Because	it	is	often	not	viable	to	have	a	long	antenna	on	a
platform	moving	through	the	air	or	space,	the	length	of	the	antenna	is	extended
electronically	through	a	process	called	synthetic	aperture	radar.

Radar	signals	can	also	be	transmitted	and	received	in	either	horizontal	or
vertical	polarizations	or	a	combination	of	both.	HH	imagery	is	both	transmitted
and	received	in	a	horizontal	polarization,	and	VV	imagery	is	both	transmitted
and	received	in	a	vertical	polarization	(i.e.,	like-polarized).	HV	imagery	is
transmitted	horizontally	and	received	vertically,	and	VH	imagery	is	transmitted
vertically	and	received	horizontally	(i.e.,	cross-polarized).	The	different



polarizations	can	be	combined	to	create	a	multipolarized	image,	which	is	similar
to	a	multispectral	image	as	each	polarization	collects	different	data	about	the
ground.

Figure	3.9.	An	example	radar	image	captured	over	Los	Angeles,	California	(esriurl.com/IG39).
Source:	NASA

Over	the	last	20	years	in	much	of	the	world,	airborne	lidar	has	surpassed
photogrammetric	methods	for	measuring	the	3-dimensional	world.	Lidar
imagery	is	used	to	develop	digital	elevation	models	(DEMs),	digital	terrain
models	(DTMs),	digital	surface	models	(DSMs),	digital	height	models	(DHMs),
elevation	contours,	and	other	derived	datasets	(chapter	8	provides	more	detail	on
the	creation	of	DEMs).	Additionally,	NASA	uses	low-spatial-resolution	satellite
lidar	to	monitor	ice	sheet	mass	balance	and	aerosol	heights	and	has	recently
initiated	the	Global	Ecosystem	Dynamics	Investigation	(GEDI)	mission,	which
will	result	in	the	first	global,	moderate-spatial-resolution,	spaceborne
topographic	lidar	(http://science.nasa.gov/missions/gedi/).

http://esriurl.com/IG39
http://science.nasa.gov/missions/gedi/


Lidar	sensors	emit	discrete	pulses	of	electromagnetic	energy	that	illuminate	a
given	spot	on	the	earth	for	an	instant	(less	than	1/100,000	of	a	second).	The
energy	emitted	can	be	of	ultraviolet	through	near-infrared	wavelengths	(250	nm
to	10	μm),	which	are	much	shorter	than	those	of	radar	pulses.	The	pulses	of	light
then	bounce	back	and	are	recaptured	by	the	lidar	instrument	where	the	durations
of	their	paths	are	recorded	and	analyzed	to	extract	elevation	information.	The
number	of	returns	per	unit	area	for	discrete	return	lidar	can	be	much	higher	than
the	number	of	pulses	sent	earthward,	because	each	pulse	can	have	multiple
(typically	three	to	five)	returns.

There	are	two	types	of	airborne	lidar:	topographic	and	bathymetric.
Topographic	lidar	uses	an	infrared	laser	to	measure	elevations	across	the	surface
of	the	earth.	Bathymetric	lidar	employs	green	laser	light	to	penetrate	water	and
measure	the	depth	of	water	bodies.	In	topographic	lidar,	pulses	of	light	encounter
porous	objects,	such	as	vegetation,	which	will	have	multiple	returns.	For
example,	as	shown	in	figure	3.10,	a	selected	single	pulse	from	this	discrete
return	airborne	lidar	system	has	three	returns	from	branches	and	a	fourth	return
(the	final	return)	from	the	ground.	DTMs	are	generated	from	the	last	returns,
DSMs	from	the	first	returns	(buildings	must	be	removed	using	specialized
algorithms),	and	DHMs	from	the	difference	between	the	digital	surface	model
and	the	digital	terrain	model.	Lidar	returns	collectively	form	a	lidar	“point
cloud”	consisting	of	millions	to	billions	of	points	that	each	contain	the	point’s
latitude,	longitude,	and	elevation.



Figure	3.10.	Illustration	of	the	returns	from	a	topographic	lidar	system.	Source:	Dr.	Maggi	Kelly

Lidar	point	density	is	measured	by	the	average	number	of	pulses	sent
downward	from	the	aircraft	per	square	meter	of	ground.	As	of	this	writing,	“high
density”	airborne	lidar	is	generally	considered	to	have	a	point	density	of	greater
than	eight	points	per	square	meter.	In	vegetated	terrain,	only	a	fraction	of	the
pulses	of	light	sent	earthward	by	the	lidar	system	penetrate	all	the	way	to	the
ground,	and	the	number	of	ground	returns	decreases	as	the	thickness	of	the
vegetated	canopy	increases.	The	lack	of	ground	returns	in	thickly	vegetated	areas
can	lead	to	inaccuracy	in	the	digital	terrain	models	derived	from	a	lidar	dataset.
For	this	reason,	the	effective	resolution	of	the	digital	terrain	model	and	the
digital	height	model	depend	on	the	point	density	of	the	lidar	data.	The	higher	the
point	density,	the	more	ground	returns	and	the	higher	the	resolution	of	the
derived	DHM	and	DTM.	It	is	recommended	that	lidar	data	be	collected	at	a	point
density	of	at	least	eight	pulses	per	square	meter	in	project	areas	with	dense
forests.	Eight	pulses	per	square	meter	is	the	minimum	point	density	that	meets
the	US	Geological	Survey’s	(USGS)	quality	level	1	lidar	data	specification.2
Figure	3.11	compares	hillshades	derived	from	a	digital	terrain	models	at	USGS
quality	level	1	versus	USGS	quality	level	2	lidar	data,	illustrating	the	enhanced
detail	and	resolution	gained	by	collecting	lidar	data	at	higher	density.



Figure	3.11.	Comparison	of	a	hillshade	derived	from	1.2	pulses/m2	lidar	to	one	derived	from	eight
pulses/m2	lidar.	Source:	Quantum	Geospatial,	Inc.

There	are	two	common	types	of	airborne	topographic	lidar:	discrete	return
and	waveform.	Discrete	return	lidar	provides	elevation	values	at	the	peak
intensity	of	each	return.	Typically,	a	maximum	of	between	three	and	five	returns
is	possible	where	there	is	vegetation,	but	only	one	return	will	occur	in	open
areas.	Each	of	the	multiple	returns	is	stored	as	a	point	in	the	point	cloud,	with	its
associated	latitude,	longitude,	and	elevation.

Full	waveform	lidar—which	is	mostly	still	in	the	R&D	phase—provides	the
entire	“waveform”	graph	associated	with	a	lidar	pulse.	Because	it	records	the
entire	waveform	of	a	lidar	pulse’s	returns	and	not	just	three	to	five	discrete
peaks,	waveform	lidar	requires	30	to	50	times	the	amount	of	data	storage	as
discrete	return	lidar.

Historically,	lidar	systems	have	been	able	to	transmit	energy	in	only	one
wavelength.	However,	recent	advancements	in	lidar	technology	allow	for
transmitting	energy	in	multiple	wavelengths,	making	multispectral	lidar	images
possible	(Teledyne	Optech	Titan	system).	Additionally,	new	technologies	such	as
Geiger-mode	(Harris)	and	Single	Photon	(SigmaSpace/Hexagon)	have	been
introduced	that	significantly	improve	the	rate	of	data	collection	and	resulting
point	density	by	increasing	the	sensitivity	of	the	lidar	sensors.

Lenses
Objects	emit	or	reflect	electromagnetic	energy	at	all	angles.	The	angles	between
an	object	and	an	imaging	surface	change	as	the	imaging	surface	moves	closer	to
or	farther	from	the	object.	The	purpose	of	a	lens	in	a	camera	or	in	an	eyeball	is	to
focus	the	electromagnetic	energy	being	emitted	or	reflected	from	the	objects



being	imaged	onto	the	imaging	surface.	By	moving	the	lens	back	and	forth
relative	to	the	imaging	surface,	we	can	affect	the	angle	of	electromagnetic
energy	entering	and	exiting	the	lens,	and	thereby	bring	the	objects	of	interest	into
focus.

Most	remote	sensing	systems	capture	electromagnetic	energy	emitted	or
reflected	from	objects	at	a	great	distance	from	the	sensor	(i.e.,	at	an	effectively
infinite	distance),	from	hundreds	of	feet	for	a	sensor	in	an	aircraft	to	hundreds	of
miles	for	a	sensor	in	a	satellite.	Because	these	distances	approach	infinity
relative	to	the	focal	length,	the	lenses	have	a	fixed	focus.

The	combination	of	the	sensor’s	lens	and	the	resolution	of	the	imaging
surface	will	determine	the	amount	of	detail	the	sensor	is	able	to	capture	in	each
image—its	resolving	power.	The	resolution	of	a	digital	image	is	determined	by
the	format	size	of	the	digital	array	of	the	imaging	surface.

Openings
The	purpose	of	a	sensor	opening	is	to	manage	the	photons	of	electromagnetic
energy	reaching	the	imaging	surface.	Too	large	an	opening	results	in	the	imagery
being	saturated	with	photons,	overexposing	the	imaging	surface.	Too	small	an
opening	results	in	not	enough	photons	captured	to	create	an	image.

Our	irises	manage	the	amount	of	light	reaching	our	retinas	by	expanding	and
shrinking	to	let	more	or	less	light	onto	our	retinas.	In	a	camera,	the	diameter	of
the	opening	that	allows	electromagnetic	energy	to	reach	the	imaging	surface	is
called	the	aperture,	and	the	speed	at	which	it	opens	and	closes	is	called	the
shutter	speed.	Together,	aperture	and	shutter	speed	control	the	exposure	of	the
imaging	surface	to	electromagnetic	energy.	In	a	digital	camera,	the	CCD	array	is
read	and	cleared	after	each	exposure.

Bodies
Remotely	sensed	imagery	can	be	used	for	visualization—to	obtain	a	relative
concept	of	the	relationship	of	objects	to	one	another—or	to	measure	distances,
areas,	and	volumes.	For	either	visualization	or	measurement,	the	geometry	of	the
lenses,	opening,	and	imagery	surface	within	the	camera	body	must	be	known.	In
addition,	for	measurement	the	location	and	rotation	of	the	imagery	surface	when
the	image	is	captured	must	also	be	known.



Sensor	Summary
While	remote	sensor	components	share	similarities	with	our	eyes	and	consumer
cameras,	they	differ	in	the	following	fundamental	ways:

Imaging	surfaces	must	be	absolutely	flat	to	minimize	any	geometric
distortion.
The	energy	sensed	may	be	passively	received	by	the	sensor	from	another
source	(commonly	the	sun)	or	actively	created	by	the	sensor	and	then
received	back	by	the	sensor.
Because	most	remotely	sensed	images	are	taken	from	high	altitudes,	their
lenses	are	commonly	designed	for	an	infinite	object	distance;	i.e.,	the
lenses	are	fixed.
Shutter	speeds	are	usually	extremely	fast	because	most	platforms	are
moving	at	high	speeds.
Remote	sensor	camera	bodies	must	be	able	to	withstand	the	extreme
temperatures	and	vibrations	encountered	by	the	vehicle,	boat,	aircraft,	or
satellite	platform.	Additionally,	for	mapping	purposes,	the	precise	internal
geometry	of	the	sensor	components	within	the	body	must	be	known	as
well	as	the	location	of	the	imaging	surface	when	an	image	is	collected	so
that	the	imagery	can	be	accurately	terrain	corrected	and	georeferenced	to
the	earth.

Platforms
This	section	reviews	remote	sensing	platforms	by	examining	platform	features.
Seven	major	features	distinguish	platforms	from	one	another:	whether	they	are
manned	or	unmanned,	and	their	altitude,	speed,	stability,	agility,	and	power.

Different	Types	of	Platforms



Geosynchronous	—	22,236	miles
Satellites	that	match	Earth’s	rotation	appear	stationary	in	the	sky	to	ground	observers.	While	most
commonly	used	for	communications,	geosynchronous	orbiting	satellites	like	the	hyperspectral
GIFTS	imager	are	also	useful	for	monitoring	changing	phenomena	such	as	weather	conditions.
NASA’s	Syncom,	launched	in	the	early	1960s,	was	the	first	successful	“high	flyer.”

Sun	synchronous	—	375-500	miles
Satellites	in	this	orbit	keep	the	angle	of	sunlight	on	the	surface	of	the	earth	as	consistent	as
possible,	which	means	that	scientist	can	compare	images	from	the	same	season	over	several
years,	as	with	Landsat	imagery.	This	is	the	bread-and-butter	zone	for	earth	observing	sensors.

Atmospheric	satellite	—	100,000	feet
Also	known	as	pseudo-satellites,	these	unmanned	vehicles	skim	the	highest	edges	of	detectable
atmosphere.	NASA’s	experimental	Helios	craft	measured	solar	flares	before	crashing	in	the
Pacific	Ocean	near	Kauai.



Jet	aircraft	—	90,000-30,000	feet
Jet	aircraft	flying	at	30,000	feet	and	higher	can	be	flown	over	disaster	areas	in	a	very	short	time,
making	them	a	good	platform	for	certain	types	of	optical	and	multispectral	image	applications.

General	aviation	aircraft	—	100-10,000	feet
Small	aircraft	able	to	fly	at	low	speed	and	low	altitude	have	long	been	the	sweet	spot	for	high-
quality	aerial	and	orthophotography.	From	Cessnas	to	ultralights	to	helicopters,	these	are	the
workhorse	of	optical	imagery.

Drones	—	100-500	feet
Drones	are	the	new	kid	on	the	block.	Their	ability	to	fly	low,	hover,	and	be	remotely	controlled	offer
attractive	advantages	for	aerial	photography,	with	resolution	down	to	sub-1	inch.	Military	UAVs
can	be	either	smaller	drones	or	actual	airplanes.



Ground	based/handheld	—	ground	level
Increasingly,	imagery	taken	at	ground	level	is	finding	its	way	into	GIS	workflows.	Things	like
Google	Street	View,	HERE	street-level	imagery,	and	Mapillary;	handheld	multispectral	imagers;
and	other	terrestrial	sensors	are	finding	applications	in	areas	like	pipelines,	security,	tourism,	real
estate,	natural	resources,	and	entertainment.

Piloted	or	Unpiloted
Until	recently,	most	satellite	platforms	were	unpiloted,	and	most	airborne
platforms	were	piloted.	However,	with	the	advent	of	unmanned	aerial	vehicles,
most	airborne	platforms	are	now	unpiloted,	but	piloted	aircraft	still	capture	much
larger	areas	than	unpiloted	platforms.	While	less	used,	piloted	satellite	platforms
have	been	very	important	in	remote	sensing.	Starting	with	the	Apollo	space
mission	in	the	late	1960s	and	continuing	with	the	International	Space	Station
today,	piloted	satellites	have	completed	many	successful	remote	sensing
missions	including	NASA’s	Shuttle	Radar	Topography	Mission,	which	generated
global	digital	elevation	models	of	the	earth	from	56	degrees	south	to	60	degrees
north.	In	2019,	the	International	Space	Station	will	deploy	the	GEDI	lidar	to
produce	a	3D	map	of	the	earth’s	forests.

Most	of	the	areas	captured	by	airborne	platforms	used	for	mapping	today	are
flown	over	by	a	pilot	residing	in	the	platform.	UASs	are	either	autonomous	or
have	a	pilot	operating	them	from	the	ground.	Originally	developed	and	used	by
the	military,	the	use	of	UASs	in	civilian	markets	is	exploding	because	of	their
low	cost,	their	ability	to	collect	imagery	over	inaccessible	or	dangerous	areas,
and	their	ability	to	fly	low	and	slow,	enabling	the	capture	of	high-resolution



imagery	over	small	areas	that	would	be	too	expensive	to	capture	with	piloted
aerial	systems.	Hobbyist	use	in	the	United	States	has	skyrocketed	since	2010,	but
commercial	use	was	stalled	because	of	cumbersome	FAA	regulations.	In	2015,
the	FAA	streamlined	the	process	for	gaining	authorization	to	commercially
operate	UASs	in	the	US,	resulting	in	a	500	percent	increase	in	applications	in	the
first	six	months	of	2015	over	all	of	2014	(Andelin	and	Andelin,	2015).	Outside
the	United	States,	UAS	use	is	also	rapidly	increasing	with	successful
deployments	to	map	archeological	sites,	establish	property	rights,	monitor	illegal
resource	extraction,	and	support	disaster	response	(Pajares,	2015).

While	civilian	drones	do	not	currently	have	the	capacity	to	capture	imagery
over	large	areas,	the	use	of	UASs	is	likely	to	continue	to	rapidly	expand	and
evolve.	As	stated	in	the	primer	Drones	and	Aerial	Observations:

Technology	will	change.	Faster	processors	will	stitch	together	and
georectify	images	more	quickly.	The	acuity	of	photographic	sensors	will
improve,	as	will	the	endurance	and	range	of	drones.	Increasing	levels	of
autonomy	in	both	flight	software	and	post-processing	software	will	allow
for	the	creation	of	cheap	maps	with	increasingly	less	direct	human
intervention	(Kakaes	et	al.,	2015).

Altitude
Altitude	is	an	object’s	height	above	sea	level.	The	altitude	of	a	remote	sensing
platform	can	vary	between	below	sea	level	(in	bathymetric	projects)	to	more
than	20,000	miles	above	sea	level.	Remote	sensing	platforms	are	classed	into
three	types	based	on	their	range	of	distance	from	the	earth:

1. Terrestrial	 and	 marine	 platforms,	 including	 elevated	 work	 platforms,
mobile	 vehicles,	 buildings	 and	 towers,	 lampposts,	 buoys,	 boats,	 and
humans.

2. Airborne	platforms	 including	UASs,	 fixed-wing	aircraft,	helicopters,	 and
balloons.

3. Spaceborne	platforms,	which	are	either	geostationary	or	orbit	the	earth.
Terrestrial	platforms	operate	from	beneath	the	ocean	to	the	highest	buildings

on	earth	and	may	be	fixed	(e.g.,	ATM	video	cameras)	or	mobile	(e.g.,	cars	and
boats).	Airborne	platforms	fly	within	the	earth’s	atmosphere	up	to	an	altitude	of
typically	9.5	miles	(15.3	kilometers)	and	include	fixed-wing	aircraft,	UASs,
helicopters,	and	balloons.	Fixed-wing	aircraft	are	the	most	common	type	of
remote	sensing	platform	and	are	used	by	many	private	companies	and



governments	for	imaging	purposes.	High-altitude	piloted	aircraft	platforms	have
pressurized	cabins,	enabling	them	to	fly	as	high	as	50,000	feet	above	sea	level.
Low-altitude	piloted	aircraft	platforms	operate	at	altitudes	up	to	30,000	feet	(5.7
miles),	but	are	generally	used	to	collect	data	at	lower	elevations	to	gain	higher
spatial	resolution.	The	hovering	ability	of	helicopters	(below	500	feet	and	up	to
12,500	feet)	allows	them	to	collect	imagery	at	lower	speeds	than	fixed-wing
aircraft.	Balloons	have	a	wide	range	of	achievable	altitudes,	from	as	low	as
needed	for	a	tethered	balloon	to	around	20	km	or	more	for	a	blimp.	UASs	can	be
fixed-	or	rotor-winged	with	altitudes	ranging	from	very	close	to	the	ground	to
very	high	in	the	air.

At	the	highest	altitudes,	earth	observation	satellites	carry	remote	sensors
around	the	earth	in	orbit	at	altitudes	ranging	from	100	to	over	22,000	miles
above	sea	level.	Maintaining	orbital	altitude	is	a	constant	requirement	for
satellites	because	of	the	earth’s	steady	gravitational	pull	and	atmospheric	drag.
Lower	satellites	must	travel	at	higher	velocities	because	they	experience	greater
gravitational	pull	than	satellites	at	higher	altitudes.	Thus,	maintaining	orbit
requires	a	constant	balance	between	gravity	and	the	satellite’s	velocity.	Satellites
with	fuel	onboard	maintain	their	orbital	altitude	by	using	the	fuel	to	maintain
their	velocities.	However,	at	some	point	all	satellites	fall	back	to	earth	and	burn
up	in	the	atmosphere,	usually	in	controlled	descents.

Speed
Speed	is	the	rate	of	motion	of	an	object	expressed	as	the	distance	covered	per
unit	of	time.	It	determines	the	level	of	detail	and	amount	of	area	(extent)	a
remote	sensing	system	can	collect.	The	altitude	and	speed	flown	while	collecting
remotely	sensed	data	are	also	determined	by	the	desired	resolution	and	coverage,
as	well	as	the	sensor	being	used	(e.g.,	digital	or	film	camera,	lidar).	Remote
sensing	platform	speeds	can	range	from	stationary	(zero	velocity)	to	over	17,000
miles	per	hour.	Most	terrestrial	platforms	are	stationary.	Mobile	terrestrial
platforms	such	as	cars	and	boats	tend	to	travel	at	low	speeds	to	enable	the
collection	of	very-high-spatial-resolution	imagery.	Fixed-wing	UASs	and	aircraft
typically	fly	at	55	to	650	miles	per	hour.	Helicopters	and	rotor	UASs,	with	their
ability	to	hover,	typically	fly	at	0	to	150	miles	per	hour.	The	speed	at	which	a
satellite	travels	in	orbit	is	determined	by	its	altitude.	The	lower	the	altitude,	the
faster	the	satellite	must	travel	to	remain	in	orbit	and	not	fall	to	earth.	Satellites	in
near-circular	orbits	have	near-constant	speeds,	while	satellites	in	highly	elliptical
orbits	will	speed	up	and	slow	down	depending	on	the	distance	from	the	earth	and



direction	of	motion.

Stability
Stability	is	the	ability	of	an	object	to	resist	changes	in	position.	Stability	is	an
important	feature	of	remote	sensing	platforms	because	platforms	need	to	either
maintain	stability	or	precisely	measure	instability	to	ensure	high-quality	image
capture	and	accurate	registration	of	the	image	to	the	ground.	The	most	stable
platforms	are	fixed	terrestrial	platforms	because	they	are	structurally	rigid	and
immobile,	which	also	means	that	they	have	little	or	no	agility.	Satellite	platforms
are	also	relatively	stable	because	they	operate	in	the	vacuum	of	space.
Helicopters	are	less	stable	than	fixed-wing	aircraft	because	of	the	unequal	lift
and	vibrations	caused	by	the	rotating	blades.	While	balloons	were	an	important
platform	in	the	early	days	of	remote	sensing,	they	are	not	widely	used	today
because	their	flight	is	easily	influenced	by	air	currents	and	pressure	changes
resulting	in	minimal	control	of	balloon	flight	path	or	position.	Fixed-wing
platforms	are	relatively	stable	airborne	platforms.	Because	of	this	and	their	large
range	and	speed,	they	remain	the	workhorse	of	airborne	image	collection.

Operating	in	the	earth’s	atmosphere	subjects	aircraft	to	air	pressure	and	wind
variations	that	can	result	in	changes	in	pitch,	roll,	and	yaw	(figure	3.11),	causing
a	variety	of	displacements	in	the	collected	imagery.	Pitch	is	rotation	of	the
aircraft	about	the	axis	of	the	wings.	Yaw	is	rotation	about	the	axis	that	is
perpendicular	to	the	wings	and	directed	at	the	nose	and	tail	of	the	aircraft.	Roll	is
rotation	of	the	aircraft	about	the	axis	of	the	fuselage.

Figure	3.12.	The	effects	of	pitch,	yaw,	and	roll	on	aircraft	stability

Traditionally,	aerial	photography	missions	required	the	precise	measurement
of	many	ground	control	points	in	each	photograph	to	establish	the	exact	spatial
position	and	orientation	of	the	photograph	relative	to	the	ground	at	the	moment
the	image	was	taken.	In	the	late	1950s,	a	technique	called	bundle	block
adjustment	was	developed	to	reduce	the	number	of	expensive	control	points



required.	This	was	based	on	finding	tie	points	between	photographs	and	then
solving	least	squares	adjustment	formulas.	In	the	1990s,	the	number	of	control
points	required	was	again	reduced	by	the	advent	of	accurate	GPS	positioning	of
the	aircraft	that	effectively	added	control	points	in	the	air,	further	reducing	the
control	required.	The	advent	of	lower-cost	precise	IMUs	(inertial	measurement
units)	has	further	reduced	the	number	of	control	points	required,	so	that	for	many
applications	sufficient	accuracy	can	be	achieved	using	only	highly	accurate	GPS
and	IMU	systems,	which	is	referred	to	as	direct	georeferencing.	These
orientation	parameters	are	used	in	image	orthorectification	(see	chapter	6)	to
geometrically	correct	the	images	so	that	coordinates	in	the	imagery	accurately
represent	coordinates	on	the	ground.

Agility
Agility	refers	to	the	ability	of	the	platform	to	change	position	and	can	be
characterized	by	1)	reach	or	the	ability	of	a	platform	to	position	itself	over	a
target,	which	is	sometimes	referred	to	as	field	of	regard;	2)	dwell	time,	which	is
how	long	the	platform	can	remain	in	the	target	area	working;	and	3)	the	ability	to
slew	across	the	target	area.

Fixed	platforms	such	as	a	traffic-light	pole	above	a	street	intersection	have
no	agility.	Satellites	are	tied	to	their	orbits,	which	restricts	their	agility.	However,
some	satellites	are	pointable	(e.g.,	able	to	slew	off	nadir),	which	makes	them
much	more	agile	than	nonpointable	satellites.	This,	coupled	with	their	ability	to
quickly	orbit	the	earth,	provides	them	with	a	long-range	reach	around	the	globe,
which	is	not	available	to	aircraft.

Within	their	range,	aircraft	and	fixed-wing	UASs	are	more	agile	than
satellites,	and	helicopters	are	more	agile	than	fixed-wing	aircraft.	The	hovering
abilities	of	helicopters	and	rotor-winged	UASs	allow	them	to	obtain	more	target
specific	data	than	fixed-wing	aircraft	can	collect,	and	they	can	more	easily	reach
targets	in	a	congested	airspace.	Blimps	and	remote-controlled	balloons	have
greater	mobility	than	hot-air	balloons	because	they	have	engines	and	are	more
maneuverable.

Power
Power	refers	to	the	power	source	that	runs	the	platform.	The	more	powerful	the
engine	or	engines,	the	faster	and	higher	the	platform	can	travel	and	the	greater
payload	it	can	carry.	Satellites	are	propelled	into	space	by	launch	vehicles	to



escape	the	earth’s	gravity.	Afterward,	they	use	electric	power	derived	from	solar
panels	for	operation,	and	stored	fuel	for	orbital	maneuvering.	Of	critical
importance	is	the	amount	of	power	remaining	after	launch	for	the	sensor	to
operate.	Size,	weight,	and	power,	coupled	with	communication	bandwidth	(the
ability	to	offload	the	image	from	the	focal	plane)	are	the	biggest	drivers	in
satellite	sensor	design.

Fixed-wing	aircraft	are	powered	by	piston	engines,	turbocharged	piston
engines,	turboprops,	or	jet	engines	in	single-	or	twin-engine	configurations.
High-altitude	piloted	aircraft	platforms	are	usually	powered	by	twin	jet	engines
or	turboprops.	The	high	power	of	these	aircraft	and	their	ability	to	fly	at	high
altitudes	with	large	payloads	results	in	large	operational	costs,	but	this	can	be
offset	by	their	broad	spatial	coverage	abilities	and	fast	data	collection	(Abdullah
et	al.,	2004).	Single-engine	platforms	are	lighter	and	have	fewer	logistical
concerns	and	lower	operational	costs,	while	twin-engine	platforms	offer	more
power	and	weight	for	larger	payloads	(Abdullah	et	al.,	2004).	Many	low-altitude
platforms	employ	a	dual	sensor	configuration	for	collecting	multiple	types	of
data	(e.g.,	lidar	and	optical),	but	aircraft	with	less	powerful	engines	are	less
likely	to	be	able	to	carry	multiple	sensors	because	the	power	requirements	are
too	high	and	the	combined	payload	becomes	too	heavy	for	the	plane.	However,
over	the	last	10	years	the	weight,	size,	and	power	requirements	of	many	sensors
have	rapidly	decreased,	making	multiple	sensor	configurations	more	feasible.

Collection	Characteristics
The	components	of	sensors	and	the	features	of	platforms	combine	to	determine
the	collection	characteristics	of	an	image:	its	spectral	resolution,	radiometric
resolution,	spatial	resolution,	viewing	angle,	temporal	resolution,	and	extent.
Table	3.1	provides	definitions	of	commonly	used	categories	of	the	three	most
important	collection	characteristics:	spatial,	spectral,	and	temporal	resolution.

Table	3.1.	Commonly	used	categories	of	imagery	collection	characteristics



Spectral	Resolution
The	spectral	resolution	of	an	image	is	determined	by	the	sensor	and	refers	to	the
following:

The	number	of	bands	of	the	electromagnetic	spectrum	sensed	by	the	sensor
The	wavelengths	of	the	bands
The	widths	of	the	bands

Panchromatic	sensors	capture	only	one	spectrally	wide	band	of	data,	and	the
resulting	images	are	shades	of	gray,	regardless	of	the	portion	of	the	spectrum
sensed	or	the	width	of	that	portion.	Panchromatic	bands	always	cover	more	than
one	color	of	the	electromagnetic	spectrum.	Multispectral	sensors	capture
multiple	bands	across	the	electromagnetic	spectrum.	Hyperspectral	sensors
collect	50	or	more	narrow	bands.	Traditionally,	multispectral	bandwidths	have
been	quite	large	(usually	50	to	400	micrometers),	often	covering	an	entire	color
(e.g.,	the	red	portion).	Conversely,	hyperspectral	sensors	measure	the	radiance	or
reflectance	of	an	object	in	many	narrow	bands	(usually	5	to	10	micrometers)
across	large	portions	of	the	spectrum,	similar	to	imaging	spectroscopy	in	a
chemistry	laboratory.

Film	images	are	stored	as	negative	or	positive	film	or	paper	prints.	Remotely
sensed	digital	data	files	are	stored	in	a	raster	or	rectangular	grid	format.	When
imaging,	each	picture	element,	or	pixel,	collects	a	digital	number	(DN)
corresponding	to	the	intensity	of	the	energy	sensed	at	that	pixel	for	each	specific
band	of	the	electromagnetic	spectrum.	Panchromatic	data	is	stored	in	a	single
raster	file.	Figure	3.13	shows	example	infrared	DNs	for	a	small	area.



Figure	3.13.	Example	infrared	digital	number	(DN)	values

Multispectral	images	store	each	band	as	a	separate	raster.	Each	band	is
monochromatic,	but	when	they	are	combined	they	can	be	displayed	in	color.
Figure	3.14	shows	four	separate	bands	of	airborne	digital	imagery	collected	over
a	portion	of	Sonoma	County,	California.	Each	band	is	monochromatic.	Figure
3.15	combines	the	bands	to	create	true	color	and	color	infrared	displays.

Figure	3.14.	Red,	green,	blue,	and	near	infrared	bands	of	airborne	multispectral	imagery	captured
over	Sonoma	County,	California	(esriurl.com/IG314)

http://esriurl.com/IG314


Figure	3.15.	True	color	and	infrared	combination	of	bands	of	airborne	multispectral	imagery
collected	over	Sonoma	County,	California	(esriurl.com/IG315)

The	bands	shown	in	figures	3.14	and	3.15	are	in	the	red,	green,	blue,	and
near-infrared	portions	of	the	electromagnetic	spectrum.	Each	pixel	of	the
imagery	contains	four	numbers,	one	for	the	DN	recorded	in	each	of	the	four
bands.	Table	3.2	presents	the	range	of	DN	values	for	each	band	of	the	different
land-cover	types	depicted	in	figure	3.15.

Table	3.2.	Range	of	sample	DN	values

Notice	how	water	is	significantly	lower	in	the	infrared	band	than	are	the
other	land-cover	types.	Also,	urban	has	high	values	in	all	bands	relative	to	the
other	classes.	Riparian	vegetation	and	water	are	similar	in	the	red,	green,	and
blue	bands,	but	significantly	different	in	the	infrared	band,	indicating	that
without	the	infrared	band	it	might	be	difficult	to	distinguish	the	greenish	water
from	the	green	vegetation.

At	this	point,	we	can	begin	to	see	how	variations	in	land-cover	types	can	be
related	to	variations	in	spectral	responses,	and	it	becomes	straightforward	to
group	the	similar	pixels	of	the	image	sample	in	figure	3.14	together	into	land-

http://esriurl.com/IG315


cover	classes,	as	depicted	in	figure	3.16.	Of	course,	it	is	never	quite	this
straightforward	to	turn	image	data	into	map	information,	which	is	why	chapters
7	to	9	thoroughly	examine	the	methods	and	tools	for	image	interpretation	and
classification.

Figure	3.16.	Infrared	DN	values	from	figure	3.13	combined	into	land-cover	classes

Radiometric	Resolution
Radiometric	resolution	is	the	minimum	variation	in	electromagnetic	energy	that
a	sensor	can	detect,	and	therefore	determines	the	information	content	of	an
image.	Like	spectral	resolution,	radiometric	resolution	is	determined	by	the
sensor.

In	film	systems,	radiometric	resolution	is	determined	by	the	contrast	of	the
film.	Higher-contrast	films	will	have	higher	radiometric	resolutions	than	low-
contrast	films.	In	digital	sensors,	the	potential	range	of	DN	values	that	can	be
recorded	for	each	band	determines	the	sensor’s	radiometric	resolution.	The
larger	the	number	of	bits	or	intensities	discernible	by	the	sensor,	the	higher	its
radiometric	resolution	and	the	better	the	sensor	can	detect	small	differences	in
energy.	In	general,	higher	radiometric	resolution	increases	the	ability	to	more
finely	distinguish	features	on	the	imagery.	Discerning	objects	within	shadowed
areas	or	extremely	bright	areas	is	particularly	enhanced	by	higher	radiometric
resolution.

Digital	data	is	built	with	binary	machine	code,	therefore	each	bit	location	has



only	two	possible	values	(one	or	zero,	on	or	off),	and	radiometric	resolution	is
measured	as	a	power	of	2.	One-bit	data	would	result	in	image	pixels	being	either
black	or	white,	so	no	shades	of	gray	would	be	possible.	The	first	digital	sensors
were	6	bit,	allowing	64	levels	of	intensity.	More	recent	sensors	such	as	Landsat
8,	Sentinel-2,	and	WorldView-3	have	11-	to	14-bit	radiometric	resolutions	(for	a
range	of	from	2,048	to	16,384	levels	of	intensity).

The	range	of	electromagnetic	energy	intensities	that	a	sensor	actually	detects
is	termed	its	dynamic	range.	Specifically,	dynamic	range	is	defined	as	the	ratio
of	the	maximum	intensity	that	can	be	measured	by	a	device	divided	by	the
lowest	intensity	level	discernible.	It	is	important	to	note	the	difference	between
radiometric	resolution	and	dynamic	range.	The	radiometric	resolution	defines	the
potential	range	of	values	a	digital	remote	sensing	device	can	record.	Dynamic
range	is	calculated	from	the	actual	values	of	a	particular	image.	Dynamic	range
is	defined	by	the	difference	between	the	lowest	detectable	level	and	the	brightest
capturable	level	within	one	image.	It	is	governed	by	the	noise	floor/minimal
signal	and	the	overflow	level	of	the	sensor	cell.

The	sensor	used	to	originally	capture	an	image	determines	the	radiometric
resolution	of	the	image.	Thus,	scanning	a	film	image	to	create	a	digital	version
results	in	a	digital	image	with	the	radiometric	resolution	of	the	film	sensor,	not
of	the	digital	scanner,	even	though	the	radiometric	resolution	of	the	scanner	may
be	better	than	that	of	the	film	image.

Spatial	Resolution
An	image’s	spatial	resolution	is	determined	by	the	altitude	of	the	platform,	and
the	viewing	angle,	lens	focal	length,	and	resolving	power	of	the	sensor.	Spatial
resolution	has	two	different	definitions:

The	smallest	spatial	element	on	the	ground	that	is	discernible	on	the	image
captured	by	the	remote	sensing	system.	The	definition	of	“discernible”	can
refer	to	the	ability	to	detect	an	element	as	separate	from	another,	or	to	both
detect	and	label	the	different	elements.	This	definition	was	commonly	used
when	remotely	sensed	images	were	collected	primarily	on	film.
The	smallest	spatial	unit	on	the	ground	that	the	sensor	is	able	to	image.
This	is	the	more	common	meaning	and	is	the	one	relied	upon	by	makers
and	users	of	digital	remote	sensing	systems.	Usually,	it	is	expressed	as	the
ground	sample	distance	(GSD),	which	is	the	length	on	the	ground	of	one
side	of	a	pixel.

GSD	is	a	function	of	sensor	pixel	size,	height	above	terrain,	and	focal	length,



as	expressed	in	the	following	equation:

The	distance	to	ground	is	a	function	of	platform	altitude	and	sensor	viewing
angle.	If	focal	length	and	sensor	resolving	power	are	held	constant	(as	they	are	in
most	airborne	systems),	then	the	lower	the	altitude	of	the	system,	the	smaller	the
GSD	and	the	higher	the	spatial	resolution	of	the	resulting	imagery.	If	focal	length
and	distance	to	ground	are	held	constant	(as	they	are	in	satellite	systems),	then
the	higher	the	sensor	resolving	power,	the	higher	the	spatial	resolution.	If	sensor
resolving	power	and	distance	to	ground	are	held	constant,	then	the	longer	the
focal	length,	the	higher	the	spatial	resolution	of	the	sensor.	Because	the	sensor
and	the	altitude	of	satellite	remote	sensing	systems	are	constant	over	the	usable
life	of	the	system,	their	spatial	resolutions	are	also	fairly	constant	for	each
satellite	system	and	change	only	when	the	viewing	angle	is	changed.

Airborne	systems	have	varying	spatial	resolutions	depending	on	the	sensor
flown	and	the	altitude	of	the	aircraft	platform.	Spatial	resolution	is	also	affected
by	whether	the	sensor	has	a	stabilized	mount,	a	forward	motion	compensation
unit,	or	both,	which	compensate	for	the	forward	motion	of	the	aircraft	and
minimize	the	blur	caused	by	the	motion	of	the	platform	relative	to	the	ground	by
moving	the	sensor	in	the	reverse	direction	of	that	of	the	platform	(and	at	the
ground	speed	of	the	platform)	during	sensor	exposure.	Figure	3.17	compares	the
spatial	resolution	of	15-meter	pan-sharpened	Landsat	imagery	to	that	of	airborne
1-meter	National	Agriculture	Imagery	Program	(NAIP)	imagery	over	a	portion
of	Sonoma	County,	California.	Figure	3.18	compares	the	NAIP	imagery	to	6-
inch	multispectral	imagery	over	a	subset	of	the	same	area.

Figure	3.17.	Comparison	of	Landsat	15-meter	pan-sharpened	satellite	imagery	to	1-meter



National	Agriculture	Imagery	Program	(NAIP)	airborne	imagery	over	a	portion	of	Sonoma	County,
California.	Color	differences	are	due	to	sensor	differences	and	the	imagery	being	collected	in
different	seasons.	(esriurl.com/IG317)

Figure	3.18.	Comparison	of	1-meter	National	Agriculture	Imagery	Program	(NAIP)	imagery	to	6-
inch	airborne	imagery	over	a	subset	of	the	area	of	figure	3.17.	Color	and	shadow	differences	are
due	to	sensor	differences	and	the	imagery	being	collected	in	different	seasons.
(esriurl.com/IG318)

The	highest	spatial	resolution	obtainable	from	a	civilian	satellite	is
WorldView-4’s	30	centimeters	(11.8	inches).	High-resolution	airborne
multispectral	sensors	have	spatial	resolutions	of	2	to	3	centimeters	at	an	altitude
of	500	feet	(e.g.,	UltracamEagle).	Because	they	can	fly	lower	than	piloted
aircraft,	UASs	can	obtain	higher	spatial	resolutions	than	manned	aircraft.

Viewing	Angle
Viewing	angle	is	often	used	to	refer	to	one	or	both	of	the	following	angles:

The	maximum	angle	of	the	IFOV	of	the	sensor,	from	one	edge	of	the	sensor
view	to	the	other,	as	shown	in	figure	3.19.	Traditional	film-based	aerial
survey	cameras	often	used	wide-angle	cameras	with	a	90-degree	IFOV.
When	they	took	photographs	vertically,	the	features	at	the	edges	of	the
frames	were	captured	at	an	angle	of	about	45	degrees	to	vertical.	With	the
advent	of	digital	photography,	many	digital	aerial	survey	cameras	have	a
narrowed	IFOV,	and	coverage	is	achieved	by	taking	more	images.	Most
satellite	imagery	is	collected	with	an	even	narrower	IFOV.	For	example,	a
vertical	WorldView-3	scene	captures	a	strip	about	13.1	km	wide	from	an
altitude	of	617	km,	with	an	IFOV	of	about	1	degree.
The	pointing	angle	of	the	sensor	as	measured	from	directly	beneath	the

http://esriurl.com/IG317
http://esriurl.com/IG318


sensor	(0°,	or	nadir)	to	the	center	of	the	area	on	the	ground	being	imaged.
This	angle	is	also	referred	to	as	the	elevation	angle.	Sensor	viewing	angles
are	categorized	as	vertical	or	oblique,	with	oblique	being	further	divided
into	high	oblique	(images	that	include	the	horizon)	and	low	oblique
(images	that	do	not	include	the	horizon),	as	shown	in	figure	3.20.

Traditionally,	with	aircraft	imagery,	images	captured	with	the	sensor	pointed
at	less	than	±	0	to	3	degrees	off	nadir	are	considered	vertical,	and	images
collected	at	greater	than	±3	degrees	are	considered	oblique	(Paine	and	Kiser,
2012).	However,	with	the	plethora	of	pointable	high-resolution	satellites,	satellite
companies	tend	to	define	images	captured	with	a	sensor	viewing	angle	of	±	0	to
20	degrees	as	vertical	images,	and	images	collected	with	sensor	angles	greater
than	±20	degrees	as	oblique.

Viewing	angle	is	important	because	it	affects	the	amount	of	area	captured	in
an	image,	whether	only	the	top	of	an	object	or	its	sides	are	visible,	and	the
spatial	resolution	of	the	imagery.	The	larger	the	viewing	angle	from	the	sensor	to
the	object,	the	longer	the	distance	to	the	ground	and	the	lower	the	spatial
resolution	of	the	pixels.	For	example,	DigitalGlobe’s	WorldView-3’s	nadir
spatial	resolution	of	its	panchromatic	band	is	0.31	meter	on-nadir,	and	0.34
meter	at	20	degrees	off	nadir.	The	spatial	resolution	and	scale	within	an	oblique
image	change	more	rapidly	than	across	a	vertical	image.

The	primary	advantage	of	a	vertical	image	is	that	its	scale	and	illumination
are	more	constant	throughout	the	image	than	those	of	an	oblique	image.	While	a
vertical	image’s	scale	will	be	affected	by	terrain	and	the	slightly	off-nadir	pixels
at	the	edge	of	the	frame	or	scan	line,	a	vertical	image	will	always	have	more
uniform	scale	than	an	oblique	image.	As	a	result,	measurements	are	easier	and
directions	can	be	more	easily	determined,	allowing	the	image	to	approximate	a
map	and	be	used	for	navigation	(as	long	as	the	impacts	of	topography	are
considered).

On	the	other	hand,	an	oblique	image	will	show	the	sides	of	an	object	instead
of	just	the	top,	allowing	for	realistic	3D	rendering.	Because	humans	spend	much
of	their	time	on	the	ground,	an	oblique	view	is	more	intuitive	to	us	and	we	are
easily	able	to	judge	distances	to	objects	seen	in	an	oblique	view	(Paine	and
Kiser,	2012).	Much	imagery	for	military	surveillance	applications	was	captured
as	oblique	or	nonvertical,	providing	the	advantage	of	showing	objects	farther
away	and	showing	more	of	the	sides	of	the	features,	which	often	provide
significant	details	for	interpretation.

The	very	first	aerial	photographs	were	mostly	oblique.	However,	for	70	years
vertical	photographs	became	the	basis	for	most	maps	because	the	geometrical



relationship	between	the	sensor	and	the	ground	is	fairly	straightforward	to
determine	with	vertical	images.	In	addition,	the	scale	and	illumination	of	vertical
images	are	relatively	constant	within	the	image,	and	stereo	models	can	be	easily
created	by	overlapping	vertical	images.	Usually,	the	photographs	were	collected
with	at	least	a	50-percent	overlap	to	enable	stereo	viewing	and	photogrammetric
measurements	(see	chapter	6	for	more	detail	on	photogrammetry).	Similarly,
since	the	first	launch	in	1972,	all	nine	Landsat	satellites	were	designed	to	collect
vertical	images,	but	the	systems	are	incapable	of	stereo	except	over	higher
latitudes,	where	there	is	enough	overlap	to	allow	some	stereo	collection.

When	a	vertical	object	such	as	a	building	is	viewed	at	nadir,	the	sides	of	the
building	are	not	visible;	only	the	top	of	the	building	is	visible.	If	that	vertical
object	is	not	located	directly	below	the	sensor	at	nadir,	then	one	or	more	sides	of
the	object	will	be	visible	in	the	image;	this	is	termed	an	off-nadir	view,	and	the
effect	is	called	relief	displacement.	We	can	refer	to	the	angle	between	the	nadir
and	the	ray	of	light	between	the	sensor	and	the	vertical	object	as	the	off-nadir
angle.	This	angle	can	be	the	result	of	a	ray	being	off	the	center	of	a	vertical
image,	meaning	that	it	is	not	the	principal	axis	of	the	image,	or	it	can	be	the
result	of	a	ray	from	an	oblique	image.	In	either	case,	you	can	see	the	side	of	the
vertical	object,	and	this	view	allows	for	height	measurements	as	well	as	being
the	basis	for	parallax	between	two	images,	which	provides	stereo	imagery.
Parallax	is	the	apparent	displacement	of	the	position	of	an	object	relative	to	a
reference	point	due	to	a	change	in	the	point	of	observation.	This	off-nadir	angle
may	be	small	across	the	image	when	the	imagery	is	vertical	and	the	IFOV	is
small.	Larger	off-nadir	angles	are	seen	when	the	imagery	is	captured	as	oblique
imagery	or	if	the	camera	has	a	large	IFOV.

These	geometric	shifts	due	to	sensor	perspective	and	collection	geometry
enable	some	good	things	like	stereo	imagery,	but	they	also	lead	to	occlusion	of
objects	and	variation	from	image	to	image	that	adversely	affect	image
classification	and	other	automated	processes	if	elevation	is	not	modeled	at	a	high
fidelity.

The	1986	introduction	of	the	French	SPOT	systems	brought	off-nadir
pointability	to	civilian	satellite	image	collection,	allowing	for	the	collection	of
off-nadir	stereo	pairs	of	imagery	to	support	the	creation	of	DEMs.	Now,	most
very-high-spatial-resolution	satellites	and	airborne	systems	are	able	to	collect
both	nadir	and	off	nadir	to	oblique	imagery	either	through	pointing	the	system	as
shown	in	figure	3.20	or	through	the	use	of	multiple	sensors	on	the	platform,
some	collecting	at	nadir	and	others	collecting	off	nadir,	as	shown	in	figure	3.21.
Recently,	with	advances	in	photogrammetry	and	computing	power,	airborne	and



terrestrial	oblique	images	have	been	used	to	created	detailed	and	accurate	3D
representations	of	the	landscape.

Figure	3.19.	The	concepts	of	the	instantaneous	field	of	view	(IFOV),	nadir,	and	off-nadir	angles	of
a	vertically	pointed	sensor



Figure	3.20.	Examples	of	a	framing	camera’s	vertical,	low-oblique,	and	high-oblique	viewing
angles

Figure	3.21.	Diagram	showing	how	pointable	satellites	can	pitch	from	side	to	side	during	orbit	to
collect	off-nadir	stereo	images.	Source:	DigitalGlobe

Figure	3.22.	Conceptual	diagram	of	an	aircraft	with	a	Leica	ADS100	with	three	beam	splitters:
two	tetrachroid	beam	splitters	in	forward	and	backward	directions	with	multispectral	red,	green,
blue,	and	near-infrared	(RGBN)	bands	and	one	bi-tetrachroid	beam	splitter	in	nadir	with



multispectral	red,	green,	blue,	and	near	infrared	bands	with	staggered	green	bands.	Source:
Hexagon

Temporal	Resolution
Temporal	resolution	is	determined	primarily	by	the	platform	and	refers	to	the
flexibility	regarding	the	day,	time	of	day,	and	time	between	capture	of	remote
sensing	images	of	the	same	feature	by	a	sensor	on	the	platform.

The	highest	temporal	resolution	will	always	be	obtained	with	a	geostationary
system.	Because	weather	is	constantly	changing	and	must	be	constantly
monitored,	many	of	our	weather	satellites	are	geostationary—that	is,	they	rotate
above	the	earth	at	the	same	speed	as	the	earth	allowing	them	to	remain	stationary
over	a	particular	region.	To	remain	geostationary,	they	require	an	orbit	of	about
35,786	kilometers	above	ground,	and	as	a	result	their	spatial	resolution	is	very
low.	Other	examples	of	high	temporal	resolution	geostationary	systems	are	video
cameras	placed	in	banks,	at	many	road	intersections,	and	in	high-risk	areas	such
as	subway	stations	and	airports.	Other	applications	for	fixed	platforms	include
continuous	weather	observation	using	a	Doppler	radar	system	or	continuous
spectral	monitoring	of	a	specific	ground	point	(e.g.,	monitoring	spectral
characteristics	of	a	specific	farm	crop).	However,	terrestrial	platforms	are	not
practical	for	most	large	mapping	missions.

Airborne	platforms	usually	offer	higher	temporal	resolution	than	orbiting
space-borne	platforms	because	orbiting	platforms	are	restricted	by	their	orbits,
which	determine	how	often	and	when	a	spaceborne	platform	will	pass	over	a
specific	location	on	the	earth.	Conversely,	airborne	platforms	can	be	flown	at
any	time	of	day	or	night	but	may	be	restricted	from	flying	over	a	specific	area
such	as	a	war	zone.

Because	passive	systems	rely	on	the	energy	of	the	sun,	they	will	always	have
lower	temporal	resolution	than	active	systems,	which	can	be	flown	at	any	time	of
the	day	or	night.	Because	satellites	are	tied	to	their	orbits,	they	will	never	have
the	temporal	resolution	of	aircraft	systems	in	countries	where	airspace	is
relatively	unrestricted	(as	opposed	to	severely	restricted	airspace	over	countries
such	as	Iraq	or	North	Korea).	Sun-synchronous	satellites	capture	imagery	during
the	same	period	every	day,	which	reduces	their	versatility.	Aircraft	can	often	fly
under	clouds,	and	image	collections	can	be	specifically	timed	to	tidal	stages,
crop	calendars,	or	deciduous	leaf	conditions.

Extent



The	term	extent	is	used	to	refer	to	the	area	on	the	ground	that	can	be	captured
with	each	exposure	of	the	sensor.	It	is	often	used	relative	to	one	mission	or
collection	and	is	determined	by	the	sensor	size,	its	focal	length,	and	its	distance
to	ground.	Many	satellite	systems	collect	imagery	continually	along	their	orbital
paths.	The	area	collected	is,	therefore,	constrained	by	the	width	of	the	sensor’s
swath,	but	not	by	the	strip	length.	The	length	of	individual	satellite	scenes	is
arbitrary	and	is	determined	by	the	operator	of	the	system.	Most	scenes	are
approximately	square.	For	example,	a	Landsat	scene	is	170	by	183	kilometers.

The	size	and	shape	of	a	project	area	will	affect	what	remote	sensing	systems
are	most	suitable	for	imaging	it.	Because	of	their	altitude,	satellites	can	capture
large	areas	in	individual	satellite	scenes	(e.g.,	a	Landsat	scene	covers	just	over
12,000	square	miles).	However,	satellite	images	are	restricted	to	the	satellite’s
orbital	paths,	making	aircraft	systems	more	effective	in	collecting	linear	or
sinewy	project	areas	(such	as	riparian	areas,	transmission	lines,	and	coastlines)
because	aircraft	are	not	tied	to	an	orbit.

Helicopters	are	ideally	suited	to	collect	data	over	multiple	distributed	points
because	they	are	more	agile	than	airplanes.	They	are	also	suitable	for	collecting
data	along	corridors	where	frequent	turning	may	be	necessary.	Fixed-wing
aircraft	are	more	suitable	for	collecting	imagery	over	large	areas	because	they
can	quickly	collect	large	swaths	of	data.	For	extremely	large	areas,	a	high-
altitude	aircraft	or	satellites	might	be	employed	to	maximize	ground	coverage.

For	example,	a	riparian	mapping	project,	following	a	long	sinewy	river	with
a	required	spatial	resolution	of	1	meter	will	probably	be	better	accomplished
with	an	airborne	system	than	with	a	satellite	system.	The	airborne	platform	can
follow	the	path	of	the	river	and	constrain	its	data	collection	to	only	the	river	area.
Using	data	from	a	satellite	system	would	require	collecting	multiple	scenes,	and
then	extracting	the	river	areas	from	the	larger	scenes.	More	area	and	thus	more
data	than	required	would	be	collected,	which	would	increase	the	cost	of	the
project.

An	advantage	that	moderate-spatial-resolution,	large	extent	satellite	systems
(e.g.,	Landsat	and	Sentinel)	have	over	airborne	collections	is	that	the	entire	scene
is	captured	at	once	with	instantaneous	sun	illumination,	vegetative	condition,
and	atmospheric	conditions	fixed	across	the	scene.	Capturing	the	same	area	as	a
Landsat	scene	with	an	aircraft	system	would	take	several	days,	with	the	sun
illumination,	vegetation,	and	weather	conditions	changing	throughout	each	day
and	from	day	to	day.	These	variations	can	introduce	confusion	when	the	images
are	manually	interpreted	or	classified	to	create	maps.

High-spatial-resolution	systems	(both	airborne	and	satellite)	have	a	smaller



extent	than	moderate-	and	low-spatial-resolution	systems,	but	individual	scenes
can	be	mosaicked	together	to	represent	a	larger	area.	Mosaicking	is	discussed	in
more	detail	in	chapter	5.

Organizational	Characteristics

Introduction
The	choice	of	what	imagery	best	meets	a	project’s	requirements	will	be
determined	not	only	by	the	imagery	collection	characteristics	but	also	by	the
imagery’s	organizational	characteristics.	Organizational	characteristics	are
determined	by	the	organization(s)	funding	the	imagery	acquisition	and
distribution.	Types	of	organizations	include	public	agencies,	private	companies,
and	organizations	with	a	combination	of	public	and	private	funding.
Organizational	characteristics	affect	the	imagery’s	accessibility	and	price	to
users.	This	section	introduces	and	reviews	imagery	organizational	characteristics
—its	pricing	and	licensing	and	its	accessibility.

Pricing	and	Licensing
Price	is	the	amount	a	user	pays	to	gain	access	to	imagery.	Licensing	refers	to	the
restrictions	placed	on	the	use	of	the	imagery.	Licensing	and	pricing	are	often
linked.	Much	of	the	medium-	and	low-spatial-resolution	remote	sensing	data
collected	is	free	and	its	use	is	unrestricted	(i.e.,	the	data	is	in	the	public	domain).
Other	imagery,	especially	high-resolution	satellite	imagery,	is	either	severely
restricted	by	government	policy	or	accessible	only	through	the	purchase	of	a
license	with	associated	restrictions	on	the	user’s	ability	to	share	the	imagery	with
other	users.

Because	the	primary	demand	for	low-	and	moderate-spatial-resolution
imagery	is	from	the	public	sector,	acquisition	and	distribution	of	much	of	the
low-	and	moderate-spatial-resolution	civilian	satellite	imagery	acquired	by	the
US	government	and	the	European	Space	Agency	(ESA)	is	funded	by	taxpayers
and	available	to	most	users	at	no	charge	with	few	or	no	use	restrictions.	As	a
result,	NASA	earth	observation	data,	Landsat	imagery,	National	Oceanic	and
Atmospheric	Administration	(NOAA)	weather	imagery,	and	the	ESA’s	Sentinel



imagery	are	all	freely	available	to	most	users	worldwide.
The	collection	of	high-resolution	airborne	imagery	in	the	United	States	is

usually	purchased	as	a	service	by	government	agencies	from	commercial
providers.	The	agencies	pay	the	provider	to	collect	and	process	the	imagery,	with
the	agency	retaining	all	or	most	rights	to	the	imagery.	Similar	to	the	availability
of	low-	and	moderate-resolution	satellite	imagery,	most	high-resolution	airborne
imagery	is	made	available	by	agencies	to	the	public	at	no	cost,	although	some
charge	user	fees.	The	USDA	NAIP	collects	high-resolution,	4-band	multispectral
imagery	over	one-third	of	the	continental	United	States	every	year	at	1-meter
spatial	resolution.	The	imagery	is	available	to	the	public	at	no	cost	and	with	no
user	restrictions.	Most	of	the	NAIP	commercial	providers	also	offer	the	ability	to
“upgrade”	the	imagery	to	30-	centimeter	spatial	resolution	on	a	paid	subscription
basis.	The	upgrades	are	available	because	the	providers	capture	the	imagery	at
the	higher	resolution	and	resample	it	to	the	lower	resolution	for	the	public
domain	product.	The	provider	then	makes	the	higher	resolution	product	available
through	a	licensing	agreement	that	restricts	the	use	of	the	imagery	(i.e.,	the
purchaser	is	restricted	in	some	way	from	copying	or	sharing	the	imagery	with
other	organizations).	Besides	NAIP,	many	states	and	local	governments	retain
commercial	firms	to	collect	airborne	high-resolution	multispectral	and	lidar	data
over	their	jurisdictions.	Usually,	the	imagery	is	made	available	to	the	public	at
low	or	no	cost,	and	with	few,	if	any,	use	restrictions.	Private	companies	such	as
utility	and	forestry	firms	also	contract	with	airborne	providers	to	produce	high-
resolution	imagery	of	their	properties.

Until	recently,	high-spatial-resolution	satellite	imagery	was	either	completely
government	funded	with	use	severely	restricted,	or	partly	government	funded,
with	use	restricted	by	licensing.	For	example,	the	United	States,	Russia,	China,
India,	and	Israel	all	have	constellations	of	satellites	that	are	fully	funded	by	their
government	agencies	but	whose	imagery	use	is	strictly	restricted	to	security
agencies.

The	passage	of	the	1992	Land	Remote	Sensing	Act	made	it	possible	for	US
commercial	companies	to	build,	launch,	and	operate	satellite	sensors	able	to
collect	high-resolution	imagery	globally.	Although	fully	commercial,	the	first
companies	to	launch	high-resolution	systems	received	large	contracts	from	the
National	Geospatial	Agency	of	the	Department	of	Defense	for	imagery.	As	a
result,	the	funding	for	the	imagery	is	part	government	and	part	commercial.	The
commercial	companies	distribute	the	imagery	through	licensing	agreements	that
restrict	either	the	amount	of	time	the	imagery	is	available	for	use	or	the	sharing
of	the	imagery	with	other	organizations.	This	quasi-public/private	funding	model



for	high-resolution	satellite	imagery	with	licensing	restrictions	has	since	been
replicated	by	several	companies	(e.g.,	DigitalGlobe,	Airbus,	Planet,	and	DMC
constellations).

Access
Organizations	make	imagery	available	in	a	variety	of	ways.	It	can	be	delivered
on	a	hard	drive,	downloaded	from	the	web,	or	served	as	image	services.	Because
imagery	files	are	very	large,	access	can	be	problematic	and	can	affect	the	cost	of
working	with	imagery.	Free	imagery	with	no	license	restrictions	can	still	be
difficult	to	use	if	its	access	is	cumbersome.

Before	digital	sensors,	imagery	was	accessed	as	hard	copy	negatives	and
photographs.	Reproduction	of	the	negatives	and	photographs	was	very	expensive
and,	as	a	result,	access	to	them	was	limited.	With	the	adoption	of	digital	sensors,
digital	imagery	was	initially	accessed	from	tape,	and	then	from	hard	drives	and
CDs,	and	processed	first	on	mainframe	computers	and	then	on	desktop
computers.

Until	recently,	the	most	efficient	way	to	deliver	and	gain	access	to	high-
spatial-resolution	imagery	for	analysis	was	still	by	shipping	hard	drives	and	then
using	on	desktop	machines	or	serving	the	imagery	locally.	With	increases	in
Internet	bandwidth,	imagery	is	increasingly	accessible	by	FTP	download	or
direct	access	from	cloud	storage.	In	this	way,	imagery	can	be	downloaded	to
desktop	machines	or	directly	used	in	the	cloud	infrastructure.

Over	the	last	five	years,	several	imagery	providers	and	software	companies
have	begun	to	host	imagery	in	the	cloud	and	offer	direct	visualization,	analysis,
and	processing	of	the	imagery.	Most	notable	is	Esri’s	Landsat	services,	which
obtain	Landsat	imagery	hosted	on	Amazon	Web	Services	and	provide	access	and
on-the-fly	processing	of	large	collections	of	multitemporal	multispectral	Landsat
imagery	that	is	updated	daily	as	imagery	is	acquired	by	the	USGS.	Google	also
hosts	archives	of	Landsat	imagery	and	provides	processing	to	educational	and
research	organizations.

Case	Study	—	the	Effects	of	Price	and	Licensing	on	the
Use	of	Landsat	Imagery

The	 history	 of	 Landsat	 imagery	 is	 a	 good	 example	 of	 how	 organizational
characteristics	affect	imagery	use.	Landsat	satellite	imagery	is	moderate	resolution,



multispectral,	 and	 funded	 by	 US	 taxpayers.	 NASA	 launched	 the	 first	 Landsat
satellite	 in	1972.	The	spatial	 resolution	was	coarse	 (80	meters)	and	 included	only
four	bands	(green,	red,	and	two	 infrared	bands).	Technological	barriers	slowed	the
use	of	the	imagery	because	the	knowledge	base	was	small,	little	image	processing
software	 existed,	 and	 the	 files	 were	 huge	 for	 that	 time,	 requiring	 mainframe
computers.	 Most	 users	 were	 NASA	 or	 academic	 scientists	 and	 government
agencies.	Landsats	2	and	3	were	similar	to	Landsat	1.

In	1979,	the	Landsat	program	was	moved	from	NASA	to	NOAA.	In	1982,	Landsat	4
was	 launched	 and	 included	 a	 30-meter	 resolution	 instrument	 that	 collected	 seven
bands	 of	 imagery,	 adding	 two	 middle-infrared	 and	 one	 thermal	 band.	 A	 similar
system,	 Landsat	 5,	 soon	 followed	 in	 1984.	 However,	 Congress	 passed	 the	 Land
Remote	Sensing	Commercialization	Act	 of	 1984,	which	directed	NOAA	 to	migrate
Landsat	imagery	distribution	from	the	federal	government	to	the	private	sector	with
the	 hope	 that	 revenue	 from	 imagery	 sales	 would	 support	 the	 continuation	 of	 the
Landsat	program.	As	a	 result,	 the	cost	of	Landsat	 imagery	 increased	 from	$2,800
per	scene	from	NOAA	to	$6,000	per	scene	from	the	commercial	company	EOSAT,
and	 use	 of	 the	 imagery	 was	 license	 restricted.	 The	 demand	 for	 imagery	 sharply
declined,	as	did	Landsat	research	and	innovation	(Draeger	et	al.,	1997).

In	1992,	Congress	passed	 the	Land	Remote	Sensing	Policy	Act	 (Public	Law	102-
555),	which	ended	Landsat	commercialization	by	designating	the	USGS	to	take	over
distribution	of	Landsat	7	 imagery	when	 it	was	 launched	 (Landsat	6	 failed	 to	 reach
orbit).	The	act	required	that	imagery	be	priced	at	the	cost	of	fulfilling	user	requests
and	 have	 no	 licensing	 restrictions.	 Landsat	 7	 was	 successfully	 launched	 in	 April
1999,	and	 the	USGS	 initially	 set	 the	price	of	 a	 scene	at	$600.	The	 lower	price	of
Landsat	7	 imagery	forced	the	company	distributing	Landsat	4	and	5	data	to	match
the	 price	 of	 Landsat	 7	 imagery.	 Unable	 to	 run	 Landsats	 4	 and	 5	 profitably,	 the
company	 returned	 its	 rights	 to	 distribute	 Landsat	 4	 and	 5	 imagery	 to	 the	 federal
government	 in	 2002.	 The	 lower	 price	 and	 unrestricted	 licensing	 for	 all	 Landsat
imagery	resulted	in	a	dramatic	 increase	in	the	operational	use	of	Landsat	 imagery,
with	government	revenue	from	image	sales	growing	from	$4	million	in	1999	to	$11
million	 in	 2002.	 However,	 access	 to	 the	 imagery	was	 still	 cumbersome	 and	 slow,
requiring	the	manual	ordering	and	writing	of	CDs.

With	improvements	in	the	web	and	automation	of	the	USGS	distribution	processes,
the	agency	made	Landsat	imagery	free	and	downloadable	from	the	web	in	2009.	As
a	result,	the	use	of	Landsat	imagery	skyrocketed	from	20,000	scenes	to	2,000,000
scenes	 a	 year,	 and	 commercial	 companies	 such	 as	 Esri	 are	 hosting	 Landsat
imagery	 and	 processing	 services,	 which	 further	 increases	 global	 access	 to	 the
imagery.

Summary	—	Practical
Considerations
In	this	chapter,	we	have	learned	how	imagery	is	differentiated	by	a	combination



of	technical	and	organizational	characteristics.	An	image’s	sensor	and	platform
determine	its	technical	characteristics—its	spectral,	radiometric,	spatial,	and
temporal	resolutions,	as	well	as	its	viewing	angle,	and	extent.	In	summary:

Spectral	resolution—Terrestrial,	airborne,	and	satellite	platforms	can	and
do	carry	all	types	of	sensors.	Currently,	panchromatic,	multispectral,	and
hyperspectral	sensors	can	be	found	on	terrestrial,	airborne,	and	satellite
platforms,	as	are	active	and	passive	sensors.
Radiometric	resolution—Older	sensors	will	often	have	lower	radiometric
resolution	than	newer	sensors	because	newer	sensors	can	take	advantage	of
continual	improvements	in	digital	arrays,	memory,	and	storage.
Spatial	resolution—Airborne	systems	are	more	commonly	used	to	collect
high-spatial-resolution	imagery	than	spaceborne	systems	if	the
infrastructure	to	support	aircraft	is	available	and	if	the	aircraft	have	access
to	airspace.	If	access	to	the	air	is	limited,	satellite	systems	or	drones	can	be
used	to	collect	high-resolution	imagery.	Moderate-and	low-spatial-
resolution	imagery	is	best	captured	from	satellites.
Temporal	resolution—Geostationary	systems	offer	the	highest	temporal
resolution,	but	at	either	a	lower	spatial	resolution	(e.g.,	weather	satellites)
or	a	smaller	extent	(e.g.,	video	cameras	at	ATM	machines)	than	airborne	or
satellite	systems.	Airborne	systems	are	more	flexible	than	satellite	systems
and	are	limited	only	by	aircraft	access	and	fuel	capacity.	Additionally,
cloud	interference	can	be	avoided	by	positioning	airborne	systems	below
the	cloud	ceiling	or	by	timing	flights	to	avoid	cloud	cover	(e.g.,	flying	after
fog	has	burned	off	in	a	coastal	area).	However,	the	marginal	cost	of
mobilization	for	each	image	is	higher	for	airborne	systems	than	for
satellite	systems.
Extent—Depending	on	the	resolving	power	of	the	sensor,	high-altitude
platforms	will	generally	result	in	greater	area	imaged	per	exposure	(i.e.,
larger	extent),	but	at	coarser	spatial	resolution	than	platforms	operating	at
low	altitudes.	Airborne	systems	are	usually	more	effective	than	satellite
systems	in	collecting	long	and	sinewy	project	areas.

Technical	characteristics	are	not	the	only	factors	differentiating	imagery
types	from	one	another.	Often	more	important	are	the	organizational
characteristics,	which	will	determine	an	image’s	price,	licensing,	and
accessibility.	Choosing	what	imagery	to	use	in	a	project	requires	making	trade-
offs	between	technical	and	organizational	characteristics.	In	the	next	chapter,	we
will	learn	how	to	match	imagery	characteristics	with	user	requirements	to	decide
what	type	of	imagery	will	best	meet	user	needs.



___________________________
1.	Most	remote	sensing	systems	record	electromagnetic	energy,	but	some,	such	as	sonar	systems,	record
sound	waves.
2.	Hans	Karl	Heidemann,	“Lidar	Base	Specification,”	ver.	1.2,	November	2014,	US	Geological	Survey
Techniques	and	Methods,	book	11,	chap.	B4,	https://pubs.usgs.gov/tm/11b4/pdf/tm11-B4.pdf.
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Chapter	4
Choosing	and	Accessing	the
Right	Imagery

Chapter	3	introduced	the	characteristics	that	differentiate	the	types	of	imagery
available	to	civilians.	This	chapter	examines	those	characteristics	through	the
eyes	of	the	image	user,	first	by	presenting	a	framework	for	matching	imagery
characteristics	to	user	requirements	so	as	to	ensure	the	best	imagery	is	chosen	for
each	project,	and	then	by	describing	and	cataloging	the	wide	variety	of	imagery
datasets	available	at	the	time	of	the	printing	of	this	book.	However,	please	be
aware	that	the	supply	of	both	public	and	commercial	imagery	is	very	dynamic
and	constantly	changing,	especially	with	the	advent	of	unmanned	aerial	systems
(UASs)	and	small-payload	earth	observing	satellites	(often	referred	to	as
cubesats,	microsats,	or	smallsats).	There	is	a	high	probability	that	new	imagery
sources	have	arisen	and	others	have	failed	since	this	book	has	been	published.

Selection	Framework—What’s
Required	versus	What’s	Available
The	usefulness	of	a	particular	imagery	product	will	depend	on	its	technical	and
organizational	characteristics	as	well	as	how	those	characteristics	meet	the	needs
of	users.	Sometimes	an	analyst	has	no	choice	regarding	the	type	of	imagery	to	be
used	and	has	to	make	do	with	what	has	been	provided	by	their	organization.



However,	in	today’s	ever-expanding	imagery	marketplace,	multiple	datasets	are
often	available	and	accessible.	Because	so	much	imagery	is	available,	it	is	also
now	common	for	a	mapping	project	to	use	multiple	datasets.	For	example	in	the
Sonoma	Vegetation	Mapping	project,	multiple	imagery	datasets	were	used
including	two	years	of	National	Agriculture	Imagery	Program	(NAIP)	imagery
(4	bands,	1-m	spatial	resolution),	multiple	years	of	Landsat	8	imagery	(11	bands,
30-m	spatial	resolution),	Airborne	Visible/Infrared	Imaging	Spectrometer
(AVIRIS)	hyperspectral	imagery,	4-band	multispectral,	1-foot	imagery	collected
in	2011	by	the	county,	and	quality	level	1	lidar	and	4-band	optical	imagery	(6-
inch	spatial	resolution)	flown	specifically	for	the	project.

No	matter	how	large	or	small,	each	image	acquisition	will	require	trade-offs
between	imagery	characteristics.	It’s	not	uncommon	for	imagery	analysts	to
want	to	use	the	best	spatial,	temporal,	and	spectral	resolutions	available.
However,	not	every	project	requires	or	can	afford	the	highest	resolutions
possible.	Higher	resolutions	usually	translate	into	higher	costs	and	limited
accessibility	or	both,	due	to	licensing,	increased	storage,	and	processing	times.
Rather,	imagery	should	be	chosen	to	fulfill	the	project	requirements.	Products
should	be	substituted	for	one	another	and	trade-offs	made,	especially	between
price,	spatial	resolution,	spectral	resolution,	temporal	resolution,	and	licensing
restrictions.

To	determine	what	is	required	by	a	project	instead	of	what	is	desired	or
available,	the	analyst	can	ask	several	simple	questions	that	will	narrow	the
choice	of	imagery.	They	are:

1. Will	the	imagery	be	used	for	visualization	or	to	make	a	map?
2. What	is	the	smallest	item	to	be	identified	on	the	ground?
3. What	is	the	time	frame	of	the	project	and	its	results?
4. What	types	of	features	need	to	be	mapped?
5. What	is	the	size,	shape,	and	accessibility	of	the	project	area?
6. What	are	the	requirements	for	spatial	and	spectral	accuracy?
7. Will	the	imagery	be	shared	with	other	organizations?
8. Is	the	imagery	accessible?
9. What	is	the	project	budget?
It	is	the	combined	answers	to	all	these	questions	that	will	determine	which

type(s)	of	imagery	will	best	meet	the	needs	of	the	project.	Often	some	project
requirements	must	be	relaxed,	and	the	questions	asked	and	reasked	multiple
times	before	the	answers	converge	on	a	particular	set	of	imagery	products.



Will	the	imagery	be	used	for	visualization,	or	to
make	a	map?
Imagery	is	most	often	used	as	an	aid	in	the	visualization	of	map	information.
Imagery	used	in	map	visualization	allows	the	user	to	understand	the	context	of	a
location—to	be	able	to	visualize	its	surroundings.	The	most	readily	available
imagery	is	served	for	visualization	to	mapping	websites	such	as	ArcGIS	Online,
Bing,	Apple,	and	Google	at	no	charge	to	the	user.	Usually,	imagery	for
visualization	is	optical	and	served	in	true	color.	For	example,	a	common	base
image,	Esri’s	World	Imagery,	is	served	at	no	charge	in	true	color	and	is	created
from	a	variety	of	sources	at	multiple	scales	including	Landsat,	NAIP,
WorldView,	and	Pleiades	imagery.	Imagery	used	for	visualization	is	always
dated,	because	it	is	derived	from	archive	imagery.	However,	the	currency	of
visualization	imagery	is	rapidly	increasing	with	the	increasing	supply	of
worldwide	high-	and	very-high	(HVH)	spatial-resolution	imagery.

However,	the	imagery	in	visualization	applications	is	available	only	for
viewing	and	not	for	analysis.	It	is	made	available	as	cached,	tiled	services,	which
offer	imagery	in	highly	compressed	JPEG	or	PNG	format	(please	see	chapter	5
for	more	detail	on	image	compression).	As	a	result,	the	band	combination	that	is
displayed	(usually	natural	color	or	color	infrared	composite)	cannot	be	changed
by	the	user,	and	the	pixels	values	are	not	available	for	analysis.	These	constraints
limit	how	much	information	can	be	derived	from	the	imagery.

While	suitable	for	heads-up	digitizing	of	objects	easily	discernible	(e.g.,
streets,	buildings),	the	cached	imagery	does	not	provide	enough	data	for
deciphering	subtle	changes	such	as	vegetation	types	or	camouflaged	items.	The
creation	of	many	maps	requires	that	the	values	of	the	imagery	pixels	be	available
for	digital	analysis.	Most	cached	imagery	is	also	not	current	enough	to	support
disaster	response	activities.

What	is	the	smallest	item	to	be	identified	on	the
ground?
The	imagery	spatial	resolution	requirements	of	a	project	are	determined	by	the
smallest	item	to	be	identified	on	the	ground—the	project’s	minimum	mapping
unit	(MMU).	Smaller	MMUs	require	higher	spatial	resolutions.	For	example,
mapping	forest	types	with	an	MMU	of	10	acres	can	easily	be	accomplished
using	30-m	Landsat	imagery.	However,	mapping	individual	trees	will	require	1-



meter	or	higher	spatial	resolution	imagery.	Similarly,	mapping	four-lane
freeways	can	just	barely	be	accomplished	with	30-m	imagery,	but	mapping	two-
lane	residential	streets	or	small	unpaved	secondary	roads	will	require	a	higher
spatial	resolution.

What	is	the	time	frame	of	the	project	and	its
results?
The	time	frame	of	the	project	and	its	results	will	affect	the	temporal	resolution
required	and	can	also	affect	the	choice	of	using	an	active	or	a	passive	sensor.
Land-use	and	land-cover	information	required	immediately	for	decision-making
will	often	be	based	upon	readily	available	archived	imagery,	so	that	the	user	does
not	have	to	wait	for	new	imagery	to	be	collected	and	processed.	Using	archived
imagery	is	viable	as	long	as	the	date	of	imagery	capture	is	not	so	distant	as	to
make	the	imagery	obsolete.	Conversely,	disaster	response	requires	immediate
postevent	imagery	that	shows	the	extent	and	impact	of	the	disaster.	Similarly,
imagery	used	for	weather	prediction	must	be	up	to	date	so	that	weather	models
can	be	run	from	current	weather	conditions.	Obviously,	mapping	troop	and
military	equipment	movements	also	requires	high-temporal-resolution	imagery.
Mapping	perpetually	clouded	areas	such	as	Central	America	can	force	the	use	of
radar	imagery,	which	can	penetrate	through	the	clouds,	rather	than	waiting	for	a
cloud-free	period	to	capture	optical	imagery.	Figure	4.1	shows	different
applications	plotted	against	their	general	temporal	and	spatial-resolution
requirements—the	requirements	that	tend	to	most	influence	imagery	choices.



Figure	4.1.	Comparison	of	required	spatial	and	temporal	resolutions	of	different	mapping
applications

What	types	of	features	need	to	be	mapped?
The	types	of	features	to	be	mapped	will	affect	the	spectral	and	temporal
resolutions	required.	Mapping	general	land-use	land-cover	classes	(e.g.,	urban
versus	agricultural	versus	water	versus	forests)	can	be	accomplished	with	one
date	of	panchromatic	imagery.	Identifying	tree	species	usually	requires
multispectral	imagery	and	is	greatly	enhanced	if	lidar	is	also	available	to
measure	tree	height.	Adding	in	multitemporal	imagery	will	help	distinguish
deciduous	from	evergreen	tree	species,	or	to	map	different	deciduous	species
from	one	another	if	they	change	colors	differently	during	the	fall	or	spring.
Mapping	crop	types	also	requires	multispectral	imagery	taken	when	the	crops
are	established	and	growing.	Mapping	crop	yield	requires	multispectral	and
multitemporal	imagery.	Coastal	wetland	mapping	often	requires	careful
coordination	of	the	imagery	collection	with	tidal	and	weather	conditions,	often
necessitating	collection	of	imagery	at	low	tide	on	calm	days	so	that	a	maximum
amount	of	wetland	vegetation	is	exposed,	and	wave	action	does	not	interfere
with	the	vegetation’s	spectral	response.	Mapping	evapotranspiration	(the	transfer
of	water	from	land	and	plants	to	the	atmosphere)	requires	thermal	imagery.



Change	detection	requires	multitemporal	imagery.	Change	detection	of
obvious	changes	such	as	flooding,	forest	harvesting,	or	urban	expansion	can
often	be	accomplished	with	multiple	dates	of	panchromatic	imagery	because	the
spectral	differences	between	to/from	classes	are	very	distinct.	For	example,
clear-cuts	do	not	look	like	forests,	wildland	and	crop	lands	do	not	look	like
subdivisions,	and	the	spectral	response	of	water	versus	other	land-cover	types
makes	flood	mapping	fairly	straightforward.	Mapping	subtle	changes	such	as
tree	growth	or	crop	production	requires	multitemporal,	multispectral	imagery
and	can	be	greatly	aided	by	lidar.

Also	important	is	the	quality	of	calibration	of	the	imagery.	Calibration
compensates	for	radiometric	variation	caused	by	sensor	defects,	system	noise,
and	scan	angle.	Landsat	sensors	are	methodically	calibrated	using	preflight,
postlaunch-onboard,	and	ground	reference	data.	As	a	result,	Landsat	data	is
considered	the	gold	standard	of	radiometric	quality,	and	many	other	satellite
systems	calibrate	their	imagery	to	Landsat.

What	is	the	size,	shape,	and	accessibility	of	the
project	area?
The	size,	shape,	and	accessibility	of	a	project	area	often	determine	the	platform
used	to	collect	the	imagery.	Utility	corridors,	coastlines,	and	sinewy	river
corridors	are	often	mapped	best	with	airborne	platforms	instead	of	satellite
imagery	because,	unlike	satellites,	aircraft	can	closely	follow	the	shape	of	the
project	area.	Large	statewide,	regional,	or	country-sized	areas	can	often	best	be
mapped	from	satellites	with	large	image	footprints.	Areas	inaccessible	to	aircraft
because	of	government	restrictions	are	best	imaged	with	satellites.	Small	areas
inaccessible	to	aircraft	because	the	infrastructure	does	not	exist	to	support
aircraft	operations	might	be	best	imaged	by	a	UAS.

What	are	the	requirements	for	spatial	and
spectral	accuracy?
All	imagery	used	to	make	a	map	or	measure	distances	on	the	landscape	needs	to
be	registered	to	the	ground	and	have	the	effect	of	terrain	displacement	removed
(see	chapter	6	for	more	detail	on	these	topics).	While	once	a	cumbersome	and
difficult	task,	georeferencing	and	terrain	correction	have	become	much	easier



with	the	development	of	worldwide	digital	elevation	models,	control	points,	and
image	matching	algorithms.	However,	not	all	remote	sensing	systems	have	the
same	quality	of	instrumentation,	and	not	all	remote	sensing	companies	have	the
same	quality	of	processing	systems,	access	to	high-quality	digital	elevation
models,	existing	accurate	orthoimagery,	or	ground	control	points.	Additionally,
many	remote	sensing	companies	sell	products	with	different	levels	of	spatial
accuracy.

When	acquiring	imagery,	the	analyst	should	always	understand	its	stated
spatial	accuracy,	which	is	usually	expressed	as	the	maximum	circular	error	in
meters	at	a	90	percent	confidence	level—termed	“CE90”	(see	chapter	12	for	a
detailed	discussion	of	how	spatial	accuracy	is	determined).	Additionally,	the
accuracy	of	the	imagery	should	be	checked	against	ground	control	points	or	a
GIS	dataset	known	to	be	more	accurate	than	the	imagery.	It	is	not	unusual	for
spatial	accuracies	to	be	less	than	stated,	especially	in	areas	with	little	ground
control	or	of	high	terrain	relief.	Additionally,	spatial	accuracy	is	also	affected	by
the	viewing	angle	of	the	collection.	Usually,	the	more	off-nadir	the	collection,
the	lower	the	spatial	accuracy.

Equally	important	but	less	frequently	discussed	is	the	spectral	accuracy	of
the	sensor—do	the	sensor’s	measured	data	recordings	match	its	expected	data
recordings?	Atmospheric	interference,	sensor	defects,	system	noise,	and
variations	in	scan	angle	can	result	in	a	device	recording	data	for	an	object	that	is
different	from	the	true	spectral	reflectance	or	emission	of	the	object.	There	are
two	important	questions	to	ask	regarding	a	sensor’s	spectral	accuracy.	First,	is
the	sensor	regularly	tested	to	determine	whether	it	records	data	precisely	and
accurately?	Second,	does	the	sensor	operator	either	calibrate	their	imagery	to
correct	for	sensor	errors	or	provide	calibration	statistics	and	algorithms	so	that
the	user	can	correct	for	errors?

For	example,	the	spectral	accuracy	of	Landsat	data	is	continually	tested	using
preflight,	postlaunch-onboard,	and	ground	reference	data.	USGS	also	provides
calibration	parameter	files	of	geometric	and	radiometric	coefficients	needed	for
correcting	raw	Landsat	image	data.	The	calibration	of	Landsat	imagery	is
considered	the	gold	standard	and	is	so	good	that	other	satellite	image	providers
often	calibrate	their	imagery	against	Landsat	imagery	rather	than	collecting	their
own	ground	reference	data.	Most,	but	not	all,	sensor	operators	include	some
metadata	with	their	image	data,	which	can	support	calibration.	Calibrating
imagery	is	a	common	preprocessing	step	that	is	discussed	in	more	detail	in
chapter	6.



Will	the	imagery	be	shared	with	other
organizations?
The	need	to	share	imagery	with	others	will	affect	the	type	of	imagery	license
chosen.	High-	and	very-high-spatial-resolution	satellite	imagery	often	has	some
sort	of	license	restriction,	although	licenses	that	allow	some	sharing	(e.g.,	within
an	agency,	or	across	federal	agencies)	are	common.	If	the	imagery	is	to	be	shared
with	multiple	users	both	inside	and	outside	of	your	organization,	it	might	be	best
to	focus	on	nonlicensed,	unrestricted	imagery	available	in	the	public	domain,	or
to	acquire	new	imagery	from	an	organization	that	does	not	license	restrict	their
products.	For	example,	a	great	deal	of	the	high-spatial-resolution	imagery
captured	over	the	United	States	is	in	the	public	domain	and	is	not	license
restricted.	This	includes	NAIP	1-m	multispectral	imagery	and	even	higher-
spatial-resolution-imagery	funded	and	collected	for	many	local	and	regional
government	agencies.	Moderate-resolution	imagery	is	also	available	in	the
public	domain	worldwide	from	either	the	Sentinel	(10	to	20	m)
(https://sentinel.esa.int/web/sentinel/sentinel-data-access)	or	Landsat	(30	m)
(http://landsat.usgs.gov/Landsat_Search_and_Download.php)	programs,
including	Landsat’s	archive	of	more	than	40	years.	NOAA	weather	data	and
NASA	earth	science	data	are	also	freely	accessible	and	shareable.	Aside	from
military	systems	or	imagery	captured	by	UASs,	access	to	high-	or	very-high-
resolution	imagery	outside	of	the	United	States	is	usually	available	only	from
commercial	satellite	companies	who	restrict	sharing	of	their	imagery	through
licensing.

Is	the	imagery	accessible?
Millions	of	images	have	been	taken	of	the	earth,	but	not	all	of	them	are
accessible.	Current	reconnaissance	imagery	is	not	shared	broadly,	and	many
archives	of	imagery	exist	but	are	not	easily	searchable.	Actually	obtaining
imagery	can	be	problematic	because	there	currently	is	no	coordinated	repository
for	imagery	metadata.	Some	datasets	such	as	NAIP	and	Landsat	are	easily
searchable	on	the	web,	downloadable,	and	dynamically	served.	Others,	such	as
imagery	in	private	photogrammetry	company	archives,	are	usually	searchable
and	accessible	only	by	contacting	personnel	at	the	firm.

https://sentinel.esa.int/web/sentinel/sentinel-data-access
http://landsat.usgs.gov/Landsat_Search_and_Download.php


What	is	the	project	budget?
Ultimately,	the	project	budget	will	limit	the	maximum	expenditure	on	imagery
and	budgets	often	force	trade-offs	in	project	requirements.	In	the	United	States,
multiple	spatial	and	temporal	resolutions	are	abundant	and	accessible	at	no
charge	(e.g.,	NAIP,	Landsat,	or	imagery	acquisitions	funded	by	local	agencies).
More	costly	new	or	higher-spatial-resolution	imagery	can	be	acquired	from
commercial	airborne	and	satellite	operators.	Outside	of	the	United	States,
moderate-spatial-resolution	imagery	(e.g.,	Landsat	and	Sentinel)	is	freely
available,	but	high-resolution	imagery	usually	is	either	restricted	by	government
programs	or	is	sold	by	commercial	companies	under	a	license	agreement.

Summary
We	cannot	emphasize	enough	how	your	choice	of	imagery	will	be	dependent
upon	the	requirements	of	your	projects	and	not	on	the	newest	technology
available.	Different	applications	and	organizations	will	have	different
requirements.	A	project	to	map	impervious	surfaces	will	have	requirements
different	from	one	for	property	assessments,	environmental	monitoring,	parcel
mapping,	weather	prediction,	road	design,	pipeline	monitoring,	forest	inventory,
change	detection,	soils,	or	geology.	The	imagery	needs	of	a	federal	agency	will
likely	be	very	different	from	those	of	a	local	or	state	agency,	nongovernment
organization	(NGO),	or	private	landowner.	However,	often	one	dataset	can	meet
multiple	organizations’	needs.	Such	is	the	case	with	the	lidar	and	optical	imagery
acquired	for	Sonoma	County,	California,	which	is	continually	used	by	multiple
organizations	including	NASA	and	USGS	researchers,	the	Sonoma	County	Open
Space	and	Agricultural	Preservation	District,	Sonoma	County	Permit	and
Resource	Management	Department,	Sonoma	Ecology	Center,	Sonoma	County
Water	Agency,	San	Francisco	Estuary	Institute,	and	many	private	companies
(Green,	2017).	It	is	essential	that	you	carefully	evaluate	your	and	your	partner
organization’s	proposed	imagery	uses	before	you	purchase	or	acquire	imagery.
Considering	the	questions	posed	in	this	chapter	forces	imagery	users	to	fully
analyze	and	understand	the	benefits	and	costs	of	their	imagery	requirements,
allowing	them	to	make	fully	informed	trade-offs	when	necessary.

Imagery	Sources



Overview
Sources	of	imagery	are	globally	distributed,	highly	varied,	and	often	confusing
and	challenging	to	navigate	or	understand.	This	section	reviews	the	major
sources	of	both	archival	imagery	and	new	imagery	collects.	The	following
sections	provide	more	detailed	information	about	imagery	sources,	organized	by
spectral	resolution.

In	general,	the	major	civilian	sources	of	imagery	for	analysis	or	visualization
are	either	public	agencies	or	private	companies	from	whom	imagery	is	both
served	and	can	be	downloaded.	There	are	many	sources	of	imagery	worldwide.
The	following	list	of	airborne	and	satellite	sources	is	not	exhaustive	but	includes
the	most	prominent	sources.	Table	4.1	summarizes	and	compares	the	sources	by
spatial	resolution,	spectral	resolution,	and	availability.	For	comprehensive
information	about	earth	observing	satellites,	three	websites	offer	up-to-date	and
detailed	information:

http://database.eohandbook.com/.	The	Committee	on	Earth	Observation
Satellites	Earth	Observation	(EO)	Handbook	and	Database	provides	a
detailed	database	on	all	civilian	government	earth	observing	satellites,	past
and	present,	which	is	searchable	by	agency,	missions,	and	instruments.
https://directory.eoportal.org/web/eoportal/home.	The	European	Space
Agency’s	(ESA)	EO	Portal	provides	a	directory	of	past	and	planned
satellite	nonclassified	missions	from	1959	to	2020,	categorized	by	space
agency	and	from	A	to	Z.	It	also	includes	a	directory	of	40	government
scientific	airborne	flight	campaigns.
http://space.skyrocket.de/.	Known	as	Gunter’s	Space	Page,	the	website	has
information	about	all	civilian	satellites	in	orbit,	not	just	earth	observing
satellites,	and	is	searchable	by	nation	and	type.

ArcGIS	Online
ArcGIS	Online	(https://www.arcgis.com/home/index.html)	serves	a	huge	array
of	imagery	datasets	for	visualization	with	some	imagery	also	dynamically	served
across	the	web	and	available	for	analysis.	ArcGIS	Online	is	perhaps	the	most
comprehensive	and	best-organized	source	for	cached	worldwide	imagery	served
online.	Hundreds	of	datasets	are	available	for	most	of	the	world	that	include	a
rich	variety	of	imagery	types	from	high-spatial-resolution,	true	color	world
imagery	collected	by	commercial	companies,	to	low-spatial-resolution	weather
data	from	NOAA,	to	images	of	global	ozone	and	precipitation	from	NASA.	Esri

http://database.eohandbook.com/
https://directory.eoportal.org/web/eoportal/home
http://space.skyrocket.de/
https://www.arcgis.com/home/index.html


also	dynamically	serves	the	pixel	values	of	several	sources	of	imagery	including
NAIP	and	Landsat	8.

Table	4.1.	Comparison	of	the	major	sources	of	imagery

Commercial	Photogrammetry	and	Remote	Sensing	Firms
Commercial	Photogrammetry	and	remote	sensing	firms	operate	aircraft	in
countries	with	open	access	to	airspace	such	as	Canada,	the	United	States,
Australia,	South	Africa,	and	many	of	the	countries	of	Europe	and	South
America.	In	fact,	most	of	the	imagery	collected	over	those	areas	is	acquired	by
private	commercial	firms	who	primarily	collect	mono	and	stereo,	oblique	and
nadir,	and	passive	and	active	very-high	and	high-spatial-resolution	imagery	from
airplanes,	helicopters,	vehicles,	and	UASs.	The	firms	primarily	acquire	imagery
on	an	as-needed	basis	with	the	specifications	of	the	collect	determined	by	the
image	purchasers	who	are	either	private	firms,	public	agencies,	or	NGOs.
However,	some	companies	collect	imagery	speculatively	and	then	license	access
to	the	imagery	to	their	customers.	Links	to	information	about	and	websites	for
many	commercial	photogrammetry	and	remote	sensing	firms	can	be	found	on
the	following	websites:

Management	Association	of	Private	Photogrammetric	Surveyors
(http://www.mapps.org/search/custom.asp?id=196)
American	Society	of	Photogrammetry	Remote	Sensing	(ASPRS)
(http://www.asprs.org/)
International	Society	for	Photogrammetry	and	Remote	Sensing
(http://www.isprs.org/)

Commercial	Satellite	Companies
Commercial	satellite	companies	offer	imagery	collected	worldwide.	These	firms
collect	passive,	multispectral,	very-high,	and	high-resolution	imagery.	The
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Satellite	Imaging	Corporation’s	website	has	a	listing	and	summary	of	many,	but
not	all,	of	the	types	of	commercial	satellite	imagery	available
(http://www.satimagingcorp.com/satellite-sensors).

Government	Agencies
Government	agencies	including	local,	state,	federal,	and	international	agencies
make	imagery	available.	The	primary	United	States	government	sources	of
imagery	both	over	the	United	States	and	worldwide	are

the	USGS	Earth	Resources	and	Science	Center	(EROS)	in	Sioux	Falls,
South	Dakota,	which	has	an	enormous	archive	of	global	satellite	and
airborne	passive	and	active	remote	sensing	data	that	is	well	organized,
easily	accessible,	and	mostly	downloadable	(http://eros.usgs.gov/find-
data);
the	USDA	Aerial	Photography	Field	Office	(APFO),	which	has	an	archive
of	aerial	high-resolution	photography	and	imagery	collected	over	the
United	States	by	a	variety	of	USDA	and	USGS	government	agencies
(http://www.fsa.usda.gov/programs-and-services/aerial-
photography/index);
the	NASA	Distributed	Active	Archive	Centers,	which	act	as	custodians	of
NASA	earth	science	data	and	make	it	available	to	users
(https://earthdata.nasa.gov/about/daacs);
NASA,	which	also	serves	NASA	data	through	its	Global	Imagery	Browse
Services	(https://earthdata.nasa.gov/);
NOAA’s	Digital	Coast,	which	archives	and	provides	access	to	multiple
lidar	(both	topographic	and	bathymetric)	and	multispectral	airborne	and
satellite	imagery	data-sets	collected	primarily	in	the	coastal	areas	of	the
United	States	(https://coast.noaa.gov/dataviewer/#/imagery/search/);
NOAA	Climate	Data	Online,	which	provides	access	to	NOAA’s	archive	of
worldwide	climate	and	weather	data	(https://www.ncdc.noaa.gov/cdo-
web/);	and
the	Bureau	of	Land	Management	Aerial	Photo	Archive,	a	collection	of
aerial	film	at	the	National	Operations	Center	in	Denver,	Colorado
https://www.blm.gov/nstc/library/aerial/.	Additionally,	many	states	and
local	governments	manage	and	serve	image	collections	and	make	available
their	archives	of	both	active	and	passive	HVH-resolution	imagery.	Many
of	these	image	datasets	can	be	found	in	ArcGIS	Online.

Many	national	governments	also	collect	and	archive	imagery.	International

http://www.satimagingcorp.com/satellite-sensors
http://eros.usgs.gov/find-data
http://www.fsa.usda.gov/programs-and-services/aerial-photography/index
https://earthdata.nasa.gov/about/daacs
https://earthdata.nasa.gov/
https://coast.noaa.gov/dataviewer/#/imagery/search/
https://www.ncdc.noaa.gov/cdo-web/
https://www.blm.gov/nstc/library/aerial/


sources	of	imagery	are	referenced	in	the	relevant	sections	below.

Unmanned	Aerial	Systems
For	the	first	time	since	the	advent	of	remote	sensing,	technologies	are	available
that	allow	anyone	to	collect	imagery.	UASs	(sometimes	called	drones)	have	long
been	recognized	for	their	potential	as	a	means	of	accomplishing	tasks	that	are
too	repetitive,	inaccessible,	or	dangerous	for	manned	aircraft.	The	military
implications	of	such	a	device	are	obvious,	and	most	development	has	occurred	in
the	military	as	a	result.	However,	in	the	last	decade	or	so,	the	use	of	UASs	for
civilian	purposes	has	grown	tremendously.	The	proliferation	of	better	and	more
effective	software	for	processing	imagery	coupled	with	the	miniaturization	of
sensors	has	allowed	UASs	to	successfully	collect	remotely	sensed	data	for	a	very
large	number	of	applications.

Today,	virtually	any	sensor	from	cameras,	video,	multispectral	and
hyperspectral	sensors,	thermal	imagers,	radar,	lidar,	and	others	can	be	flown	on	a
UAS.	Some	of	these	platforms	are	fixed-wing	aircraft	but	many	more	are	some
type	of	helicopter,	often	with	four,	six,	or	eight	propellers.	These	platforms	can
be	small	enough	to	fit	in	your	hand	or	large	enough	to	carry	a	substantial	payload
of	sensors	and	equipment.	Software	for	processing	this	data	is	available	both
commercially	and	in	the	public	domain	to	create	mosaicked	images,	thematic
maps,	topographic	data,	and	other	cartographic	output.	Esri	has	developed
Drone2Map	for	the	creation	of	professional	imagery	products	from	UAS-
captured	still	imagery	for	visualization	and	analysis	in	ArcGIS.

UASs	are	making	the	collection	of	ultrahigh-resolution	imagery	a	reality	for
small	geographic	study	areas.	The	software	allows	users	to	process	the	data	into
custom	products,	often	in	the	same	day.	For	the	first	time,	UASs	are	offering	the
promise	of	making	remote	sensing	technology	personal,	in	much	the	same	way
that	PCs	made	computers	personal.

Many	companies	now	sell	small	UASs	(sUASs)	at	reasonable	costs	that
allow	farmers,	ranchers,	environmentalists,	researchers,	utility	companies,
academics,	and	others	to	take	advantage	of	this	rapidly	growing	technology.
Federal	agencies	from	the	United	States	and	many	other	countries	fly	large
UASs	with	heavy	payloads	for	extended	missions	of	both	military	importance
and	civilian	usefulness.	However,	the	growth	in	this	technology	is	primarily	in
smaller	UASs	that	fly	short	missions	with	small	payloads.	The	list	of
applications	for	such	remotely	sensed	data	is	endless	and	includes	archaeology,
engineering,	wildlife	habitat	analysis,	agricultural	mapping,	forest	inventory,



disaster	monitoring,	road	and	bridge	inspection,	and	many,	many	more.
Perhaps	the	biggest	stumbling	block	for	the	use	of	UASs	today	is	the

regulations	surrounding	their	use.	Many	countries	have	modernized	their
regulations,	clearly	separating	the	use	of	manned	versus	unmanned	systems,
especially	for	sUASs.	The	United	States	has	lagged	behind	in	this	adjustment
and	therefore	is	behind	many	countries	in	the	use	and	development	of	this
technology.	New	regulations	for	sUASs	were	recently	published	by	the	FAA
(https://www.faa.gov/uas/media/Part_107_Summary.pdf).

Mapping	Woody	Debris	in	the	Great	Brook
Flows	 of	 the	 Great	 Brook	 in	 Vermont	 long	 caused	 problems	 for	 the	 residents	 of
Plainfield.	Over	time,	bank	erosion	resulting	from	natural	and	anthropogenic	forces
increased	 the	 amount	 of	 large	 woody	 debris	 in	 the	 stream.	 During	 extreme
precipitation	events,	the	debris	moved	downstream,	collecting	at	the	first	bridge	and
forming	an	artificial	dam,	which	diverted	water	out	and	over	the	stream	bank	causing
tens	 to	 hundreds	 of	 thousands	 of	 dollars	 of	 damage	 to	 the	 bridge,	 roads,	 and
surrounding	 homes.	 The	 damage	 occurred	 so	 often	 that	 it	 became	 economically
unviable	 for	 the	 town	 to	 continue	 to	 make	 regular	 repairs.	 As	 a	 result,	 the	 town
retained	a	 consulting	engineering	 team	 to	evaluate	bridge	alternatives.	Key	 to	 the
development	 of	 alternatives	 was	 an	 estimate	 of	 the	 amount	 of	 woody	 debris
predicted	to	move	through	the	bridge	during	a	storm.	While	only	a	dozen	or	so	logs
often	 caused	 the	 jam	 at	 the	 bridge	 it	 was	 unclear	 how	much	more	woody	 debris
there	was	moving	downstream.

The	town	tried	for	several	years	to	carry	out	woody	debris	 inventories	of	the	Great
Brook,	 but	 the	 process	 was	 slow,	 cumbersome,	 costly,	 and	 dangerous.	 Remote
sensing	 approaches,	 while	 compelling,	 were	 also	 not	 feasible	 because	 even	 the
best	 commercial	 satellite	 imagery	 lacked	 the	 spatial	 and	 temporal	 resolution
required,	 and	 imagery	 acquired	 through	 manned	 flights	 was	 far	 too	 costly.	 With
funding	 from	 the	 US	 Department	 of	 Transportation	 and	 the	 Vermont	 Agency	 of
Transportation,	 the	 University	 of	 Vermont’s	 (UVM)	 UAS	 Team	 began	 long-term
monitoring	of	Great	Brook	starting	 in	December	2014	with	a	goal	of	mapping	and
tracking	the	movement	of	woody	debris	through	the	2015	spring	flood	season.	The
UVM	UAS	Team	employed	the	senseFly	eBee,	a	small,	lightweight	UAS	specifically
designed	 for	 mapping.	 The	 workflow	 for	 the	 eBee	 essentially	 consists	 of	 the
operator	 using	 flight	 planning	 software	 to	 specify	 the	 flight	 area	 and	 flight
parameters	 (e.g.,	 desired	 ground	 resolution	 and	 maximum	 altitude),	 flight
operations,	 and	 postprocessing.	 The	 eBee	 flies	 autonomously,	 following	 its
preprogrammed	flight	path,	acquiring	 imagery	with	 the	requisite	overlap	and	at	 the
appropriate	angle	for	generating	orthorectified	imagery.	Once	the	eBee	is	recovered
the	imagery	is	fed	into	photogrammetric	software	where	it	is	orthorectified,	making	it
suitable	for	using	in	GIS	software.

Throughout	spring	2015,	the	UVM	UAS	Team	conducted	multiple	flights	of	a	three-
mile	stretch	of	 the	Great	Brook.	Each	time,	 the	orthorectified	 imagery	was	brought
into	 ArcGIS	 where	 technicians	 digitized	 the	 location	 of	 all	 of	 the	 woody	 debris,
populated	the	attribute	table	with	size	information,	and	noted	if	it	had	moved	or	if	the
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size	 had	 changed.	 A	 dry	 winter,	 combined	 with	 little	 in	 the	 way	 of	 spring
participation,	 resulted	 in	 minimal	 changes	 to	 the	 woody	 debris	 conditions	 in	 the
stream.	Then,	in	July	2015,	a	highly	localized	storm	dumped	nearly	half	a	foot	of	rain
on	 the	 area	 during	 a	Sunday	 evening.	 Floodwater	moved	 rapidly	 down	 the	Great
Brook,	 trees	piled	up	at	 the	bridge,	and	 the	 residents	of	Plainfield	awoke	 to	 find	a
bridge	that	was	in	need	of	major	repairs.	The	UVM	UAS	Team	responded,	collecting
imagery	of	 the	damaged	bridge	along	with	 the	upstream	area	of	 interest.	The	day
after	 the	 flight,	 technicians	 once	 again	 combed	 through	 the	 data	 and	 noticed	 that
most	of	 the	previously	mapped	debris	was	gone,	 replaced	by	new	debris	 from	the
surrounding	 slopes	 and	 upstream.	 A	 series	 of	 analyses	 was	 performed	 within
ArcGIS	to	summarize	the	amount	of	woody	debris	by	stream	segment	(figure	4.A).
The	data	showed	how	dynamic	the	woody	debris	situation	was	in	the	Great	Brook:
hundreds	of	 pieces	 of	 large	woody	debris	were	 in	motion	 during	 the	 flooding,	 but
only	a	small	percentage	of	them	caused	the	problems	at	the	bridge.	Any	new	bridge
would	have	to	be	designed	to	accommodate	this	reality.

The	UAS	 proved	 to	 be	 a	 cost-effective,	 safe,	 efficient,	 and	 rapid	way	 of	mapping
woody	debris	 in	 the	Great	Brook.	Without	UAS	technology,	 it	 is	highly	unlikely	 that
the	engineering	team	would	have	had	the	information	they	needed	to	complete	their
study.	Fundamentally,	the	data	stemming	from	the	UAS	was	like	any	other	remotely
sensed	 data.	 The	 information	 gleaned	 from	 it,	 through	manual	 interpretation,	was
done	using	methods	employed	by	humans	for	decades.	What	was	unique	was	the
low-cost,	flexible,	and	rapid	response	that	the	UAS	offered.



Figure	4.A.	UAV	images	and	maps	of	debris	along	the	Great	Brook	pre-	and	post-storm.	Source:
University	of	Vermont	Spatial	Analysis	Lab

Sources	of	Passive	Panchromatic	and
Multispectral	Imagery

High-	and	Very-High	Spatial	Resolution
By	far	the	largest	amount	of	imagery	is	collected	from	HVH-spatial-resolution



multispectral	and	panchromatic	passive	sensors	on	all	platform	types	including
UASs.	These	sensors	provide	the	imagery	that	is	the	source	of	most	maps	of
streets,	buildings,	soil	types,	hydrologic	features,	airports,	crops,	forests,
wetlands,	military	facilities,	and	topography.

All	early	passive	sensors	were	flown	on	aircraft	(initially	balloons)	and	relied
upon	panchromatic	film	imaging	surfaces.	In	the	1930s,	Kodak	introduced	color
aerial	camera	film.	Satellite	civilian	digital	satellite	scanners	were	introduced
with	the	launch	of	Landsat	1	in	1972,	and	civilian	digital	airborne	systems	were
introduced	in	the	1990s.	While	it	is	still	possible	to	collect	airborne	imagery	with
film	cameras,	they	are	in	little	use.	However,	much	of	the	long-term	archive	of
remotely	sensed	imagery	exists	in	film	archives,	and	any	change	detection	for
the	years	before	the	1970s	will	need	to	rely	on	scanned	images	captured	from
film	positives	or	negatives.

Most	HVH-resolution	imagery	is	collected	in	either	panchromatic	or	blue,
green,	red,	and	near-infra	wavelengths.	Some	systems	(e.g.,	WorldView-2	and
-3)	collect	additional	bands.	Table	4.2	summarizes	the	current	satellite	sources	of
passive	HVH-spatial-resolution	panchromatic	and	multispectral	imagery.	Within
five	years,	the	supply	of	this	type	of	imagery	is	anticipated	to	grow	exponentially
with	the	continued	adoption	of	UAS	use	and	the	launches	of	several
constellations	of	satellites	by	private	companies,	as	shown	in	figure	4.2	and
detailed	in	table	4.3.

Figure	4.2.	The	growing	supply	of	high-	and	very-high-resolution	satellite	imagery.	Source:
Euroconsult



Sources	of	HVH-resolution	panchromatic	and	multispectral	imagery	include
the	following:

ArcGIS	Online,	which	offers	multiple	cached	high-	and	very-high-
resolution	imagery	datasets.	Its	World	Imagery	comprises	imagery	at
multiple	scales	and	from	multiple	sources.	ArcGIS	Online	also
dynamically	serves	four-band	NAIP	imagery	over	the	lower	48	states	(at
no	charge),	and	four	bands	of	very-high-resolution	Hexagon	imagery	over
parts	of	the	United	States,	Canada,	and	Western	Europe	(for	a	subscription
charge).
Private	remote	sensing	and	photogrammetry	firms.	Many	remote	sensing
and	photogrammetry	firms	operate	in	countries	with	open	airspace.	The
companies	offer	new	flights	to	collect	imagery	for	a	charge,	with	the	rights
of	the	imagery	usually	passing	to	the	purchaser.	Most	remote	sensing	firms
also	archive	images	captured	over	the	life	of	the	firm.	Unfortunately,	these
archives	are	often	dispersed,	held	by	either	the	company	that	collected	the
photos	or	the	organization	that	funded	the	collection.	Recently	the
American	Society	of	Photogrammetry	and	Remote	Sensing	established	the
ASPRS	Aerial	Data	Catalog,	which	is	a	tool	for	locating	aerial
photography	throughout	the	world
(http://www.asprs.org/DPAC/index.php/?view=listmanagerfront).	The	site
is	fairly	new	and	has	records	on	only	a	limited	number	of	archives,	but
several	firms	have	committed	to	including	their	information.
UASs.	With	relatively	little	investment	(compared	to	buying	an	airplane),
analysts	can	purchase	their	own	UASs	with	panchromatic	and/or
multispectral	sensors.	However,	the	capacities	of	these	systems	are	still
limited,	making	only	relatively	small	collects	possible.	A	good	primer	on
using	UASs	can	be	found	and	accessed	at
http://drones.newamerica.org/primer/.
NAIP	imagery	is	collected	at	a	1-meter	resolution	over	the	lower	48	states
of	the	United	States	over	three-year	cycles	by	the	USDA	Farm	Services
Agency.	The	program	initially	relied	on	true	color	film	sensors	when	it
started	in	2003,	but	transitioned	to	four-band	(R,	G,	B,	and	near-infrared
[NIR])	digital	sensors	in	2009.	The	imagery	is	available	for	free	download
and	without	license	restriction	from	APFO	as	compressed	.sid	(2003–
2007)	or	JPEG	2000	(2008	to	the	present)	files	of	digital	ortho	quarter
quad	mosaics.	NAIP	imagery	can	also	be	downloaded	from	USGS	EROS
as	JPEG	2000	digital	quarter	quads	(https://lta.cr.usgs.gov/NAIP).
Additionally,	some	states	(e.g.,	California)	both	serve	and	provide	access
for	downloading	uncompressed	NAIP	imagery	for	their	state	and,	as
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mentioned	before,	ArcGIS	Online	serves	all	four	bands	of	the	imagery,
providing	full	access	to	the	raw	pixel	data.	Figure	4.3	shows	the	current
cycle	of	NAIP	imagery	by	state.

Table	4.2.	Comparison	of	current	commercial	high-	and	very-high-spatial-resolution	satellites
(esriurl.com/IGT42	for	current	version.)

http://esriurl.com/IGT42


Table	4.3.	Planned	near-term	launches	of	high-	and	very-high-spatial-resolution	panchromatic	and
multispectral	imagery	(esriurl.com/IGT43	for	current	version.)

Hexagon.	Esri	and	Leica	Geosystems	have	partnered	to	serve	15-	and	30-
cm	aerial	imagery	over	much	of	the	United	States,	Canada,	and	Europe.	In
the	United	States,	the	Hexagon	imagery	is	a	higher-spatial-resolution
version	of	the	NAIP	imagery,	with	the	same	collection	interval.	Two

http://esriurl.com/IGT43


products	are	available,	the	Basemap	Service,	which	is	cached	true	color
imagery,	and	the	Multispectral	Imagery	Service,	which	provides	access	to
all	four	bands	served	across	the	web	for	use	in	ArcGIS	software	and
applications.	The	imagery	is	available	as	a	subscription	service	and	is
available	from	the	ArcGIS	Marketplace,	Hexagon	Geospatial’s	Power
Portfolio,	and	Valtus.

Figure	4.3.	Current	cycle	of	NAIP	imagery	by	state	(esriurl.com/IG43)

Commercial	Satellite	Imagery	Providers.	DigitalGlobe	and	Airbus	are	the
two	largest	and	longest-established	HVH-resolution	commercial	satellite
imagery	vendors.	They	sell	licenses	to	worldwide	30-cm	to	1-m
panchromatic	and	1-m	to	4-m	multispectral	imagery	from	a	constellation
of	satellites	(see	table	4.2)	under	licensing	agreements.	Both	vendors	also
have	extensive	archives,	especially	DigitalGlobe,	whose	archive	dates
back	to	IKONOS—the	first	high-resolution	civilian	satellite	system,
launched	in	1999.	Private	companies	currently	operating	HVH	earth
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observing	remote	sensing	systems	include
DigitalGlobe:	https://www.digitalglobe.com/,
Airbus	Defense	and	Space:	http://www.intelligence-airbusds.com/,
Planet:	https://www.planet.com/,
UrtheCast:	https://www.urthecast.com/,
Earth-i:	http://earthi.space/.

USGS	EROS	Center.	A	full	listing	of	EROS	archive	products	can	be	found
at	https://lta.cr.usgs.gov/products_overview.	HVH-resolution
panchromatic	and	multispectral	imagery	offered	for	download	from	EROS
are	older	datasets	and	include:

DigitalGlobe	imagery	purchased	by	federal	agencies.	IKONOS,
GeoEye-1,	QuickBird,	and	WorldView-1	to	-3	imagery	purchased	by
federal	agencies	is	available	to	other	US	federal	agency	users	only,
either	at	no	cost	or	for	the	cost	of	a	license	upgrade.
https://lta.cr.usgs.gov/UCDP
Digital	orthophoto	quadrangles	in	panchromatic,	true	color,	or	color
infrared	with	a	1-m	spatial	resolution.	They	are	available	to	all	users
for	download	at	no	cost	as	quarter	quadrangles	(3.75	minutes)	for	48
states	and	were	completed	in	2004.	USGS	also	has	black-and-white,
full	7.5-minute	quadrangles	for	much	of	Oregon,	Washington,	and
Alaska.	https://lta.cr.usgs.gov/DOQs
OrbView-3	imagery	collected	between	2003	and	2007.	This	1-meter
panchromatic	and	4-meter	multispectral	data	is	available	for
download	to	all	users	at	no	cost	and	without	license	restrictions.
National	High	Altitude	Program	(NHAP)	black-and-white
(1:58,000)	and	color	infrared	photographs	(1:80,000)	of	the
conterminous	United	States	collected	from	1980	to	1989,	which	can
be	downloaded	as	scanned	files.	They	are	available	to	all	users	at	no
cost.	The	photos	have	not	been	terrain	corrected.
https://lta.cr.usgs.gov/NHAP
National	Aerial	Photography	Program	(NAPP)	photography
1:40,000	black-and-white	and	color	infrared	images	collected	over
the	48	conterminous	states	from	1987	to	2007	and	can	be
downloaded	as	scanned	files.	They	are	available	to	all	users	at	no
cost.	The	photos	have	not	been	terrain	corrected.
https://lta.cr.usgs.gov/NAPP

USDA	APFO.	The	APFO	has	a	vast	amount	of	aerial	photography	of	the
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lower	48	states,	captured	by	USDA	from	1955	to	the	present,	including	the
NAIP	imagery	mentioned	above.	Until	recently,	the	only	way	to	gain
access	to	its	film	archive	was	through	requests	made	to	APFO	for	an	aerial
photograph	to	be	scanned.	However,	it	is	currently	scanning	much	of	the
film	archives.	One	of	the	most	efficient	ways	to	investigate	APFO	archive
content	is	through	the	ArcGIS	Online	APFO	Historical	Availability	Tile
Layer,	which	lists	the	type	of	imagery	collected	and	the	year	of	collection
for	every	county	in	the	48	conterminous	states.
Bureau	of	Land	Management.	The	location	and	date	of	BLM	film
collections	can	be	researched	using	the	BLM’s	interactive	map
(https://navigator.blm.gov/home).	Copies	of	photos	in	the	archive	must	be
requested	from	the	BLM.
National	Archives.	This	site	allows	registered	researchers	to	gain	access	to
historical	maps	and	aerial	photography.	It	is	a	rich	resource	for	historical
imagery	and	maps,	going	back	to	the	1930s
(https://www.archives.gov/research/order/maps.html).
Declassified	intelligence	archives.	Both	the	USGS	EROS	Center	and	the
National	Archives	and	Records	Administration	maintain	archives	of	more
than	990,000	declassified	black-and-white	CORONA,	ARGON,
LANYARD,	KH-7,	and	KH-9	satellite	reconnaissance	film	images
captured	by	the	United	States	government	worldwide	from	1959	to	1980.
USGS	creates	scans	of	the	images	on	demand	for	$30.00	per	frame.	Most
of	this	imagery	was	collected	outside	the	United	States.	See
https://lta.cr.usgs.gov/declass_1	and	https://lta.cr.usgs.gov/declass_2.

Moderate-	and	Low-Spatial-Resolution	Panchromatic	and
Multispectral	Imagery
Table	4.4	summarizes	the	sources	of	currently	operating	panchromatic	and
multispectral	moderate-spatial-resolution	systems.	Much	of	this	imagery	is
collected	from	government	satellite	systems,	and	the	imagery	is	usually	freely
accessible	for	download,	or	in	the	case	of	Landsat	8	and	the	USGS	Landsat
Global	Land	Survey	imagery,	is	also	dynamically	served.

USGS	EROS
The	USGS	EROS	Center	has	one	of	the	largest	archives	of	moderate-	and	low-
spatial-resolution	imagery	because	they	operate	the	US	National	Satellite	Land

https://navigator.blm.gov/home
https://www.archives.gov/research/order/maps.html
https://lta.cr.usgs.gov/declass_1
https://lta.cr.usgs.gov/declass_2


Remote	Sensing	Archive,	which	includes	the	global	Landsat	archives	as	well	as
those	for	Advanced	Very	High	Resolution	Radiometer	(AVHRR),	Advanced
Spaceborne	Thermal	Emission	and	Reflection	Radiometer	(ASTER),	and	other
satellite	systems.	They	also	distribute	the	ESA	Sentinel-2	imagery.	Moderate-
and	low-spatial-resolution	imagery	available	from	EROS	includes:

All	Landsat	imagery	from	1972	to	the	present.	The	archive	distributes
more	than	7,000	terabytes	of	Landsat	imagery	annually.	Starting	with
Landsat	1	(launched	in	1972)	with	four	bands	(G,	R,	2	IR)	at	80-m	spatial
resolution,	the	Landsat	constellation	of	satellites	has	evolved	to	the
Landsat	8	system	(launched	in	2013)	with	10	bands	at	15-m
(panchromatic);	30-m	(visible,	near-infrared,	and	short-wave	infrared);	and
100-m	(thermal)	spatial	resolution.	No	other	remote	sensing	system
provides	a	40+	year	continuous	record	of	global	observations.	Landsat	9	is
currently	under	construction	and	will	be	identical	to	Landsat	8	with	a
planned	launch	date	in	the	early	2020s.

Figure	4.4.	Comparison	of	the	spectral	resolutions	of	Landsats	7	and	8,	Moderate	Resolution
Imaging	Spectroradiometer	(MODIS),	and	Sentinel-2.	Source:	USGS

ESA	Sentinel-2	imagery.	Sentinel-2A	was	launched	in	June	2015	with	13
bands	in	the	visible	(10-m	resolution),	near-infrared	(10	to	20-m
resolution),	and	short-wave	infrared	bands	(20	to	60-m	resolution).	The
spectral	resolution	is	very	similar	to	Landsat’s	(figure	4.4)	An	identical



satellite,	Sentinel-2B	launched	in	March	of	2017.	In	a	partnership	with
ESA,	EROS	distributes	Sentinel-2	level	1C	imagery.
AVHRR	imagery	from	1979	to	the	present	at	a	1-km	spatial	resolution.
AVHRR	1.1-km	imagery	is	captured	worldwide	twice	every	day	and	has
been	collected	by	NOAA’s	polar-orbiting	satellites	from	1979	to	the
present.
Multispectral	data	over	the	United	States	acquired	by	SPOT-4	and	-5
satellites.	This	dataset	of	licensed	commercial	imagery	is	available	only	to
US	civil	government	agencies	(2010	to	2013).
The	SPOT	Controlled	Image	Base	is	an	orthorectified	product	derived
from	panchromatic	images	with	a	10-m	ground	sample	distance.	Coverage
is	limited	to	portions	of	the	United	States,	Europe,	Middle	East,	Southeast
Asia,	North	and	South	Korea,	Central	America,	western	Russia,	and	other
smaller	areas	around	the	world	(1986	to	1993).
ASTER	is	one	of	a	number	of	instruments	on	board	the	Terra	platform,
which	was	launched	in	December	1999.	ASTER	provides	14	spectral
bands	with	15-	to	90-meter	resolutions	depending	on	the	bands.	ASTER
does	not	acquire	data	continuously;	its	sensors	are	activated	only	to	collect
specific	scenes	upon	request.	The	instrument	consists	of	three	separate
telescopes;	each	provides	a	different	spectral	range	and	resolution.	The
visible	and	near-infrared	sensor	provides	four	bands	at	a	15-meter
resolution.	The	short-wave	infrared	sensor	provides	six	bands	at	a	30-
meter	resolution.	The	thermal	infrared	sensor	provides	five	bands	at	a	90-
meter	resolution.	The	swath	width	for	all	sensors	is	60	kilometers.

Table	4.4.	Sources	of	currently	operating	panchromatic	and	multispectral	moderate-spatial-
resolution	systems.	(esriurl.com/IGT43	for	current	version.)

http://esriurl.com/IGT43


The	USGS	and	NASA	have	collaborated	on	the	creation	of	the	Global
Land	Surveys	datasets.	Each	of	these	collections	was	created	using	the
primary	Landsat	sensor	in	use	at	the	time,	which	were	processed	for	either
5-year	or	10-year	periods	with	best	available	images.
WELD	data.	Global	monthly	and	annual	30-meter	global	composites
generated	from	contemporaneous	Landsat	7	Enhanced	Thematic	Mapper
Plus	(ETM+)	and	Landsat	5	Thematic	Mapper	(TM)	data	for	all	non-
Antarctic	land	surfaces	are	available	for	3-year	periods.	Continental	US
and	Alaska	WELD	data	are	weekly,	monthly,	seasonal,	and	annual	30-
meter	continental	US	and	Alaska	composites	generated	from	Landsat	7
ETM+	data	available	for	10	years	(2003	to	2012).	Products	are	available
through	an	interactive	web	interface	or	as	hierarchical	data	format	tiles
from	a	direct	download	site.
MODIS	is	one	of	a	number	of	instruments	carried	on	the	Terra	platform,
which	was	launched	in	December	1999.	MODIS	provides	continuous
global	coverage	every	one	to	two	days	and	collects	data	from	36	spectral
bands	(band	designations).	Bands	1	and	2	have	a	resolution	of	250	meters.
Bands	3	through	7	have	a	resolution	of	500	meters.	The	remaining	bands,
8	through	36,	have	a	resolution	of	1000	meters.	The	swath	width	for
MODIS	is	2,330	kilometers.

ArcGIS	Online
ArcGIS	Online	dynamically	serves	the	pixel	values	for	eight	bands	(no	thermal



or	panchromatic)	of	all	scenes	of	moderate-resolution	Landsat	8	imagery
worldwide	at	no	charge.	It	also	serves	the	Landsat	Global	Land	Survey
composites	of	Landsats	1	through	7,	created	by	NASA	and	USGS,	of	decadal
Landsat	imagery.	In	addition,	ArcGIS	Online	serves	multiple	cached	moderate-
and	low-resolution	imagery	from	a	variety	of	international	space	agencies.

ESA
The	ESA’s	Copernicus	program	is	a	combination	of	30	multiple	spectral
resolution	missions	(Sentinels	1	through	6).	Sentinel-1A	and	-1B	(radar)	and	-2A
and	-2B	(optical)	have	been	launched	and	are	operating	successfully.
https://sentinel.esa.int/web/sentinel/sentinel-data-access/access-to-sentinel-data.

Thermal	Imagery	—	All	Spatial	Resolutions
Thermal	sensors	are	a	special	type	of	multispectral	scanner	that	sense	only	in	the
thermal	wavelengths.	Like	radar	imagery,	thermal	imagery	is	usually	rendered	in
grayscale,	with	warmer	areas	represented	by	lighter	shades	and	cooler	areas	in
darker	shades.	The	image	can	also	be	pseudocolored,	with	blue	shades
representing	cool	and	red	shades	warm.	Thermal	sensors	measure	in
wavelengths	of	electromagnetic	energy	that	are	naturally	emitted	from	objects	as
a	direct	result	of	the	objects’	temperatures.	Thermal	sensors	do	not	measure
reflected	energy,	but	rather	emitted	energy,	and	therefore	can	be	acquired	any
time	of	day	or	night.	Because	of	issues	caused	by	the	atmosphere,	thermal
imagery	is	collected	with	wavelengths	of	either	3	to	5	microns,	8	to	14	microns,
or	both.

Thermal	imaging	sensors	can	be	flown	as	part	of	a	multispectral	scanner	or
in	conjunction	with	one.	For	example,	the	Landsat	TM	sensor	(on	Landsats	4,	5,
and	7)	has	a	thermal	band	of	10.40	to	12.50	microns	in	addition	to	sensing	in	the
visible,	near-infrared,	and	middle-infrared	wavelengths.	The	thermal	band	has	a
spatial	resolution	of	120	meters	on	Landsats	4	and	5	and	60	meters	on	Landsat	7.
Landsat	8	also	has	a	thermal	sensor,	called	the	Thermal	Infrared	Sensor	(TIRS),
which	flies	on	the	same	platform	as	the	Operational	Land	Imager	(OLI).	The
OLI	senses	in	the	visible,	near-infrared,	and	middle-infrared	wavelengths.	TIRS
has	two	thermal	bands	(10.6	to	11.2	and	11.5	to	12.5	microns)	and	a	spatial
resolution	of	100	meters.	All	Landsat	imagery	including	the	thermal	data	is
freely	available	for	download	from	a	number	of	USGS	websites	including	Earth
Explorer	(http://earthexplorer.usgs.gov),	Global	Visualization	Viewer	(GloVis)
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(http://glovis.usgs.gov/next/),	and	Landsat	Look	Viewer
(http://landsatlook.usgs.gov).

Similarly,	the	Moderate	Resolution	Imaging	Spectroradiometer	(MODIS)
senses	in	36	bands	at	varying	spatial	resolutions	depending	on	the	wavelength.
There	are	six	thermal	bands;	four	in	the	3-	to	5-micron	range	and	two	in	the	10-
to	12-micron	range.	The	spatial	resolution	of	the	MODIS	thermal	imagery	is	1
km.	Additional	information	about	the	acquisition	of	MODIS	imagery	can	be
found	at	http://modis.gsfc.nasa.gov.	Finally,	the	AVHRR	also	senses	in	the
thermal	wavelengths	including	one	in	the	3-	to	5-micron	range	and	two	in	the
10-	to	12-micron	range.	AVHRR	imagery	is	provided	free	by	NOAA	through	the
Comprehensive	Large	Array-Data	Stewardship	System	at
www.class.ncdc.noaa.gov/.

Thermal	sensors	on	aircraft	can	also	be	a	component	of	a	multispectral
scanner.	However,	it	is	more	common	for	the	sensor	to	be	a	thermal	sensor	with
multiple	wavelengths	being	collected	just	in	the	thermal	range.	These	sensors
have	been	flown	on	fixed-wing	aircraft	and	helicopters	and	most	recently	on
UAS’s,	otherwise	known	as	drones.	There	are	many	applications	for	thermal
imagery	flown	on	an	aircraft.	Most	notably,	these	applications	include	forest	fire
detection	and	measurement	of	heat	loss	from	buildings.	The	US	Forest	Service
and	NASA	have	cooperated	extensively	on	detecting	forest	fires	using	thermal
imagery	and	have	put	thermal	sensors	on	airplanes,	helicopters,	and	most
recently	on	UASs.	Many	utility	companies	employ	thermal	sensors	to	detect	heat
loss	from	houses	to	demonstrate	where	increased	insulation	or	replacement	of
windows	could	significantly	reduce	heating	costs.	Other	applications	for	thermal
data	include	disaster	mapping	such	as	volcanic	activity	and	sensing	of	large
mammals	(bears,	moose,	elk,	etc.).

Hyperspectral	Imagery	—	All	Spatial	Resolutions
Hyperspectral	imagery	is	not	generally	available	from	remote	sensing	systems
and	is	most	often	flown	on	aircraft	for	specific	projects.	While	flown	by	both
private	and	public	agencies,	the	most	well-known	hyperspectral	remote	sensing
system	is	NASA’s	AVIRIS,	which	operates	an	optical	sensor	capturing	the
spectral	radiance	in	224	contiguous	spectral	bands	with	wavelengths	from	400	to
2500	nanometers.	AVIRIS	has	been	flown	from	1992	to	the	present	on	four
aircraft	platforms	mostly	over	the	United	States	and	Canada.	The	AVIRIS
archive	can	be	searched	and	data	can	be	downloaded	from
http://aviris.jpl.nasa.gov/alt_locator/.
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The	only	civilian	source	of	hyperspectral	satellite	imagery	is	collected	by	the
Hyperion	sensor	operating	on	the	Earth	Observing	1	(EO-1)	Extended	Mission.
It	is	able	to	resolve	220	spectral	bands	(from	0.4	to	2.5	μm)	at	a	30-m	spatial
resolution.	The	EO-1	satellite	was	launched	November	21,	2000,	as	a	one-year
technology	demonstration/validation	mission.	After	the	initial	technology
mission	was	completed,	NASA	and	the	USGS	agreed	to	the	continuation	of	the
EO-1	program	as	an	extended	mission.	The	EO-1	Extended	Mission	is	chartered
to	collect	and	distribute	Hyperion	hyperspectral	and	Advanced	Land	Imager
multispectral	products	according	to	customer	tasking	requests.	Archived
Hyperion	imagery	is	available	for	search	and	download	from	the	USGS	EROS
(http://eo1.usgs.gov/products/search).

Sources	for	Imagery	Collected	from	Active
Sensors

Lidar
Lidar	imagery	provides	a	comprehensive,	detailed,	and	precise	picture	of	the
elevation	of	the	earth’s	surface	as	well	the	height	of	vegetation,	buildings,	and
other	features.	The	data	provides	a	detailed	view	of	the	vertical	structure	of	our
environment.	Because	lidar	penetrates	the	canopy,	it	provides	the	ability	to	“see
under	trees,”	revealing	roads,	trails,	manmade	alteration	of	the	landscape,	and
other	landscape	features	that	on	an	aerial	photograph	may	be	obscured	by	trees
or	vegetation.	The	lidar	point	cloud	and	its	derivatives	have	myriad	applications
for	land	management,	planning,	archaeology,	engineering	design,	hydrology,	and
other	applications.	High-resolution	elevation	data	and	forest	structure	metrics,
such	as	tree	height	and	canopy	density,	significantly	enhance	our	ability	to	assess
and	monitor	carbon	stocks,	document	sea	level	rise,	and	map	impervious
surfaces	and	vegetation.

As	reviewed	in	chapter	3,	lidar	data	is	collected	as	a	“point	cloud”;	each
point	typically	contains	data	representing	the	point’s	geographic	location,
elevation,	and	return	intensity.	Since	most	modern	lidar	missions	produce	high-
density	point	clouds	(multiple	points	per	square	meter),	point	cloud	data	is
among	the	most	space	and	resource	consuming	of	remotely	sensed	datasets.	The
standard	data	format	for	the	point	cloud	is	the	LASer	(LAS)	format,	and	lidar
data	is	typically	distributed	as	LAS	files.	The	LAS	format	is	a	transfer	standard
but	is	not	optimized	for	direct	use	because	of	the	large	size	of	its	files.	However,
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a	number	of	lossless	compression	formats	exist	as	alternatives	to	the	LAS
format,	including	zLAS	and	LAZ,	which	typically	result	in	compression	factors
of	5×.

Lidar	data	is	publicly	available	for	a	growing	number	of	states,	counties,	and
municipalities	across	the	United	States.	Existing	lidar	data	and	derivatives	can
often	be	downloaded	from	many	sources	including	Open	Topography
(http://www.opentopography.org/),	NOAA’s	Digital	Coast
(https://coast.noaa.gov/digitalcoast/)	and	the	USGS’s	Earth	Explorer
(http://earthexplorer.usgs.gov/).

Lidar	data	is	typically	provided	in	one	of	the	formats	below:
Classified	point	cloud—this	format	is	typically	the	least	processed	form
made	available.	Access	to	the	point	cloud	is	needed	to	derive	custom
elevation	models,	to	edit	or	change	the	point	classification,	or	to	visualize
the	point	cloud	directly.	Working	with	the	point	cloud	at	a	regional	scale
can	be	cumbersome	and	slow	because	the	number	of	points	in	the	point
cloud	is	massive.
Lidar-derived	elevation	models—derived	elevation	models	are	often	the
most	useful	products	for	the	end	user.	Elevation	models	derived	from	the
point	cloud	can	depict	the	elevation	of	the	ground	(digital	terrain	models)
or	the	elevation	of	the	highest	surface	(digital	surface	models).	Digital
elevation	models	are	provided	in	raster	or	three-dimensional	model	format
and	can	be	used	for	myriad	types	visualization,	analysis,	and	modeling.
Hillshades	derived	from	elevation	models	are	an	excellent	way	to	visualize
lidar-derived	topography.	(For	more	information	on	elevation	models,	see
chapter	8.)
Elevation	contours—contours	are	often	derived	from	the	point	cloud	and
provided	for	download	at	the	portals	listed	above.

If	lidar	data	doesn’t	exist	for	your	area	of	interest,	or	you	require	lidar	data
with	different	specifications	or	characteristics	from	what	does	exist,	here	are
some	very	useful	resources	to	help	you	with	your	planning:

Lidar	101:	An	Introduction	to	Lidar	Technology,	Data,	and	Applications
—https://coast.noaa.gov/digitalcoast/training/lidar-101.html
USGS	Lidar	Base	Specification—http://pubs.usgs.gov/tm/11b4/
Manual	of	Airborne	Topographic	Lidar—http://www.asprs.org/Press-
Releases/ASPRS-Launches-First-eBook-Manual-of-Airborne-
Topographic-Lidar.html
ASPRS	Positional	Accuracy	Standards	for	Digital	Geospatial	Data
—https://www.asprs.org/pad-division/asprs-positional-accuracy-standards-
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for-digital-geospatial-data.html.

Radar
Radar	imagery	has	many	uses.	Because	of	its	long	wavelengths	and	use	of	active
sensors,	radar	imagery	can	be	acquired	under	almost	any	conditions.	It	is	not
impacted	by	clouds	or	fog	and	can	even	be	acquired	at	night.	Areas	that
experience	constant	cloud	cover	such	as	the	Amazon	jungle	and	coastal	Alaska,
which	have	very	little	optical	imagery,	can	be	regularly	imaged	with	radar.	In
addition,	depending	on	the	wavelength,	radar	imagery	has	the	ability	to	penetrate
through	the	leaves/canopy	of	the	forest	and	image	more	of	the	forest	structure	or
to	penetrate	into	the	soil	and	reveal	more	about	the	soil	characteristics	and
wetness.	Two	radar	images	of	the	same	area	can	produce	an	image	with	parallax
much	like	a	stereo	pair	of	aerial	photographs.	This	parallax	can	be	used	in
radargrammetry	(photogrammetry	for	radar)	to	produce	topographic/elevation
data.	Another	topographic	mapping	method	called	interferometry	uses	two	radar
antennas	that	are	spaced	apart	and	can	receive	a	single	radar	signal	that	is	out	of
phase.	Topographic	information	is	extracted	by	analyzing	the	phase	shift.

While	radar	systems	have	been	and	will	continue	to	fly	on	aircraft,
companies	that	provide	these	services	change	rapidly.	Space-based	systems	have
provided	greater	stability	and	sources	of	radar	imagery	over	time	even	though
many	of	these	missions	have	ended	as	well.	The	imagery	and	products	generated
from	these	space-based	missions	are	more	readily	accessible	and	available	for
use.	The	very	first	space-based	radar	mission	was	called	Seasat,	launched	in
1978	by	the	United	States	with	the	goal	of	monitoring	ocean	conditions
including	the	polar	sea	ice.	The	radar	sensor	was	L	band	using	HH	polarization.
Unfortunately,	there	were	technical	issues	with	the	Seasat	power	system	and	the
mission	lasted	less	than	100	days.	The	next	radar	missions	were	part	of	the	US
shuttle	program	and	called	the	Shuttle	Imaging	Radar	(SIR)	experiments.	SIR-	A
(1981)	and	SIR-B	(1984)	used	L-band	radar	with	HH	polarization,	the	same	as
Seasat.	SIR-C	(1994)	was	designed	to	experiment	with	multiband	radar	and	used
L,	C,	and	X	bands	with	multiple	polarizations.	After	this,	the	United	States	has
mostly	disregarded	radar	imagery	except	for	the	Shuttle	Radar	Topography
Mission	in	2000.	The	goal	of	that	mission	was	to	use	interferometric	radar
imagery	to	create	topographic	data	for	the	majority	of	the	inhabited	earth’s
surface.	The	project	was	a	joint	one	between	NASA	and	the	agency	then	called
the	National	Imagery	and	Mapping	Agency	and	now	called	the	National
Geospatial-Intelligence	Agency	(NGA).	The	mission	was	highly	successful	in



collecting	1-arcsecond	elevation	data	for	most	of	the	earth.
Since	the	early	days	of	Seasat	and	the	Shuttle	Radar	missions,	many	other

countries	have	launched	platforms	with	radar	sensors	into	space.	Of	particular
note	are	Canada,	Japan,	and	the	European	Space	Agency	(ESA).	Table	4.5
presents	a	summary	of	some	of	the	more	important	radar	sensors,	both
historically	and	operating	today	(Lillesand	et	al.,	2015).	Because	of	the	varying
look	angles	used	to	collect	radar	imagery,	the	spatial	resolution	of	these	images
also	varies	greatly	and	is	not	recorded	in	this	table.	Almaz-1	is	listed	in	the	table
because	it	is	the	first	commercial	radar	system,	however	it	did	not	last	long	and
is	not	as	significant	a	data	source	as	the	other	sensors	in	the	list.

Table	4.5.	Summary	of	important	space-based	radar	sensors

Soon,	two	new	countries	look	to	enter	the	radar	data	collection	group.	They
are	Spain,	with	Paz,	a	dual-polarization	X	band	radar,	and	the	United	Kingdom
with	NovaSAR-S,	a	tripolarization	S-band	radar.	In	addition,	Sentinel-1B	was
launched	in	April	2016.	Launches	are	regularly	postponed,	and	therefore	it	is
important	to	check	mission	websites	for	the	current	status	of	any	of	these	radar
sensors.



Summary	—	Practical
Considerations
This	chapter	has	provided	guidance	on	how	to	decide	which	imagery	will	best
meet	the	requirements	of	your	projects,	as	well	as	where	to	find	it.	The	basic
decision	framework	captured	in	the	questions	offered	in	this	chapter	do	not
change	as	new	imagery	products	are	created,	because	the	questions	are	driven	by
your	project	requirements,	not	by	changes	in	technology	available.	By	asking
and	re-asking	the	questions	with	respect	to	each	new	project,	you	will	be	able	to
fairly	easily	determine	the	imagery	that	will	best	meet	your	needs.

However,	sources	of	imagery	change	constantly	as	new	sensors	are	invented
and	new	platforms	developed.	As	a	result,	the	lists	of	imagery	sources	presented
in	this	book	will	quickly	become	obsolete.	Two	decades	ago,	only	two
organizations	provided	global	moderate-spatial-resolution	satellite	imagery	of
the	earth	to	civilians	(USGS	and	SPOT),	and	the	first	commercial	airborne	lidar
system	had	just	been	introduced.	Now,	multiple	countries	and	private	companies
offer	a	wide	array	of	very-high-to-moderate-spatial-resolution	imagery	globally,
and	lidar	technology	has	been	adopted	worldwide.	Because	there	is	no
centralized	resource	for	learning	about	new	imagery	sources,	the	remote	sensing
analyst	must	endeavor	to	continually	keep	abreast	of	new	developments	in
remote	sensing	technology	and	to	understand	when	that	technology	has	matured
enough	to	be	adopted	in	an	operational	environment.

___________________________
1	WorldView3	also	carries	the	CAVIS	sensor	with	12	bands	at	30m	resolution	in	the	range	from	405	to
2245nm.



Section	2
Using	Imagery



Chapter	5
Working	with	Imagery

Introduction
Chapter	3	presented	a	primer	on	imagery	fundamentals,	and	chapter	4	provided
instruction	on	choosing	imagery	appropriate	for	a	given	project.	This	chapter
provides	an	overview	of	the	fundamentals	of	working	with	the	chosen	imagery.
The	chapter	begins	by	discussing	the	issue	of	scale	in	imagery	and	then	covers	a
number	of	imagery	processing	and	visualization	topics	including	commonly
used	image	storage	and	formats	(pixel	storage,	image	statistics,	image
compression,	NoData,	and	image	pyramids),	image	display	fundamentals
(histograms,	image	stretches),	image	enhancement	and	filtering,	and	image
mosaics.	The	chapter	concludes	with	a	section	on	accessing	imagery.

Image	Scale
Using	digital	imagery	and	computers,	it	is	easy	to	zoom	in	and	out	of	an	image,
changing	the	scale	of	the	display.	Scale	is	the	ratio	of	the	length	between	two
points	on	a	paper	or	digital	map	to	the	actual	distance	between	the	same	two
points	on	the	ground.	It	is	expressed	using	a	colon	to	differentiate	between	the
distance	of	one	unit	on	an	image	or	map	to	the	corresponding	distance	on	the
ground.	For	example,	1:15,840	is	a	scale	commonly	used	in	forestry	applications
where	one	inch	on	the	image	is	equivalent	to	15,840	inches	(one-quarter	mile)	on
the	ground.	This	scale	could	also	be	represented	with	the	units	as	1	inch:0.25



miles.
The	concepts	of	scale	and	spatial	resolution	are	intertwined.	Large-scale

imagery	has	higher	spatial	resolution	than	small-scale	imagery	and,	as	a	result,
the	terms	“large”	and	“small”	are	a	little	counterintuitive.	The	term	“large	scale”
refers	to	ratios	with	small	denominators	(e.g.,	1:600)	and	images	with	high
spatial	resolution.	The	term	“small	scale”	refers	to	ratios	with	a	large
denominator	(e.g.1:60,000)	and	a	corresponding	lower	spatial	resolution.

Scale	is	an	important	consideration	in	both	image	analysis	and	image
visualization.	To	use	imagery	effectively	for	mapping	and	analysis,	the	GIS
analyst	must	choose	imagery	with	a	spatial	resolution	appropriate	for	the	scale	of
the	mapping	and	analysis	that	will	be	conducted	during	the	course	of	the	project
(see	chapter	3	for	a	more	detailed	discussion	of	spatial	resolution).

An	image’s	spatial	resolution	determines	its	maximum	appropriate	scale	for
display.	As	image	spatial	resolution	increases,	the	maximum	appropriate	display
scale	also	increases.	When	an	image	is	displayed	at	a	scale	that	exceeds	its
maximum	appropriate	display	scale,	the	image	becomes	pixelated	or	fuzzy.

In	addition	to	determining	an	image’s	maximum	appropriate	display	scale,	an
image’s	spatial	resolution	determines	the	size	of	the	smallest	decipherable
feature	in	the	image.	For	an	object	or	feature	to	be	discernible	in	a	digital	image,
the	object’s	smallest	x/y	dimension	must	be	at	least	two	times	the	width	of	a
single	image	pixel	(Jensen,	2000).	For	example,	in	a	30-meter	spatial	resolution
(30	×	30-meter	raster	cells)	Landsat	thematic	mapper	(TM)	image,	features	with
horizontal	dimensions	below	60	meters	such	as	cars,	small	buildings,	and	houses
are	not	discernible,	as	shown	in	figure	5.1.	However,	such	features	are	readily
discernible	in	6-inch	(.15-m)	spatial	resolution	orthophotography,	even	when	it	is
displayed	(as	it	is	in	figure	5.1)	at	a	smaller	scale	than	the	maximum
recommended	for	6-inch	imagery.



Figure	5.1.	Effect	of	spatial	resolution	on	image	appearance	at	1:24,000	scale	(esriurl.com/IG51)

It	is	important	to	note	that	increased	spatial	resolution	leads	to	larger	image
file	size	for	a	given	geographic	area.	Larger	images	consume	more	hard	drive
space	and	require	longer	times	to	analyze.	As	spatial	resolution	increases
linearly,	the	number	of	pixels	(and	image	size)	grows	arithmetically.	Doubling
spatial	resolution	(such	as	going	from	2-foot	to	1-foot	spatial	resolution)
quadruples	the	number	of	pixels	in	the	image	and	the	image’s	file	size.	On	a
paper	map,	the	scale	defines	the	relation	between	paper	units	and	ground	units.
On	a	computer	screen,	such	a	relation	is	more	difficult	to	define	because	the
sizes	and	resolutions	of	monitors	can	vary	significantly.	A	definitive	true	screen
scale	is	also	not	required,	because	you	should	not	use	a	ruler	to	measure
distances	from	a	monitor.	Some	relation	between	screen	pixels	and	map	units	is
still	required.	The	established	convention	is	to	assume	each	pixel	on	a	screen	is
has	a	size	of	1/96	inch	(equivalent	to	96	dots	per	inch)1.	Native	display	scale
(NDS)	is	the	scale	where	one	pixel	on	the	ground	represents	one	pixel	on	the
screen.	At	display	scales	larger	than	NDS,	the	original	pixels	will	be	spread	over
more	than	one	screen	pixel	and	start	to	look	blurry.	At	display	scales	smaller
than	this,	some	of	the	information	in	the	pixel	will	be	lost	during	display	because
multiple	ground	pixels	will	need	to	be	interpolated	to	display	a	single	display
pixel.

As	a	result:

For	example,	a	Landsat	scene	with	30-meter	pixels	has	an	NDS	of	30m	×	96

http://esriurl.com/IG51


dots	per	inch	/	0.0254	meters	per	inch,	or	1:113,386.	If	displayed	at	this	scale,
then	each	pixel	on	the	screen	would	correspond	to	one	pixel	in	the	Landsat
scene.

Due	to	the	high	resolution	of	screens,	an	image	will	remain	looking	sharp
until	about	two	times	the	NDS.	If	the	scale	is	increased	further	the	image	will
start	to	look	blurry.	Hence	the	following	relationship:

For	example,	for	30-meter	Landsat	data	the	maximum	usable	display	scale
for	manual	interpretation	is	30	m	times	1890,	or	about	1:56,700.

Image	Storage	and	Formats
Geospatial	imagery	is	stored	digitally	as	raster	datasets.	Raster	datasets	include
several	essential	components:	the	image	pixels	themselves,	image	pyramids,	and
metadata	(metadata	includes	image	statistics	and	georeferencing	information).
There	are	many	types	of	raster	datasets,	typically	named	for	the	format	the	pixels
are	stored	in.	This	section	discusses	the	most	common	types	of	raster	dataset
formats	(see	overview	table	5.1),	pixel	storage,	image	properties	such	as
georeferencing	and	image	statistics,	raster	products,	compression,	image
NoData,	and	image	pyramids.	This	section	also	discusses	image	compression.

Pixels
Pixels	are	stored	in	a	format	that	is	often	used	as	the	name	for	the	type	of	raster
dataset	(TIFF,	JPEG,	etc.).	There	are	many	different	formats	for	storing	pixels,
each	with	different	options	for	the	types	of	pixel	data	they	can	store,	the	types	of
compression	that	they	can	use	(see	the	discussion	on	compression	below),	how
they	support	pyramids	and	NoData,	and	the	ways	that	they	store	metadata.

Tiling	Pixels
The	simplest	pixel	formats	store	the	pixels	one	after	the	other,	row	by	row,	while



other	formats	break	the	pixels	into	tiles	or	blocks.	The	latter	typically	store	the
blocks	of	pixels	in	chunks	of	128	×	128,	256	×	256,	or	512	×	512	pixels.	Pixels
within	a	block	that	are	geographically	close	to	one	another	are	stored	physically
close	together	on	the	computer’s	hard	drive,	improving	image	access	speed.

Pixel	and	Band	Ordering
In	multispectral	imagery—for	example,	a	natural	color	orthophoto	that	contains
a	red	(R)	band,	a	green	(G)	band,	and	a	blue	(B)	band—different	file	formats	can
store	the	pixels	from	the	different	bands	in	different	orders.	There	are	three	ways
to	store	multispectral	pixel	values	in	a	raster	dataset:	band	interleaved	by	pixel
(BIP),	band	interleaved	by	line	(BIL),	and	band	sequential	(BSQ).

Table	5.1.	Common	raster	dataset	formats



BIP	stores	each	band	for	each	pixel	in	order.	The	red	pixel	value	of	the	first
pixel	is	stored,	followed	by	the	green	pixel	value	of	the	first	pixel,	followed	by
the	blue	value	of	the	first	pixel.	Then	the	values	of	the	second	pixel	are	stored,
and	so	on.	The	example	below	illustrates	BIP	for	a	three-banded	natural	color



(red,	green,	blue)	image	that	is	three	pixels	by	three	pixels:

BIL	orders	the	pixels	by	lines	(rows).	All	the	red	pixel	values	for	the	first
row	are	stored	first,	followed	by	the	green	values	of	the	first	row,	followed	by
the	blue	values	of	the	first	row.	The	same	3	×	3	three-banded	image	shown	above
would	be	stored	like	this	using	BIL:

BSQ	stores	the	pixels	by	band.	All	the	red	pixel	values	for	the	entire	image
are	stored	first,	followed	by	all	the	green	pixel	values	and	then	the	blue	pixel
values.	Here	is	our	3	×	3	RGB	image	as	BSQ:

BIP	is	typically	the	preferred	pixel	storage	for	natural	color	imagery	with
three	bands,	while	BSQ	is	typically	used	for	imagery	with	a	large	number	of
bands.

Image	Properties
In	addition	to	the	pixel	values,	many	other	properties	need	to	be	stored	within	a
raster	dataset.	These	include	general	information	about	the	pixel	depth	(8-bit
unsigned,	16-bit	unsigned,	32-bit	float,	etc.),	the	number	of	bands,
georeferencing	information,	and	image	statistics.



Georeferencing
Most	georectified	imagery	uses	a	simple	affine	transformation	to	define	the
relationship	between	pixels	(columns	and	rows)	and	a	ground	coordinate	system.
The	definition	of	the	projection	(and	data)	is	also	required.	There	are	various
ways	to	store	this	georeferencing	information.	Some	formats,	such	as	geoTIFF,
JP2,	IMG,	and	MrSID,	embed	the	georeferencing	information	directly	in	the
image	files.	For	example,	a	geoTIFF	file	is	a	type	of	TIF	that	includes	internal
georeferencing	information.	Other	formats,	such	as	TIFF	and	JPEG,	do	not	allow
for	the	internal	storage	of	georeferencing	information.	For	those	formats,
georeferencing	information	is	stored	externally	as	two	files	that	have	the	same
prefix	as	the	main	image	files.	The	.prj	file	stores	information	about	the
projection	of	the	rasters,	and	the	world	file	(.TFW	for	TIFF	or	.JPW	for	JPEG)
stores	the	affine	transformation	parameters	as	a	simple	list	of	six	values.	Table
5.2	provides	an	overview	of	georeferencing	information	storage	options	for	the
most	common	raster	dataset	formats.

The	world	files	can	represent	only	simple	affine	transforms	and	are	not
suitable	for	handling	more	elaborate	georeferencing	transforms	such	as	higher-
order	polynomial,	warp,	or	RPC	(Rational	Polynomial	Coefficient),	which	are
often	used	to	georeference	satellite	scenes.	Some	formats	such	as	geoTIFF	and
JP2	can	store	those	more	advanced	georeferencing	parameters	internally;
otherwise,	those	parameters	are	stored	in	external	.AUX	or	.AUX.XML	files
with	the	same	prefix	as	the	main	image	file.	RPCs	can	be	stored	in	a	geoTIFF
using	a	proposed	extension	to	GeoTIFF	1.0	that	is	supported	by	the	Geospatial
Data	Abstraction	Library	(GDAL)	see	geotiff.maptools.org/rpc_prop.html).
While	not	officially	part	of	the	GeoTIFF	standard,	this	enhancement	is	widely
supported.

Image	Statistics
For	some	types	of	imagery,	image	statistics	may	be	required	for	the	correct
rendering	of	the	imagery.	This	is	primarily	true	for	higher-bit-depth	imagery
such	as	satellite	imagery	and	elevation	data.	The	statistics	typically	computed	are
the	minimum,	maximum,	mean,	and	standard	deviation	(see	figure	5.2	for	an
illustration).	The	statistics	are	usually	computed	from	the	entire	image,	but
image-wide	statistics	can	be	misleading	if	they	contain	anomalous	areas	such	as
clouds.	The	statistics	are	therefore	generally	used	only	as	a	rough	guide	for
determining	image	display	and	image	enhancement	parameters.	Image	statistics
are	computed	by	image	processing	and	GIS	software	and	are	either	stored

http://geotiff.maptools.org/rpc_prop.html


internally	or	added	as	external	.AUX.XML	files	with	the	same	prefix	as	the	main
image	file.	Table	5.2	shows	how	statistics	are	stored	for	the	most	common	raster
data	formats.

Figure	5.2.	Image	statistics

Raster	Products
Raster	products	are	designed	to	simplify	adding	imagery	from	sensors	to	an
ArcGIS	Desktop	map.	Raster	products	are	defined	in	the	imagery’s	metadata	and
provide	a	selection	of	ways	to	dynamically	display	the	imagery	as	it	was
designed	to	be	displayed	by	the	vendor	that	produced	it.	Often—for	example—
multiple	individual	bands	must	be	combined	in	a	specific	(and	perhaps	not	so
obvious)	way	to	create	a	natural	looking	image.	Sometimes,	the	data	needs	to	be
enhanced	before	one	can	understand	certain	features	in	the	image.	Sometimes,
functions	such	as	pan	sharpening	are	required	to	view	an	image	optimally	in	a
certain	way.	Raster	products	allow	the	ArcGIS	Desktop	user	to	choose	to	display
the	imagery	with	a	selected	vendor-specified	optimization	applied;	the	system
then	applies	the	needed	processing	on	the	fly	to	the	portion	of	the	image	that	the
user	is	displaying.

For	example,	selecting	an	image	metadata	(IMD)	file	for	a	Landsat	scene
will	provide	options	for	opening	the	scene	as	a	multispectral,	panchromatic,	or
pan-sharpened	product,	and	the	associated	image	attributes	and	band
combinations	will	be	correctly	defined.	Similarly,	the	ingesting	of	the	parameters
into	a	mosaic	dataset	(used	to	manage	large	collections	of	imagery	as	discussed
below)	is	handled	by	raster	types	that	extract	the	required	parameters	and	set	up
suitable	processing.

Compression



Large,	high-resolution	image	files	can	have	billions	of	pixels.	Even	with	ever-
increasing	hard	drive	sizes,	these	vast	amounts	of	imagery	require	massive
amounts	of	hard	drive	space.	Image	compression	reduces	image	size	by	more
efficiently	encoding	the	raw	image	data.	Image	compression	is	highly	desirable,
because	it	significantly	reduces	the	size	of	imagery	and	the	costs	of	image
storage.	Compression	also	improves	imagery	access	speed,	because	less	data
needs	to	be	transferred	from	storage	to	the	CPU.	However,	if	the	decompression
is	CPU	intensive,	performance	can	be	degraded.	Table	5.2	shows	compression
options	for	the	most	common	types	of	raster	data	formats.

One	important	consideration	is	whether	to	use	lossy	compression	or	lossless
compression.	Lossy	compression	provides	much	smaller	file	sizes	than	lossless
compression,	but	the	tradeoff	is	some	reduction	in	image	information.	Lossy
compression	is	best	suited	for	image	display	(the	degradation	resulting	from
compression	often	isn’t	perceptible	to	the	human	eye).	But	because	lossy	formats
change	the	original	imagery’s	raw	pixel	values	and	remove	information,	this
compression	should	be	avoided	for	image	interpretation,	feature	extraction,	and
image	classification.	For	these	applications,	lossless	compression	should	be
used.

Lossless	compression	ensures	that	the	data	read	is	an	exact	match	to	the
original	data.	Lossless	methods	include	LZW,	PackBits,	Deflate,	PNG,	and	some
types	of	limited	error	raster	compression	(LERC)	and	JPEG	2000	compression.
Lossless	compression	has	significant	value	if	the	data	has	large	areas	with	the
same	values,	such	as	1-bit	scanned	maps	or	rasters	with	large	areas	of	NoData
(see	below	for	a	discussion	of	NoData).	For	continuous	tone	imagery,	lossless
compression	factors	are	typically	around	1.5	to	3×.

Lossy	compression	results	in	some	loss	of	image	data	but	results	in	higher
compression	factors	and,	as	a	result,	smaller	file	sizes	than	for	lossless
compressed	imagery.	There	are	two	primary	types	of	lossy	compression:	those
that	use	the	discrete	cosine	transform	and	those	that	employ	wavelet
compression.	Compression	algorithms	such	as	the	very	popular	JPEG
compression	use	the	discrete	cosine	transform.	Note	that	JPEG	is	both	a	file
format	and	a	method	of	compression	that	can	be	included	in	other	formats	such
as	a	TIFF	with	JPEG	compression.

JPEG	typically	achieves	compression	factors	of	about	5	to	10×	without
significant	artifacts.	When	artifacts	do	appear,	they	are	often	in	the	form	of	small
blocks	(8	×	8)	of	similar	pixels	with	a	sharp	transition	to	the	next	block.	JPEG
compression	is	typically	used	only	with	8-bit	imagery,	although	a	12-bit	version
of	JPEG	is	supported	by	ArcGIS.



The	other	primary	lossy	compression	method—wavelet	compression—uses
wavelet	transforms.	Wavelet	compression	algorithms	include	JPEG	2000,	ECW,
and	MrSID.	Wavelet	compressions	typically	achieve	higher	compression	factors
with	good	image	quality;	typically	30	percent	to	50	percent	better	compression
than	the	equivalent	JPEG	compression.	However,	wavelet	compression	often
introduces	artifacts	such	as	smearing	or	loss	of	texture.	Decompression	of
wavelet-compressed	imagery	can	also	be	CPU	intensive,	resulting	in	longer
access	times.	One	of	the	advantages	of	wavelet	compression	is	that	it	inherently
includes	lower-resolution	pyramids	of	the	imagery.

One	additional	disadvantage	of	lossy	compression	is	that	you	cannot	define
the	maximum	amount	that	a	pixel	may	vary	from	its	original	pixel	value;	lossy
compression	algorithms	provide	control	only	for	a	“quality	factor”	or
“compression	factor.”	Controlled	lossy	compression	is	a	form	of	lossy
compression	that	enables	the	maximum	difference	between	the	original	and
compressed	pixel	values	to	be	defined.	Its	primary	use	is	for	storing	elevation
data	or	high-dynamic-range	satellite	imagery,	which	is	often	stored	as	floating
point	or	16-bit	integer	data.	LERC	is	a	controlled	lossy	compression	in	which	the
maximum	error	can	be	defined.	Providing	larger	tolerances	can	result	in
significant	compression	factors	(although	not	as	high	as	for	other	types	of	lossy
compression).	Providing	the	LERC	algorithm	with	a	tolerance	of	zero	results	in
fully	lossless	compression.	One	of	the	advantages	of	LERC	is	its	very	high
compression	and	decompression	speeds,	making	it	a	valuable	compression
algorithm	for	raster	data	used	in	science	and	analytics.

Using	compression	on	imagery	nearly	always	results	in	the	imagery	being
internally	tiled	into	blocks.	The	exception	is	a	JPEG	file.	JPEG	files	use	lossy
JPEG	compression	but	do	not	include	tiling	or	pyramids.	For	this	reason,	it	is
typically	not	recommended	to	use	JPEG	files	for	larger	images.	JPEG	file
storage	is	inefficient	in	terms	of	access	speed.	To	gain	access	to	the	last	pixel	in	a
JPEG	file	requires	the	complete	file	to	be	read.	Note	that	using	JPEG
compressions	in	geoTIFF	files	circumvents	this	inefficiency	and	is
recommended;	in	this	case,	the	imagery	is	broken	internally	into	tiles	small
enough	to	be	read	efficiently.

NoData
Image	pixel	values	are	numeric,	but	sometimes	a	pixel	has	no	data	associated
with	it	because	that	data	is	missing	or	outside	the	extent	of	the	frame	of	the
imagery.	These	data-absent	areas	are	stored	with	a	NoData	pixel	value.	NoData



values	can	be	given	a	specific	display	color	or	made	transparent.	Figure	5.3
shows	an	image	of	Sonoma	County	where	the	blue	areas	(where	image	data	is
absent)	are	NoData	pixels.	As	is	evident	in	figure	5.3,	the	structure	of	a	raster
dataset	defines	that	it	must	be	a	rectangular	grid;	one	reason	that	NoData	needs
to	be	specially	defined.	NoData	is	an	important	element	of	the	raster	data	model
because	it	provides	a	mechanism	for	separating	invalid	pixels,	border	areas,	and
background	areas	from	valid	pixel	data.

Figure	5.3.	NoData	areas

It	is	important	to	recognize	the	difference	between	NoData	pixels	and	pixels
with	a	value	of	0.	To	illustrate	this	difference,	consider	a	digital	elevation	model
(DEM)	representing	elevations	ranging	from	150	feet	above	sea	level	to	30	feet
below	sea	level.	In	this	example,	the	pixel	value	0	is	a	valid	value	representing
areas	of	mean	sea	level.	In	this	case,	NoData	should	be	set	to	a	pixel	value
outside	the	−30	to	150	range;	−9999	would	be	a	good	choice.	Table	5.2	shows
the	NoData	options	for	the	most	commonly	used	raster	data	formats.

Areas	of	NoData	are	most	commonly	defined	by	a	specific	pixel	value.	For
NoData	defined	by	a	pixel	value,	0	or	255	is	often	used	for	8-bit	imagery.	For
32-bit	floating	point	imagery,	−9999	(for	elevation	data)	or	the	smallest	possible
value	is	often	used.

NoData	can	also	be	stored	as	part	of	a	raster	dataset	as	a	mask.	This	NoData
mask	can	be	either	an	internal	band	or	a	stand-alone	.msk	file.	In	ArcGIS,	when
working	with	mosaic	datasets	(discussed	later	in	this	chapter)	it	is	also	possible



to	define	NoData	areas	using	vector	geometries	(such	as	footprints).	This
approach	is	useful	when	working	with	large	collections	of	overlapping	images.

Pyramids
Image	pyramids	or	pyramid	layers	speed	up	image	display	by	displaying	lower-
resolution	versions	of	an	image	when	zoomed	out.	Pyramids	are	highly
recommended	to	enable	faster	image	display	and	are	typically	created	for	larger
images	(>3000	rows	or	columns).	Figure	5.4	illustrates	how	pyramids	reduce	the
number	of	pixels	as	display	scale	decreases.	When	zoomed	out	at	1:50,000,	the
reduced	resolution	image	has	only	1/16th	of	the	pixels	of	the	image	that	displays
at	1:12,500.	The	1:50,000	image	renders	much	faster	because	of	its	small
number	of	pixels	but,	because	they	are	zoomed	out	to	1:50,000,	the	viewer	will
not	be	aware	that	they	are	viewing	a	reduced	resolution	version	of	the	imagery.

Figure	5.4.	The	concept	of	image	pyramids

Pyramids	are	typically	created	with	a	factor	of	2×	or	3×	the	original	data.	For
example,	if	the	original	data	has	a	resolution	of	1	meter	and	a	factor	of	2×	is
used,	then	the	multiple	reduced	resolution	pyramid	layers	would	have	pixel	sizes
of	2	m,	4	m,	8	m,	16	m,	32	m,	64	m,	etc.

Pyramids	are	often	created	automatically	when	an	image	is	created,	but	they



can	also	be	created	manually	by	running	a	tool.	Depending	on	the	format	of	the
image	file,	pyramids	can	be	stored	internally	(this	is	the	case	for	most	wavelet-
compressed	files	as	well	as	some	flavors	of	TIFF)	or	as	external	.ovr	or	.rrd	files
with	the	same	prefix	as	the	full-resolution	image.	Table	5.2	includes	information
about	how	pyramids	are	implemented	in	the	most	common	raster	dataset
formats.

The	existence	of	pyramids	increases	the	size	of	an	image	file	because	both
the	image	and	the	associated	reduced	resolution	rasters	must	be	stored	on	disk.
For	uncompressed	imagery,	pyramids	with	a	factor	of	2×	would	increase	image
file	size	by	33	percent,	while	a	factor	of	3×	would	increase	the	size	by	15
percent.	For	compressed	imagery,	the	factors	are	typically	a	bit	larger	as	the
pyramids	do	not	compress	as	well.

When	creating	pyramids,	the	method	of	sampling	the	data	must	also	be
considered.	The	most	common	pyramid	resampling	methods	are	nearest-
neighbor	and	bilinear/average	interpolation.	Nearest	neighbor	takes	one	value
from	the	four	input	pixels	(assuming	a	2×	factor	is	used	to	create	pyramids).
Bilinear	interpolation	takes	the	weighted	average	of	the	nearest	four	values.
Nearest	neighbor	is	appropriate	for	thematic	rasters	(an	average	value	has	no
meaning	for	those	types	of	rasters);	bilinear	interpolation	should	be	used	for
continuous	data	such	as	remotely	sensed	imagery.	Note	that	using	nearest-
neighbor	resampling	to	create	pyramids	for	continuous	imagery	will	result	in
small-scale	views	of	the	images	looking	grainy.

It	should	be	noted	that	creating	or	rebuilding	pyramids	can	be	time	intensive,
especially	for	large	sets	of	high-resolution	imagery—such	as	a	countywide
mosaic	dataset	of	ortho-photography—because	the	whole	dataset	needs	to	be
processed.

Image	Display	for	Continuous	Raster
Data
Continuous	raster	data,	such	as	multispectral	orthophotography	and	satellite
imagery,	is	extremely	useful	for	land	management,	planning,	navigation,	and
general	reference.	High-resolution,	multispectral	imagery	is	now	ubiquitous	and
often	the	preferred	choice	for	a	base	image	in	GIS	projects.	By	understanding	the
concepts	of	image	display,	you	will	be	able	to	maximize	the	usability	of	imagery
in	your	projects.	This	section	discusses	two	fundamental	image	display	concepts:



histograms	and	image	contrast	stretches.

Histograms
Image	histograms	provide	a	graphic	representation	of	the	distribution	of	pixel
digital	number	(DN)	values	in	an	image.	This	graphic	summary	is	often	a	useful
tool	for	image	quality	control	and	for	detecting	image	problems	or	anomalies
that	might	not	necessarily	be	noticeable	otherwise.

Figure	5.5.	Relating	a	histogram	to	an	image

Figure	5.5	shows	the	near	infrared	band	histogram	for	an	area	of	Landsat	TM
imagery	over	the	Northern	California	coast.	The	values	on	the	x-axis	represent
the	DNs	of	the	pixels	in	the	image.	In	this	case,	pixel	values	range	from	0	to	255.
The	y-axis	values	represent	the	number	of	pixels	with	a	given	DN.

This	area	contains	a	section	of	ocean	and	a	section	of	land.	Since	water
absorbs	infrared	energy,	the	reflectance	of	the	water	in	the	ocean,	lake	and	rivers
is	minimal	and	the	ocean	pixels	are	very	dark	(low	DNs).	The	water	pixels	are
represented	in	the	histogram	in	the	spike	on	the	left,	at	the	low	end	of	the	DN
scale	(the	x-axis).	Since	terrestrial	cover	types	generally	reflect	infrared	energy,
the	land	pixels	are	much	brighter;	on	the	histogram,	these	land	pixels	are
represented	by	the	large	hump	in	the	middle	of	the	histogram.

Image	Stretch



Proper	image	display	is	critical	to	the	utility	of	imagery	for	human	interpretation.
Displaying	images	at	optimal	contrast	allows	the	viewer	to	resolve	features	of
interest	that	might	not	otherwise	be	visible	or	perceptible.	Often,	the	range	of
values	that	an	image	contains	is	not	correctly	stretched	across	the	range	that	the
computer	can	display,	and	as	a	result	the	image	may	appear	dark	or	have	little
contrast.	Modern	satellite	and	aerial	sensors	often	record	with	14	bits	of	dynamic
range	resulting	in	16,384	possible	values	for	each	band,	while	a	computer
monitor	can	display	only	256	possible	values	for	each	band,	and	our	eyes	can
perceive	fewer	than	256	shades	of	gray.	Applying	a	contrast	stretch	takes	full
advantage	of	the	range	of	values	the	computer	can	display	by	“stretching”	the
range	of	values	in	the	image	to	the	full	range	of	values	available	to	the	computer
display.	Contrast	stretching	is	performed	for	continuous	image	data	and	often
temporarily	for	display	purposes.	A	contrast	stretch	is	most	useful	when	applied
on	the	fly	to	the	pixels	visible	in	the	display	to	optimize	the	stretch	for	the
particular	area	that	an	image	analyst	is	viewing	at	a	given	time.	Figure	5.6
demonstrates	the	usefulness	of	the	contrast	stretch	in	optimizing	imagery	for
display	and	interpretation.	Note	how	the	histogram	on	the	unstretched	image	on
the	left	is	compacted	and	how	most	of	the	left	image’s	pixels	are	displayed	in	a
small	part	of	the	radiometric	resolution.	On	the	other	hand,	the	histogram	for	the
stretched	image	on	the	right	takes	advantage	of	a	much	broader	range	of	pixel
values	and,	as	a	result	has	much	higher	contrast.



Figure	5.6.	The	effect	of	contrast	stretch	on	image	appearance	(esriurl.com/IG56)

Many	types	of	contrast	stretches	are	available,	and	each	stretches	the
histogram	in	a	different	way.	A	minimum–maximum	stretch	uses	the	entire	range
of	image	values	(i.e.,	the	dynamic	range)	and	stretches	them	across	the	full
radiometric	resolution	range	of	grayscale	values	that	the	software	can	display	(0
to	255	for	8-bit	imagery).	If	an	image	has	a	value	range	of	from	21	to	210,	and	a
minimum–maximum	stretch	is	applied,	an	image	pixel	with	a	value	of	21	will
become	0	in	the	stretched	image	and	an	image	pixel	with	a	value	of	210	will
become	255	in	the	stretched	image;	everything	between	21	and	210	in	the	image
will	stretch	accordingly	in	a	linear	fashion.	The	minimum–maximum	stretch	is
one	of	the	most	commonly	used	contrast	stretches	and	is	a	good	utilitarian
stretch	that	will	improve	image	contrast.

Standard	deviation	and	percent	clip	stretches	automatically	set	the	pixels
with	very	low	and	very	high	pixel	values	in	an	8-bit	image	to	0	and	255
respectively,	stretching	the	pixel	values	in	between.	The	assumption	for	these
types	of	stretches	is	that	the	DN	values	are	normally	distributed	and	that
trimming	off	the	relatively	small	number	of	pixels	with	extreme	values	will

http://esriurl.com/IG56


increase	image	contrast	without	detracting	from	the	visual	information
displayed.	Figure	5.7	illustrates	the	concept	of	a	2-σ	standard	deviation	stretch.
For	this	stretch,	extreme	pixel	values	are	determined	to	be	those	further	than	two
standard	deviations	from	the	mean	pixel	value	of	the	input	image	(about	5
percent	of	input	image	pixels).	These	roughly	5	percent	of	input	image	pixels
occupy	the	red	areas	to	the	left	and	right	of	the	vertical	2σ	lines	in	figure	5.7.
Pixels	in	the	stretched	image	will	be	set	to	0	in	the	left	red	area	and	255	in	the
right	red	area.	The	pixels	between	the	2σ	lines—the	pixels	within	two	standard
deviations	of	the	mean—will	be	stretched	linearly	between	0	and	255.

Figure	5.7.	Standard	deviation	stretch	(esriurl.com/IG57)

Image	stretches	are	applied	by	the	use	of	a	lookup	table.	The	lookup	table
contains	the	“from”	and	“to”	values	for	the	stretch.	The	“from”	values	include
every	possible	image	pixel	value,	while	the	“to”	values	represent	the
corresponding	grayscale	value	(from	0	to	255)	to	be	displayed	for	each	pixel
value	in	the	software	display.

Gamma
In	conjunction	with	certain	types	of	contrast	stretches,	you	can	also	adjust	an
image’s	gamma	value	to	further	enhance	the	image	for	display.	The	eye	responds
to	stimuli	logarithmically.	However,	remote	sensors	respond	to	light	linearly.

The	gamma	function	is	a	logarithmic	function	that	is	used	to	stretch	the
image	so	that	the	eye	sees	gray	level	distinctions	more	naturally.	If	gamma	is	not
applied	to	imagery	from	digital	sensors,	the	images	often	appear	too	dark	and

http://esriurl.com/IG57


bright	features	appear	bleached.	A	gamma	function	is	often	performed	when
transforming	imagery	from	a	higher-bit	source	to	8	bits	for	visual	display.

Adjusting	the	gamma	changes	a	raster	dataset’s	overall	brightness	by	shifting
the	mid-level	gray	values.	The	gamma	coefficient	controls	the	degree	of
brightening	or	darkening.	Higher	gamma	coefficients	will	result	in	the	middle
tones	of	an	image	appearing	lighter,	while	lower	gamma	coefficients	will	result
in	a	darker-toned	image.	Gamma	does	not	affect	the	extreme	values	of	the
histogram	(white	or	black	areas).	As	with	a	linear	stretch,	gamma	can	also	be
applied	at	different	levels	to	different	bands,	allowing	you	to	adjust	the	ratios	of
red,	green,	and	blue	in	the	image	display.

It	should	be	noted	that	automated	algorithms	often	expect	a	linear	response
from	a	sensor	or	simply	work	better	when	the	image	is	still	linear.	Therefore,
gamma	correction	should	not	be	arbitrarily	applied	to	imagery	that	will	be	used
for	automated	classification	or	other	types	of	analysis.	As	a	general	rule	gamma
should	be	applied	if	the	output	is	to	be	viewed,	but	used	with	caution	on	imagery
to	be	used	for	analysis.

In	ArcGIS,	images	are	enhanced	for	optimum	display	by	setting	appropriate
stretch	and	gamma	values.	These	enhancements	can	be	saved	as	part	of	a	new
image	(as	is	the	case	for	cached	basemaps)	or	defined	as	properties	of	a	layer	for
display	purposes.	Stretch	and	gamma	values	can	also	be	set	on	the	fly	(with	each
change	of	map	extent)	in	dynamic	range	adjustment	mode.	In	this	mode,	the
stretch	and	gamma	values	are	computed	based	on	the	pixel	values	of	the	current
display	extent.	This	ensures	that	the	display	is	optimized	for	both	dark	and	light
areas	in	the	image	and	will	vary	depending	on	the	current	display	location	and
scale.

Image	Enhancement	and	Filtering	for
Continuous	Raster	Data
Typically,	imagery	is	provided	to	the	GIS	analyst	after	the	image	provider	has
already	performed	a	long	series	of	processing	steps	that	optimize	the	imagery	for
general	use.	Often,	not	much	needs	to	be	done	by	the	GIS	analyst	to	use	the	data
beyond	setting	up	the	appropriate	display	stretch	(see	above	for	a	discussion	of
image	stretch).	However,	there	are	times	when	additional	image	enhancement
can	highlight	or	“pull	out”	features	of	interest	that	aren’t	human-perceptible	in
the	unenhanced	version	of	the	image.	The	most	common	method	of	image
enhancement	is	to	apply	raster	filters,	which	can	be	broken	down	broadly	into



two	groups:	high-pass	filters	and	low-pass	filters.

How	Image	Filters	Work
Image	filters	work	by	assigning	a	new	value	to	each	pixel	in	an	image	based	on
that	pixel’s	value	and	the	values	of	neighboring	pixels.	During	filtering,	each
pixel	in	the	image	is	considered	one	at	a	time;	the	“neighborhood”	(the	blue	area
in	figure	5.8)	acts	as	a	“moving	window,”	stepping	through	the	image	pixel	by
pixel	giving	each	pixel	in	the	image	a	“turn”	as	the	center	processing	cell.

Figure	5.8.	The	concept	of	the	neighborhood	or	kernel	in	image	enhancement	(esriurl.com/IG58)

Exactly	which	neighbors	to	consider	is	defined	by	the	shape	and	the
dimensions	of	the	neighborhood.	Figure	5.8	shows	a	three	cell	by	three	cell
rectangular	neighborhood.	Other	commonly	used	neighborhood	shapes	are	a
circle,	an	annulus,	and	a	wedge.	Many	functions	can	be	applied	to	the
neighborhood.	In	figure	5.9,	the	neighborhood	function	is	a	simple	summation:
the	output	value	represents	the	sum	of	all	neighbor	cell	values.	Other	commonly
used	neighborhood	functions	include	mean,	majority,	maximum,	minority,
median,	variety,	standard	deviation,	and	range.

http://esriurl.com/IG58


Figure	5.9.	Neighborhood	sum	with	equally	weighted	cells

In	addition	to	setting	the	shape	and	dimensions	of	the	neighborhood	and	the
function	that	is	assigned	to	the	processing	cell,	most	image	filtering	algorithms
provide	the	ability	to	configure	the	weights	that	each	neighbor	has	in	the
function	being	applied	to	the	neighborhood	as	the	“moving	window”	shifts
across	the	image.	The	default	is	that	all	neighborhood	pixels	receive	a	weight	of
1	and	are	equally	weighted	in	the	function	applied	(as	in	figure	5.9).	Figure	5.10
illustrates	a	sum	filter	using	the	same	example	as	above,	but	this	time	applying
neighborhood	cell	weights.

Figure	5.10.	Neighborhood	sum	with	weighted	cells.



Smoothing	Filters	(Low-Pass	Filters)
Low-pass	filters	are	useful	for	removing	anomalous	(“noisy”)	pixels	from	an
image	and	creating	smoother,	often	more	visually	appealing	images.	If	a	pixel	is
slightly	different	from	its	neighbors	in	an	image,	a	low-pass	filter	will	decrease
this	difference	and	make	the	pixel	in	the	output	image	appear	more	similar	to	its
neighbors.	In	doing	so,	a	low-pass	filter	reduces	local	variation	and	extreme
values	in	an	image.	Low-pass	filters	typically	apply	a	mean	function	to	the
neighborhood,	with	all	cells	in	the	neighborhood	receiving	equal	weight.	Figure
5.11	includes	an	example	of	a	Landsat	8	panchromatic	band	with	a	low-pass
filter	applied.	Notice	the	smoothed	appearance	of	the	filtered	image.

Edge	Filters	(High-Pass	Filters)
High-pass	filters	are	useful	for	identifying	edges	in	an	image	or	sharpening	an
image.	These	types	of	filters	enhance	fine-scale,	local	details	in	an	image	and
accentuate	edges,	such	as	the	boundary	between	a	forest	and	a	meadow.	If	a
pixel	is	slightly	different	from	its	neighbors,	a	high-pass	filter	will	accentuate
this	difference	in	the	output	by	adding	contrast.

High-pass	filters	use	the	concept	of	the	neighborhood	and	the	moving
window	discussed	above.	Typically,	high-pass	filters	use	a	neighborhood	sum	as
their	function	with	weights	applied	to	the	neighborhood.	Figure	5.10	illustrates	a
high-pass	filter.	Figure	5.11	includes	an	example	of	a	Landsat	8	panchromatic
band	with	a	high-pass	filter	applied.	Note	the	sharpened	appearance	of	the
filtered	image.

High	pass	filters	can	be	implemented	in	ArcGIS	using	convolution	filters.	A
typical	example	is	the	sharpening	filter	that	can	be	used	to	improve	the	crispness
of	an	image.	This	uses	the	following	weights:

The	sum	of	the	weights	is	1	so	that,	on	average,	the	image	does	not	become
lighter	or	darker,	but	if	a	pixel	is	different	from	its	closest	neighbors	the
difference	will	be	enhanced.



In	this	example,	the	center	pixel	will	become

Figure	5.11.	Low-pass	and	high-pass	filters	applied	to	Landsat	8	data	(esriurl.com/IG511)

Image	Mosaics	and	the	Mosaic
Dataset

http://esriurl.com/IG511


Overview	of	Image	Mosaics
Aerial	photography	and	satellite	imagery	are	collected	in	scenes.	The	scenes	are
then	often	combined	into	large,	seamless	image	mosaics	for	use	in	GIS	software
as	photo	base	images	and	for	analysis.	In	some	workflows,	these	mosaics	are
then	cut	up	into	smaller	rectangular	tiles	for	simpler	distribution.	Such	tiles	may
have	coincident	edges	or	overlapping	pixels.	When	working	across	large	areas
it’s	advantageous	to	work	with	a	single	large	image	versus	many	individual
scenes	or	tiles.	It	is	therefore	necessary	to	merge	the	scenes	or	tiles	into	a	single
physical	image	or	a	single	virtual	image.	The	creation	of	a	single	physical	image
is	referred	to	as	creating	a	mosaic	and	results	in	duplication	of	the	scene	data	in
the	new	mosaicked	image	file.	Within	ArcGIS,	there	is	also	the	ability	to	create	a
mosaic	dataset	that	combines	the	multiple	inputs	into	a	virtual	image,	but	does
not	require	additional	storage	and	provides	greater	flexibility.

Figure	5.12	illustrates	the	concept	of	an	image	mosaic.	Chapter	12	provides
more	in-depth	information	about	creating	mosaic	datasets.

Figure	5.12.	The	concept	of	an	image	mosaic

Mosaic	Datasets	—	an	Introduction
Until	recently,	image	mosaics	were	typically	created	by	merging	the	pixels	of	all
the	input	images	together	and	creating	a	new	image	containing	pixels	from	all
the	inputs.	However,	this	process	is	inefficient	in	terms	of	storage,	because	each
pixel	may	be	stored	twice	on	the	hard	drive;	once	as	a	pixel	in	the	input	and	once
as	a	pixel	in	the	mosaic.	Moreover,	in	the	past	multiple	mosaics	were	often
created	with	different	stretches	or	derivatives	(e.g.,	NDVI),	further	multiplying



storage	requirements	for	a	collection	of	mosaicked	images.
Esri	developed	the	mosaic	dataset	and	associated	functionality	to	simplify

the	creation,	management,	and	maintenance	of	mosaics	and	to	enable
distribution	of	large	collections	of	imagery	as	web	services.	The	mosaic	dataset
does	not	store	pixels	of	imagery.	Instead,	it	is	an	information	model	that	catalogs
imagery	and	performs	on-the-fly	processing.	At	its	core,	the	mosaic	dataset	is
simply	a	catalog	or	index	of	metadata	that	points	to	the	original	imagery,	along
with	a	framework	for	processing	and	displaying	the	imagery	on	the	fly.	The
mosaic	dataset	does	not	result	in	the	creation	of	new	image	files;	instead,	it
dynamically	mosaics	the	pixels	in	the	original	image	scenes	or	tiles	without
altering	or	converting	the	original	imagery.	As	a	result,	mosaic	datasets	require	a
small	fraction	of	the	space	that	traditional	mosaics	require	and	can	scale	to
massive	collections	of	imagery.

Components	of	a	Mosaic	Dataset
Mosaic	datasets	are	defined	in	a	geodatabase	and	reference	the	original	imagery.
Mosaic	datasets	have	the	following	components:

A	catalog	of	metadata	about	each	image	(each	of	the	individual	scenes	or
tiles	of	imagery)	as	well	as	the	footprint	of	each	image.
A	feature	class	that	defines	the	boundary	of	the	entire	mosaic	dataset.
Mosaic	dataset	properties	that	include	mosaic	methods	that	define	rules	for
the	required	order	of	overlapping	images	as	well	as	a	range	of	other
properties.

A	mosaic	dataset	is	a	well-defined	geodatabase	structure	optimal	for	working
with	large	collections	of	imagery	and	rasters.	Mosaic	datasets	are	stored	as	file
geodatabases,	or	use	an	enterprise	geodatabase	such	as	Microsoft	SQL,	Oracle,
or	PostgreSQL.	The	imagery	and	raster	data	that	composes	a	mosaic	dataset	is
not	stored	in	the	database	but	instead	is	referenced	by	the	database	and	stored
across	a	file	system	or	in	the	cloud.	A	single	mosaic	dataset	can	reference
millions	of	images	and	make	them	appear	as	single	virtual	dataset	or	enable
quick	access	to	any	individual	or	group	of	referenced	images.

Once	a	mosaic	dataset	has	been	created,	image	references	(again,	not	the
images	themselves,	but	references	to	where	the	images	reside	on	the	file	system)
can	be	added	to	it	or	removed	from	it.	Mosaic	datasets	support	spatially
noncontiguous	inputs	to	easily	model	images	along	linear	features	such	as	roads.
Through	the	catalog,	mosaic	datasets	track	the	spatial,	temporal,	spectral,	and
radiometric	details	of	their	component	images.	As	a	result,	a	single	mosaic



dataset	can	contain	various	types	of	overlapping	imagery	(even	images	with
different	spatial	resolutions	and	projections).	What	the	end	user	of	the	image
mosaic	sees	is	controlled	by	the	mosaic	methods	and	mosaic	operators,	which
are	discussed	in	the	following	section.

Dynamic	Mosaicking	and	Mosaic	Methods
There	are	often	areas	where	mosaic	dataset	input	images	overlap	with	their
neighbors.	“Dynamic	mosaicking”	is	the	ability	to	define	or	refine	the	order	in
which	images	should	be	displayed	or	blended	in	a	mosaic	dataset.	The	user	or
application	using	a	mosaic	dataset	can	use	a	number	of	mosaic	methods	to
handle	these	overlaps.	Mosaic	methods	essentially	control	the	drawing	order	of
the	input	images	and	are	applied	dynamically	as	the	user	pans	and	zooms
around.	For	example,	the	“closest	to	center”	method	resolves	overlaps	by
displaying	topmost	the	image	that	is	closest	to	the	user’s	view	center	at	any
given	time.	Another	mosaic	method,	“by	attribute,”	sorts	the	input	images	by	an
attribute	and	resolves	overlaps	this	way.	For	example,	the	by	attribute	method
could	use	an	acquisition	date	attribute	in	the	mosaic	dataset	to	resolve	overlaps
by	displaying	the	most	recently	collected	scene	on	top.	The	“seamline”	mosaic
method	can	be	used	to	create	seamless	mosaics,	where	the	images	are	blended
along	predefined	seamlines.	Since	the	mosaic	dataset’s	catalog	contains	the
metadata	and	extents	of	its	component	images,	it	is	simple	to	define	query	filters
in	the	form	of	“where	clauses”	to	display	or	work	with	a	subset	of	the	imagery
referenced	by	the	mosaic	dataset.	Query	filters	are	easily	applied	in	ArcGIS
Desktop	by	setting	definition	queries	on	the	footprints	layer	(catalog)	of	a
mosaic	dataset.	The	combination	of	mosaic	methods	and	query	filters	allows	the
user	to	control	the	pixels	that	are	actually	displayed	in	areas	of	overlapping
images.

Mosaic	Operators	for	Mosaic	Datasets
Working	side	by	side	with	mosaic	methods	and	query	filters,	which	control	the
drawing	order	of	input	images	(controlling	which	image	is	on	top	of	another),
mosaic	operators	control	how	overlapping	pixels	are	displayed.	Typically,	the
“first”	mosaic	operator	is	used,	which	results	in	an	output	pixel	value	equal	to
the	topmost	overlapping	image’s	pixel	value.	Other	operators	include	“mean,”
which	results	in	the	average	of	the	overlapping	pixel	values,	or	“blend,”	which
gives	a	weighted	average	of	the	overlapping	pixel	values	with	the	weights



dependent	on	the	distance	to	the	image	edge.	Figure	5.13	illustrates	the	mean
mosaic	operator.

Figure	5.13.	Mean	mosaic	operator

Mosaic	Dataset	Raster	Functions
Esri	raster	functions	allow	for	the	on-the-fly	rendering	of	derivative	image
products	from	a	mosaic	dataset,	transforming	the	pixels	from	data	values	stored
on	disk	to	values	required	by	the	end	user	or	application.	For	example,	by
applying	a	slope	raster	function	to	a	mosaic	dataset	of	DEM	images,	the	mosaic
dataset	will	appear	as	a	slope	image	instead	of	a	digital	elevation	model	(see
figure	5.14).	Changing	the	slope	raster	function	to	an	aspect	function	will	change
the	appearance	to	an	aspect	image.	Removing	the	raster	function	altogether	will
revert	the	mosaic	dataset’s	appearance	to	a	DEM.	Multiple	functions	can	be
associated	with	a	single	mosaic	dataset	by	defining	processing	templates.	In	this
way,	a	single	mosaic	dataset	can	have	multiple	representations,	and	the	user	can
quickly	select	the	most	appropriate	with	the	required	processing	applied	on	the
fly	as	the	data	is	accessed,	while	the	only	pixels	stored	on	disk	are	those	of	the
original	images.



Figure	5.14.	Mosaic	dataset	functions

Mosaic	datasets	are	changing	the	way	imagery	is	accessed	and	processed	by
enabling	the	source	image	data	to	be	stored	once	and	having	multiple	derivative
products	generated	on	demand.	The	processing	speed	is	typically	much	higher
and	the	storage	requirements	much	lower	than	the	traditional	approach	of
passing	imagery	through	multiple	processing	steps	with	multiple	inputs	and
outputs.

Mosaic	datasets	are	also	used	for	publishing	collections	of	images	and	rasters
as	web	services,	which	provide	access	to	imagery	across	the	Internet.	The
following	section	introduces	web	services;	a	more	detailed	discussion	of	web
services	and	mosaic	datasets	is	presented	in	chapter	13.

Accessing	Imagery	as	Web	Services



Introduction
This	section	provides	an	overview	of	using	and	accessing	imagery	that	exists	as
Esri	web	services	(for	more	detail,	see	chapter	13).	Web	services	enable	data	to
be	stored	on	servers	and	be	quickly	accessible	to	anyone	with	access	to	those
servers	over	the	web.	There	are	many	types	of	web	services	for	imagery	outside
the	scope	of	our	discussion—this	chapter	and	this	book	focus	on	Esri’s
technology	for	serving	and	consuming	imagery	over	the	Internet.

Organizations	collect	and	maintain	increasingly	large	volumes	of	imagery
and	raster	data.	These	data	come	from	a	wide	range	of	sources,	from	sensors	on
platforms	ranging	from	satellites	to	unmanned	aerial	systems,	to	scanned	maps
and	scanned	film-based	aerial	photography.	In	many	cases,	an	organization’s
raster	data	may	be	the	output	from	an	image	processing	or	analytical	workflow.
These	imagery	and	raster	datasets	are	important	to	organizations	and	are	used	to
make	important	decisions.	Traditionally,	there	have	been	challenges	in	managing
such	data	and	making	it	accessible	to	a	wide	range	of	users	for	various
applications.	Those	challenges	have	been	exacerbated	by	the	ever-increasing
number	and	size	of	those	datasets.

The	massive	volumes	of	data	mean	that	it	is	not	practical	to	move	the	data	to
the	end	user’s	application	for	processing.	Instead,	it	is	advantageous	to	serve	the
imagery	as	web	services	that	simultaneously	provide	access	to	the	imagery	and
derivative	image	products	that	are	processed	on	the	fly	by	the	server.

Web	services	for	imagery	can	be	used	for	visual	display	and	for	analysis	by
desktop	applications	such	as	ArcMap	and	ArcGIS	Pro,	by	web	maps	displayed
in	a	web	browser,	and	by	applications	running	on	computers,	tablets,	or
smartphones	(see	figure	5.15).



Figure	5.15.	ArcGIS	web	services	for	imagery

Types	of	Web	Services	for	Raster	Data
Two	different	types	of	web	services	provide	access	to	raster	data	and	imagery,
each	with	advantages	and	disadvantages.	The	two	types,	dynamic	image	services
and	tile	cache	services,	are	discussed	below.

Dynamic	Image	Services
Dynamic	image	services	provide	full	access	to	imagery.	Requests	are	made	by
applications	to	servers	that	quickly	gain	access	to	and	process	the	imagery	(if
requested	by	the	user),	and	deliver	the	imagery	and	metadata	to	the	end	user’s
application.	Image	services	enable	applications	and	their	users	to	gain	access	to
individual	images	or	massive	collections	of	imagery,	with	the	server	returning
unprocessed	raster	data	or	applying	processes	such	as	image	enhancement,
vegetation	index	computation,	or	image	classification.	Imagery	requests	to	the
server	are	synchronous,	with	the	imagery	being	returned	by	the	server	nearly
instantaneously.	ArcGIS	provides	a	robust	set	of	desktop	tools	and	a	rich	web
service	protocol	that	enables	the	end	user	or	application	to	define	the	processing
to	be	applied	on	the	server.	Dynamic	image	services	provide	full	access	to	image
data,	making	them	useful	for	analysis	and	scientific	applications.	Client
applications	can	even	export	or	download	pixels	from	the	service,	storing	tiles	or
portions	of	the	imagery	locally.



Tile	Cache	Services
Tile	cache	services	provide	background	imagery	for	many	applications.	Tile
cache	services	deliver	highly	compressed,	preprocessed	imagery	from	servers	to
applications	and	end	users.	Before	serving	as	a	tile	cache,	the	imagery	must	first
be	processed	and	transformed	into	large	collections	of	small	tiles.	Tile	cache
services	are	the	most	efficient	way	to	serve	background	imagery	(such	as	image
basemaps),	because	they	put	minimal	load	on	servers	and	maximize	the	use	of
caching	on	both	the	server	and	the	client.	Tile	cache	services	are	designed	for
providing	background	imagery,	and	should	not	be	used	for	analysis	and	scientific
applications.

Geoprocessing	Services
Though	they	don’t	typically	provide	access	to	raster	data,	geoprocessing	services
are	a	third	type	of	service	worth	noting	here.	Geoprocessing	services	provide	a
client	application	or	end	user	access	to	a	task	running	on	a	GIS	server	that	can
process	data	submitted	by	the	client.	Geoprocessing	services	take	location-based
input	from	a	client	application,	apply	a	geoprocessing	workflow	to	the	user-
provided	information,	and	return	a	result	or	some	data	to	the	end	user.	An
example	of	a	geoprocessing	service:	a	web	map	user	clicks	on	a	point	on	a	web
map	(submitting	the	point	to	a	geoprocessing	service)	and	the	geoprocessing
service	calculates	the	watershed	that	the	point	falls	within	and	returns	to	the	user
a	vector	polygon	of	the	watershed’s	boundary.

Examples	of	Publicly	Available	Web	Services	for	Raster
Data
ArcGIS	Online	(www.arcgis.com)	provides	access	to	large	collections	of	web
services	through	its	Living	Atlas.	The	Living	Atlas	includes	world	basemap
imagery,	providing	global	1-meter	or	better	resolution	imagery.	Other	global
datasets	include	multispectral	and	multitemporal	Landsat	8	image	services,	as
well	as	global	DEMs.	Subscriptions	to	imagery	directly	provided	by	satellite	and
aerial	imagery	providers	are	also	available.	Access	to	these	online	services
enables	organizations	to	immediately	add	imagery	to	their	GIS	maps	and
applications.

Many	public	agencies	have	made	their	imagery	available	as	services.	For
example,	the	US	Department	of	Agriculture’s	National	Agricultural	Imagery
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Program	provides	image	services	of	1-meter	resolution	imagery	for	the	entire
country	for	many	dates	of	collection.

Using	Image	Services	in	ArcGIS	Desktop
A	user	of	ArcMap	can	gain	access	to	web	services	in	one	of	two	ways:	by	adding
services	from	ArcGIS	Online	or	by	setting	up	a	connection	to	an	ArcGIS	server
directly.	For	the	first	method,	click	the	Add	Data	icon	and	select	“Add	Data	from
ArcGIS	Online”	(see	figure	5.16).	Signing	in	provides	access	to	both	public
services	and	those	available	to	you	through	your	organization;	not	signing	in	will
provide	access	only	to	public	services.	Once	logged	in,	you	can	browse	ArcGIS
Online	or	use	search	terms	to	find	imagery,	and	then	load	the	image	service	or
tile	cache	service	directly	into	ArcMap.	To	connect	directly	to	an	ArcGIS	server
from	ArcMap	to	gain	access	to	web	services,	click	Add	Data	and	change	“Look
In”	to	“GIS	Servers.”	Select	“Add	ArcGIS	Server”	from	the	list	and	go	through
the	wizard	to	connect	to	the	server.	You	will	need	the	URL	of	the	ArcGIS	server.
In	ArcGIS	Pro,	adding	web	services	is	done	by	clicking	the	Add	Data	icon	and
navigating	to	the	Portal	icon	on	the	left.	Searching	with	“All	Portal”	selected
returns	a	list	of	public	services	from	ArcGIS	Online	that	fit	your	search	term.	If
you	have	configured	private	portals	in	ArcGIS	Pro,	services	on	those	portals	that
fit	your	search	will	be	listed	as	well.



Figure	5.16.	Accessing	image	services	from	ArcGIS	Online	using	ArcGIS	Desktop
(esriurl.com/IG516)

Once	you’ve	loaded	a	raster	web	service	into	ArcMap	or	ArcGIS	Pro,	you
can	pan	around,	zoom	in	and	out,	and	visualize	the	service	in	the	context	of	other
raster	and	vector	data.	If	the	service	is	a	tile	cache	service	(see	“Types	of	Web
Services	for	Raster	Data”	above),	then	access	to	the	imagery	is	limited	to
viewing	the	imagery	in	its	preconfigured	appearance.	You	cannot,	for	example,
apply	custom	stretches,	gain	access	to	pixel	values,	download	portions	of	the
imagery,	or	use	the	data	for	processing	or	analysis.	However,	if	you’re	using	a
dynamic	image	service,	then	you	have	full	access	to	the	raster	data	as	if	it	were
stored	locally.	For	example,	you	can	use	the	“Identify”	tool	to	query	pixel
values,	apply	a	custom	stretch	to	the	imagery,	use	the	service	as	an	input	to	a
geoprocessing	or	spatial	analyst	tool,	or	save	a	portion	of	the	service’s	raster	data
to	your	local	computer	(if	export	capabilities	are	enabled	on	the	service).

One	of	the	most	powerful	aspects	of	image	services	is	that	they	can	contain
thousands	or	millions	or	overlapping	images,	but	since	the	information	about
each	is	contained	in	a	searchable	catalog	(accessible	by	right-clicking	the	service
in	ArcGIS	Desktop	and	selecting	“Open	Attribute	Table”),	you	have	the	ability
to	control	which	images	display	on	top	by	adding	filters,	also	known	as
definition	queries,	to	the	mosaic	dataset’s	attribute	table.	Let’s	use	the	example

http://esriurl.com/IG516


of	an	Esri-hosted	image	service	of	Landsat	8	pan-sharpened	imagery.	This
mosaic	dataset	comprises	hundreds	of	thousands	of	Landsat	scenes—ArcGIS
Desktop	will	display	only	the	ones	in	its	view	extent.	If	you	load	the	mosaic
dataset	and	use	it,	the	service’s	default	rules	will	decide	which	scenes	to	display
on	top.	However,	you	can	reorder	the	imagery	by	changing	the	mosaic	method	or
set	a	specific	query	by	opening	the	image	service’s	attribute	table	and	applying	a
definition	query.	Figure	5.17	shows	two	such	definition	queries	(applied	in
ArcGIS	Pro)	to	the	Landsat	8	service.	The	query	on	the	left	side	of	the	figure
filters	the	scenes	displayed	by	the	image	service	to	winter	scenes	with	less	than
30	percent	cloud	cover,	while	the	query	on	the	right	side	limits	scenes	displayed
by	the	image	service	to	summer	scenes	with	less	than	30	percent	cloud	cover.

Figure	5.17.	Using	attribute	queries	to	control	the	image	service	display	in	ArcGIS	Desktop
(esriurl.com/IG517)

Exporting	and	Downloading	Imagery	from

http://esriurl.com/IG517


Dynamic	Image	Services
In	most	cases,	images	from	image	services	can	be	used	directly	without	the	need
to	make	local	copies	of	the	data.	If	required	however,	users	can	export	or
download	sections	of	raster	data	from	image	services	using	ArcGIS	Desktop,
creating	a	local	copy	of	a	subset	of	the	service’s	original	pixel	data	and	metadata.
In	ArcGIS	Desktop	a	user	can	export	raster	data	from	services	in	a	number	of
ways,	such	as	by	using	the	Copy	Raster	tool,	or	by	right-clicking	on	the	service
and	selecting	“Export	Data”	(see	figure	5.18)	or	by	using	the	“Clip
Management”	tool	to	clip	the	image	service	to	a	vector	area	of	interest	and	save
it	locally.

In	ArcGIS	Desktop,	the	intact	source	images	that	compose	an	image	service
can	be	downloaded	directly	to	the	file	system	using	the	Download	Mosaic
Dataset	Rasters	tool.	Downloading	source	files	can	also	be	done	manually	by
selecting	source	rasters	in	the	image	service’s	attribute	table,	and	then	right-
clicking	the	image	service	and	selecting	“Data”	and	then	“Download	Selected
Rasters.”	During	the	download,	the	server	extracts	the	original	pixel	values	and
metadata	and	returns	these	without	any	resampling.	Optionally,	the	server	can
also	clip	the	pixels	to	a	specified	extent.



Figure	5.18.	Exporting	imagery	from	a	service

Since	raster	data	exported	from	an	image	service	is	bandwidth	intensive,	it	is
usually	recommended	to	limit	image	service	downloads	to	relatively	small	areas,
especially	for	high-resolution	imagery.	The	publisher	of	an	image	service	may
restrict	the	maximum	size	of	the	image	that	may	be	exported	or	the	maximum
number	of	images	downloaded.	They	may	also	disable	download	functionality
entirely.

Using	Web	Services	in	ArcGIS	Web	Maps
ArcGIS	Online	web	maps	provide	a	browser-based	mapping	environment	that	is
easy	to	use,	even	for	the	non-GIS	user,	and	useful	for	creating	maps	to	share
online,	provide	an	interactive	display	of	geospatial	information,	or	tell	a	story.
Web	services	are	easily	added	to	an	ArcGIS	Online	web	map.	Figure	5.19	shows
an	ArcGIS	Online	web	map	with	an	image	service	of	high-resolution
orthophotography.

To	add	image	services	to	an	ArcGIS	web	map,	go	to	http://arcgis.com,	create
a	web	map,	and	click	the	Add	icon.	From	there,	you	can	use	keywords	to	search
from	among	the	thousands	of	image	services	available	in	ArcGIS	Online.	If	you
log	in	to	your	organization,	you	will	also	have	access	to	your	organization’s	web
services	for	use	in	your	web	map.

http://arcgis.com


Figure	5.19.	Using	image	services	in	ArcGIS	Online	web	maps	(esriurl.com/IG519)

Using	Raster	Web	Services	in	Story	Maps
Using	web	services	in	Esri	story	maps	is	a	powerful	way	to	provide	nontechnical
end	users	with	access	to	imagery	and	raster	data.	Story	maps	are	built	from	a	rich
set	of	customizable	templates,	and	can	also	be	extended	with	custom	code.
Figure	5.20	shows	an	example	of	a	story	map	(http://sonomavegmap.org/1942)
that	allows	the	viewer	to	swipe	a	historical	image	service	(1942	air	photos)	on
top	of	a	modern	image	service	(2011	air	photos).	The	comparison	of	the	two
image	services	provides	a	visual	illustration	of	land-use	change	between	the
1940s	and	the	present	day.	The	story	map	also	includes	a	series	of	vignettes,	so
that	the	user	can	zoom	to	different	areas	of	Sonoma	County,	compare	the	images,
and	read	about	localized	changes	in	the	landscape.

http://esriurl.com/IG519
http://sonomavegmap.org/1942


Figure	5.20.	Esri	story	maps	(http://sonomavegmap.org/1942)	(esriurl.com/IG520).	Source:
Sonoma	County	Agriculture	Preservation	and	Open	Space	District

Using	Raster	Web	Services	in	Apps
Esri	provides	a	rich	development	platform	and	set	of	APIs	for	developers	to
integrate	web	services	into	their	applications	and	apps.	Developers	can	create	a
wide	range	of	applications	that	gain	access	to	and	use	raster	web	services,
ranging	from	focused	apps	running	on	mobile	phones,	to	web	applications,	to
desktop	GIS	applications	optimized	for	geospatial	analysis.

ArcGIS	provides	a	robust	platform	for	application	development.	Using
ArcGIS	Runtime,	native	applications	running	on	mobile	devices	such	as
Android,	iOS,	or	Windows	phones	can	gain	access	to	imagery	locally	on	the
device	or	by	connecting	to	raster	web	services.	An	application	for	field	data
collection	may	use	an	image	service	only	as	a	backdrop.	A	more	advanced
application	may	use	the	image	service	for	analysis	such	as	performing	line-of-
sight	computations	for	military	situational	awareness.

For	the	development	of	web	applications,	ArcGIS	offers	an	extensive
JavaScript	API	that	provides	access	to	imagery	for	both	visualization	and
analysis.	Web	applications	can	act	as	thin	clients	that	make	requests	to	servers
that	perform	all	processing	and	return	the	results	quickly	for	display.	The
ArcGIS	APIs	enable	extensive	filters	and	queries	for	displaying	the	image

http://sonomavegmap.org/1942
http://esriurl.com/IG520


service	on	the	client	application.	The	result	is	that	the	end	user	of	an	application
can	have	at	their	disposal	massive	collections	of	imagery,	such	as	collections	of
many	years	of	multispectral	satellite	imagery.	Applications	can	also	interact	with
geoprocessing	services	running	on	servers.	Geoprocessing	services	take	data
submitted	by	the	user	of	an	application,	such	as	a	point	digitized	by	the	user,	and
return	information	or	data	about	the	user’s	submission,	such	as	a	list	of	parks
closest	to	the	user-digitized	point.

The	image	service	APIs	enable	a	wide	range	of	functionality.	By	providing
access	to	client-defined	image	processing	(through	the	use	of	raster	functions),
the	APIs	promote	imagery	uses	that	go	far	beyond	visualization,	enabling
applications	to	perform	advanced	image	processing	and	image	analysis.

A	good	example	of	a	web	application	that	deeply	integrates	web	services	is
the	US	Geological	Survey’s	Landsat	Look	Viewer	(http://landsatlook.usgs.gov/).
(See	figure	5.21.)	This	web	application	provides	quick	search	and	access	to	the
complete	archive	of	over	4	million	Landsat	scenes.	Users	can	zoom	to	any
location	and	perform	a	search	for	Landsat	scenes	corresponding	to	specific
criteria,	and	then	immediately	see	full-resolution	versions	of	the	scenes	and
apply	image	enhancements.	Users	can	add	scenes	to	their	cart	and	download
them.

Figure	5.21.	Using	image	services	in	apps—USGS	Landsat	Look	Viewer
(http://www.esri.com/landsatonaws)	(esriurl.com/IG521)

http://landsatlook.usgs.gov/
http://www.esri.com/landsatonaws
http://esriurl.com/IG521


Summary	—	Practical
Considerations
This	chapter	reviews	fundamental	concepts	that	are	required	to	work	with
imagery.	The	concept	of	scale	is	discussed—scale	in	the	context	of	imagery	is
critical	to	understand	both	for	selecting	the	right	type	of	imagery	for	the	task	at
hand	and	for	understanding	the	appropriate	uses	for	types	of	imagery	with
varying	spatial	resolutions.

Chapter	5	discusses	common	raster	data	format	and	raster	storage.	Image
compression,	introduced	in	this	chapter,	is	an	important	consideration.	Lossy
compression	algorithms	can	greatly	reduce	the	storage	requirements	for	image
datasets,	but	their	use	in	compressing	imagery	should	generally	be	limited	to
imagery	used	for	visual	reference	only,	not	for	rasters	that	will	be	used	for	image
interpretation,	feature	extraction,	or	image	classification.	For	these	applications,
lossless	compression	should	be	used.

The	concept	of	NoData	is	an	important	one	for	GIS	analysts.	Choosing	an
organizational	standard	for	dealing	with	NoData	areas	in	imagery	will	reduce
confusion	and	inconsistency	for	data	users	and	analysts.

Chapter	5	introduces	the	concepts	of	image	enhancement	and	filtering	of
continuous	raster	data.	These	techniques	are	worth	understanding—they	are
commonly	used	by	the	GIS	analyst	to	optimize	imagery	for	various	uses.	Often,
with	a	little	work,	these	techniques	will	increase	the	value	of	imagery	to	your
organization.

Mosaic	datasets	offer	a	revolutionary	approach	to	managing,	storing,
organizing,	querying,	analyzing,	displaying,	and	serving	imagery.	Using	mosaic
datasets	can	result	in	massive	increases	in	productivity	and	large	savings	in	disk
space.	Understanding	the	myriad	capabilities	of	the	mosaic	dataset	and	the
ability	to	apply	on-the-fly	functions	to	the	mosaic	dataset’s	underlying	raster
data	are	among	the	most	important	practical	pieces	of	knowledge	contained	in
this	chapter.	Using	mosaic	datasets	to	their	full	capabilities	will	reap	wide-
ranging	practical	benefits.

___________________________



1	On	some	screens,	such	as	high-resolution	retina	screens,	the	pixel	size	is	assumed	to	be	192	dpi.



Chapter	6
Imagery	Processing:	Controlling
Unwanted	Variation	in	the
Imagery

Imagery	is	a	valuable	tool	in	geospatial	analysis	because	what	you	see	on	the
imagery	is	indicative	of	ground	conditions.	In	other	words,	the	imagery	is	highly
correlated	with	the	ground.	Thus,	imagery	can	aid	us	in	learning	about	the
ground	without	having	to	visit	it.	Imagery	also	provides	a	different	perspective
of	the	landscape	than	can	be	seen	from	the	ground.	Imagery’s	“bird’s-eye	view”
provides	a	comprehensive	panorama,	allowing	us	to	study	how	different
landscape	features	interact.

The	stronger	the	correlation	between	what	can	be	seen	on	the	imagery	and
what	is	actually	on	the	ground,	the	more	useful	the	imagery	becomes.	This	is
true	whether	the	image	is	going	to	be	used	simply	as	an	image	layer	as	part	of	a
geospatial	analysis	or	if	the	image	is	going	to	be	processed	to	create	a	layer	of
biophysical	attributes	or	a	thematic	map.	Therefore,	it	is	important	to	control	the
variation	in	the	imagery	that	is	not	correlated	with	variation	on	the	ground	to
ensure	that	the	imagery	best	represents	those	ground	conditions.	If	the	imagery	is
simply	used	for	visualization	and	the	variation	is	left	uncontrolled,	then	the
image	will	be	less	representative	of	the	ground	than	it	could	be.	However,	if	the
image	is	to	be	processed	to	create	a	map	and	the	variation	is	left	uncontrolled,
then	the	resulting	map	will	be	less	accurate	than	it	could	be.

This	chapter	begins	by	reviewing	some	important	concepts	of
electromagnetic	energy.	It	then	presents	the	issues	and	solutions	for	the	three



factors	that	most	often	introduce	spurious	variation	into	the	imagery:
atmosphere,	clouds,	and	terrain.	These	three	factors	can	be	controlled	with
radiometric	correction,	cloud	removal,	and	geometric	correction.	A	final	section
is	included	on	image	mosaicking	because	variation	between	images	must	be
controlled	to	combine	them	in	a	mosaic	(i.e.,	a	collection	of	images	merged	to
create	a	single	combined	image).

A	key	assumption	made	in	this	chapter	is	that	very	often	the	processing	done
to	control	unwanted	variation	(i.e.,	radiometric	and	geometric	correction	and
cloud	removal)	is	performed	as	a	service	before	the	geospatial	analyst	obtains
the	imagery.	For	example,	Landsat	imagery	downloaded	from	USGS	EROS
comes	corrected	for	reflectance	and	is	registered	to	the	ground.	Therefore,	it	is
often	unnecessary	for	analysts	to	be	able	to	perform	these	corrections
themselves.	However,	it	is	critical	that	an	analyst	have	a	strong	appreciation	and
understanding	of	the	usefulness,	assumptions,	and	application	of	these
techniques.	A	presentation	regarding	general	knowledge	and	discussion	of	the
importance	of	these	techniques	follows.	The	reader	who	wishes	to	study	any	of
the	processes	in	more	detail	can	find	each	of	these	topics	thoroughly	described	in
most	remote	sensing	textbooks	(e.g.,	Jensen,	2016;	Lillesand,	Kiefer,	and
Chipman,	2015;	and	Campbell	and	Wynne,	2011).

Review	of	Electromagnetic	Energy
As	discussed	in	chapter	3,	electromagnetic	energy	has	many	wavelengths.	Not
all	are	equally	important	for	remote	sensing.	To	human	beings,	the	most
important	wavelengths	are	those	in	the	visible	portion	of	the	spectrum	because
our	eyes	sense	those	to	see.	Wavelengths	in	the	infrared	(near,	middle,	and
thermal)	are	also	very	important	for	vegetation	analysis	and	land-cover	mapping
because	variations	in	vegetation	and	land	cover	are	often	more	highly	correlated
with	variations	in	infrared	wavelengths	than	in	visible	wavelengths.
Electromagnetic	energy	that	passes	through	our	atmosphere	is	said	to	pass
through	atmospheric	“windows.”	Not	all	electromagnetic	energy	passes	through
an	atmospheric	window;	some	of	it	is	blocked.	For	example,	gamma	rays	are
blocked	by	the	atmosphere	and	do	not	reach	the	earth’s	surface.	In	the	late	20th
century,	humans	unintentionally	created	the	ozone	hole;	a	new	atmospheric
window	allowing	additional	ultraviolet	light	to	reach	the	earth’s	surface	over	the
Antarctic.



Interactions
To	control	unwanted	variation	in	imagery,	we	need	to	understand	how
electromagnetic	energy	interacts	with	the	objects	we	are	interested	in	imaging.
When	electromagnetic	energy	reaches	an	object,	four	interactions	are	possible:
1)	absorption,	2)	reflection,	3)	transmittance,	and	4)	emittance,	as	shown	in
figure	6.1.	One	possible	interaction	is	that	the	energy	is	absorbed	by	the	object.
For	example,	the	energy	could	be	converted	to	heat	that	warms	up	the	cool	sand
early	in	the	morning	on	a	beach.	In	plants,	the	blue	and	red	wavelengths	are
absorbed	by	the	chlorophyll	in	the	plant	and	converted	into	chemical	energy
through	a	process	called	photosynthesis.	A	second	interaction	is	reflection.
Electromagnetic	energy	reflected	by	an	object	can	be	detected	by	a	remote
sensor	(including	our	eyes)	and	is	the	most	important	interaction	for	the	majority
of	remote	sensing	systems.	For	example,	while	the	blue	and	red	wavelengths	are
absorbed	by	a	plant	leaf,	the	green	light	is	reflected,	which	is	why	humans	see
the	leaf	as	green	and	why	it	appears	green	on	natural	color	imagery.	A	third
possible	interaction	is	transmittance.	In	this	case,	the	energy	is	allowed	to	pass
through	the	object;	it	is	transmitted.	When	electromagnetic	energy	passes
through	objects	of	different	densities	(e.g.,	from	air	to	glass),	the	energy	is
refracted	(i.e.,	bent).	The	amount	of	refraction	depends	on	the	difference	in
density.	Lastly,	electromagnetic	energy	can	be	emitted	or	given	off	by	the	object.
Volcanoes	and	forest	fires	emit	electromagnetic	energy.	In	the	beach	example,
the	sand	absorbs	electromagnetic	energy	throughout	the	day	and	continues	to
heat	up.	Sand	early	in	the	morning	is	cool	and	feels	great	on	our	bare	feet.
However,	by	the	middle	of	the	day,	the	sand	can	be	quite	hot	and	may	burn	our
feet.	After	the	sun	sets,	the	sand	emits	the	electromagnetic	energy	and	begins	to
cool	down	again,	so	by	late	evening	the	sand	is	safe	to	walk	on	with	bare	feet.



Figure	6.1.	Three	of	the	four	possible	interactions	between	electromagnetic	energy	and	an	object.

All	objects	interact	in	one	or	more	of	the	four	ways	described	here.
Understanding	these	interactions	is	critical	to	the	effective	use	of	any	imagery.
The	majority	of	remote	sensors	rely	on	sensing	reflected	energy.

Reflectance	versus	Radiance
While	it	is	not	uncommon	to	hear	the	terms	reflectance	and	radiance	used
interchangeably,	there	are	important	differences	between	them	that	should	be
understood	by	anyone	using	remotely	sensed	imagery.	Remote	sensing	devices
sense	reflected	energy	that	is	measured	in	radiance.	The	sensor	records	values
called	digital	numbers	(DNs)	that	are	easily	converted	into	radiance	values	using
the	calibration	information	provided	in	the	image	metadata	about	that	scene.
Because	electromagnetic	energy	must	pass	through	our	atmosphere,	the
measured	radiance	is	actually	a	combination	of	the	energy	reflected	and/or
radiated	from	the	object,	minus	the	energy	absorbed	by	the	atmosphere	on	the
upwelling	path	(i.e.,	from	the	object	back	to	the	sensor),	plus	the	energy
scattered	by	the	atmosphere	into	the	path	of	the	sensor	(figure	6.2).	Scattering	is
caused	by	particles	and	water	vapor	in	the	atmosphere	that	change	the	trajectory
of	the	energy	so	that	some	energy	reflected	from	an	object	does	not	reach	the
sensor,	while	other	energy	reflected	from	other	objects	might.	The	amount	of
scattering	is	wavelength	dependent.	For	example,	the	reason	that	the	sky	appears
blue	to	us	is	that	blue	light	has	the	shortest	wavelength	of	the	visible	light	and	is



most	scattered	by	the	atmosphere,	hence	the	sky	is	blue.	The	sensor	is	in	a
specific	location,	and	therefore	the	radiance	is	a	measure	of	the	energy	(a
combination	of	interactions)	that	reaches	the	sensor	and	is	recorded	by	it.
Radiance	is	measured	in	watts.

Reflectance	is	a	unitless	ratio	of	the	amount	of	energy	reflected	from	an
object	divided	by	the	amount	of	energy	reaching	that	object.	Reflectance	is	a
rather	stable	characteristic	of	a	material,	hence	for	object	identification	it	is
better	to	measure	reflectance	than	the	upwelling	radiance	coming	from	an	object
because	that	varies	due	to	many	factors.	As	discussed	later	in	this	chapter,
methods	are	available	to	compensate	for	atmospheric	effects	and,	therefore,	use
the	radiance	to	compute	the	reflectance	properties	of	the	object	of	interest.	As	a
result,	the	reflectance	values	then	represent	the	true	spectral	response	of	that
particular	object	and	can	be	used	in	the	identification	of	that	object.

Figure	6.2.	Graphic	representation	of	the	radiance	reaching	the	sensor	as	a	combination	of
electromagnetic	energy	reflected	by	the	object,	absorbed	by	the	atmosphere,	and	scattered	into
the	path	of	the	sensor.

In	summary,	starting	with	an	uncalibrated	image	(DN	values),	the	image	is
then	calibrated	to	a	radiance	image.	This	radiance	image	is	then	atmospherically
corrected,	resulting	in	a	surface	reflectance	image.	The	final	reflectance	image	is



then	ready	to	be	used	to	extract	quantitative	information	about	features	on	the
surface.

The	example	below	helps	to	demonstrate	the	importance	of	not	simply	using
the	radiance	(what	the	sensor	sees),	but	actually	correcting	the	values	to
reflectance.	A	few	leaves	of	a	plant	could	be	collected,	ground	up,	and	examined
in	a	lab	using	a	spectrometer	to	find	out	the	amount	of	energy	they	reflect	in	the
visible	and	infrared	portions	of	the	electromagnetic	spectrum.	Those	results
could	be	shown	in	a	spectral	pattern	analysis	graph	as	shown	in	chapter	3	(see
figure	3.1).	A	sensor	on	a	high-spatial-resolution	satellite	could	image	a	pixel	of
a	tree	having	the	exact	same	type	of	leaves	as	collected	and	analyzed	in	the	lab,
but	the	instruments’	measures	of	reflectance	would	most	probably	differ	because
of	the	interference	of	the	earth’s	atmosphere.	For	the	spectral	pattern	of	the
remotely	sensed	pixel	to	be	directly	compared	to	the	one	from	the	lab,	the
radiance	collected	by	the	sensor	would	need	to	be	corrected	to	reflectance	by
compensating	for	atmospheric	effects	occurring	where	and	when	the	image	is
captured	by	the	sensor.	Failure	to	do	so	would	make	it	impossible	to	compare
this	same	object	(i.e.,	leaves)	collected	using	the	two	different	sources	or	to
accurately	track	change	in	the	object	over	time.

For	some	remote	sensing	applications,	correcting	radiance	to	reflectance
does	not	matter.	For	any	comparison	of	image	feature	values	that	are	within	one
image,	and	therefore	relative	to	each	other,	radiance	comparisons	will	be
sufficient	and	reflectance	is	not	required	because	the	atmospheric	effects	will	be
the	same	between	the	features.	As	discussed	in	more	detail	later	in	the	chapter,
correction	to	reflectance	is	not	necessary	when	a	single	image	is	being	used	to
create	a	thematic	map	as	long	as	atmospheric	conditions	do	not	vary	across	the
image.	For	example,	if	a	single	Landsat	image	is	used	to	make	a	land-cover	map,
only	the	information	from	that	image	will	be	used	in	the	image	processing	and	it
will	not	be	necessary	to	correct	the	image.	However,	if	two	dates	of	imagery	or
more	than	a	single	scene	is	used,	correction	should	be	applied,	because	the
atmosphere	may	have	caused	issues	between	the	dates	or	scenes.	It	has	also	been
widely	accepted	that	ratios/indices	in	which	one	band	of	imagery	is	divided	by
another	(e.g.,	the	Normalized	Vegetation	Index	or	the	NIR/red	ratio)	adequately
compensates	for	using	radiance	rather	than	reflectance.	However,	the	most	recent
research	results	indicate	that	since	reflectance	represents	the	exact	properties	of
the	object,	more	reliable	and	repeatable	results	will	be	achieved	when	using
reflectance.



Bidirectional	Reflectance	Distribution	Function
The	bidirectional	reflectance	distribution	function	(BRDF)	is	an	easy	concept	to
understand,	but	in	practice	it	is	quite	complex.	BRDF	is	simply	what	we	observe
every	single	day	when	looking	at	objects.	That	is,	objects	look	different	to	us
when	viewed	or	illuminated	from	different	angles	or	locations.	The	same	is	true
when	we	remotely	sense	these	same	objects.	The	amount	of	energy	received	by
the	sensor	from	the	object	of	interest	is	highly	dependent	on	the	viewing	and
illumination	geometry.	The	actual	BRDF	varies	based	on	wavelength	and	is
influenced	by	the	physical	properties	of	the	object,	including	factors	such	as	the
shadow	cast	by	the	object;	the	scattering	of	the	object	based	on
smoothness/roughness	of	the	surface;	and	the	ability	of	the	object	to	reflect,
absorb,	or	transmit	energy.

An	easy	example	to	demonstrate	this	concept	is	water.	If	a	lake	were	very
calm	and	still,	the	lake’s	water	would	act	as	a	specular	reflector,	and	the	light
from	the	sun	would	bounce	off	it	in	a	very	coherent	form	related	directly	to	the
angle	of	the	sun	in	the	sky.	If	the	sensor	were	at	this	exact	angle,	a	high
percentage	of	the	light	would	be	recorded	for	those	wavelengths	that	are
reflected	by	water.	If	the	sensor	were	not	at	this	angle,	then	much	less	reflectance
would	reach	the	sensor.	The	amount	would	depend	on	the	angle.	However,	if	this
same	lake	were	experiencing	some	very	strong	winds	that	caused	the	water	to
become	choppy,	then	the	surface	of	the	lake	would	no	longer	be	smooth,	and	the
reflectance	of	the	light	off	the	water	would	be	altered	significantly.

Correcting	for	variable	view	and	illumination	angle	effects	is	especially
important	in	remote	sensing	when	multiple	images	are	to	be	mosaicked	together
to	form	a	larger	image,	or	when	some	standardization	of	the	image	is	necessary.
These	corrections	are	part	of	the	next	section	in	this	chapter:	radiometric
correction.

Radiometric	Correction
All	remotely	sensed	imagery	has	radiometric	errors.	The	process	of	correcting
radiometric	errors	is	key	to	the	effective	use	of	the	imagery.	Failure	to
radiometrically	correct	the	imagery	means	failure	to	control	unwanted	variation,
thereby	weakening	the	correlation	between	what	is	on	the	ground	and	what	is
being	imaged.	Radiometric	errors	can	be	grouped	into	three	categories:	1)	issues
related	to	the	sensor,	2)	issues	related	to	sun	angle	and	topography,	and	3)	issues



related	to	the	atmosphere.

Sensor	Correction
Sensor	issues	and	errors	tend	to	be	either	minor,	predictable,	and	easily
corrected,	or	catastrophic	resulting	in	the	sensor	being	decommissioned.	Minor
issues	include	such	things	as	bad	pixels,	partial	line	or	column	dropouts,	optical
corrections	for	color	shift,	fall	off,	and	others.	Also,	line	start	problems	can	occur
where	data	at	the	beginning	of	a	scan	line	is	not	collected.	Some	sensor	issues
are	more	serious,	such	as	striping	when	instead	of	a	detector	failing	completely,
it	just	gets	out	of	calibration	with	the	other	detectors.	The	result	would	be	a
stripe	in	the	image	when	the	sensor	is	looking	at	the	same	object	with	multiple
detectors	at	the	same	time.	For	example,	if	a	sensor	has	16	detectors	that	swipe
across	the	landscape	to	collect	an	image,	and	one	of	those	detectors	is	not	in
calibration,	then	when	an	image	is	captured	of	a	large	area	of	the	same	land-
cover	type,	there	will	be	a	stripe	in	the	image	where	the	uncalibrated	detector
collected	data.	This	issue	is	commonly	seen	over	water	areas,	where	it	is	easy	to
see	the	striping.	One	method	for	correcting	a	striping	problem	involves	taking
some	average	of	the	pixels	surrounding	the	stripe	and	substituting	this	average
for	the	miscalibrated	data.	Other	modeling	and	convolution	methods	can	also	be
used.

A	notable	example	of	a	sensor	issue	is	the	problem	with	the	Scan	Line
Corrector	(SLC)	on	Landsat	7.	The	SLC	is	used	to	correct	for	forward	motion	of
the	satellite,	and	without	it	significant	gaps	occur,	as	shown	in	figure	6.3.	The
gaps	in	the	imagery	make	the	image	less	useful	for	many	applications.	Luckily,
the	gaps	occur	in	different	portions	of	a	scene	over	time	and	many	organizations
have	developed	processes	for	filling	the	gaps	using	multitemporal	imagery.



Figure	6.3.	A	portion	of	a	Landsat	7	scene	showing	Scan	Line	Corrector	gaps

Sun	Angle	and	Topographic	Correction
As	discussed	in	the	section	above	introducing	bidirectional	reflectance,
differences	in	illumination	and	viewing	angles	(created	by	varying	sun	location,
sensor	location,	and	topography)	can	have	significant	impacts	on	the	radiance
recorded	by	the	sensor.	Areas	with	steep	terrain	may	be	in	complete	shadow,
affecting	the	response	recorded	by	the	sensor.	For	example,	dense	coniferous
forest	on	steep	terrain	can	exhibit	a	spectral	response	similar	to	that	of	water,	if
not	properly	corrected.	Clearly,	labeling	a	forested	area	on	the	side	of	a	mountain
as	water	would	be	a	serious	and	unacceptable	error.	This	issue	could	be	fixed
easily	by	including	a	slope	layer	in	the	mapping	process	to	make	sure	that	water
only	occurs	on	flat	terrain.	Additionally,	the	process	could	be	as	complicated	as
using	a	variety	of	mathematical	algorithms	to	correct	the	imagery	for	topography
before	classification.

All	the	mathematical	algorithms	used	to	radiometrically	correct	imagery	for
sun	angle	and	topography	are	based	on	computing	the	proportion	of
electromagnetic	energy	striking	that	particular	place	on	the	ground	as	defined	by
the	cosine	of	the	incidence	angle.	In	other	words,	knowing	where	the	sun	is	and
the	slope	of	the	terrain,	the	proportion	of	light	recorded	at	that	area	on	the
ground	(pixel)	can	be	determined.	These	values	can	then	be	used	to	correct	the
imagery	to	normalize	it	so	that	the	corrected	value	represents	the	pixel	without
the	effect	of	the	slope.	There	are	a	number	of	additional	adjustments	made	to	this
cosine	correction	empirically	by	including	a	factor	that	compensates	for	the	land



surface	not	being	a	perfect	reflector	(i.e.,	it	does	not	reflect	all	light	incident
upon	it).	The	two	most	common	of	these	methods	are	called	the	Minnaert
correction	and	the	C-correction.

Atmospheric	Correction
As	the	name	suggests,	atmospheric	correction	involves	correcting	the	imagery	to
deal	with	the	unwanted	image	variation	created	by	the	atmosphere.	If	imagery	is
collected	close	to	the	earth’s	surface	(i.e.,	from	aircraft)	there	is	less	chance	for
variation	caused	by	the	atmosphere	to	occur.	As	the	imagery	is	collected	from
higher	and	higher	altitudes	(and	especially	from	space),	the	atmosphere	can	have
a	greater	and	greater	impact.	Before	beginning	a	discussion	of	atmosphere
correction,	it	is	important	to	determine	when	such	a	correction	must	be
performed	and	when	it	is	not	needed.

As	mentioned	earlier	in	the	chapter,	a	sensor	records	radiance,	not
reflectance.	The	radiance	values	measured	by	the	sensor	are	a	combination	of	the
electromagnetic	energy	being	reflected	by	the	objects	minus	the	energy	absorbed
by	the	atmosphere	plus	the	energy	scattered	into	the	path	of	the	sensor	by	the
atmosphere.	Reflectance,	on	the	other	hand,	has	been	corrected	to	compensate
for	these	atmospheric	effects	and	better	represents	the	physical	properties	of	the
objects	being	imaged.	Therefore,	it	would	seem	that	it	is	always	better	to	correct
for	atmospheric	impacts	and	convert	radiance	into	reflectance.	While	it	is	true
that	this	conversion	always	results	in	better	imagery,	it	is	not	always	necessary.
For	example,	if	a	single	date	of	a	single	image	is	being	used	to	create	a	land-
cover	map	(e.g.,	a	Landsat	8	image),	then	all	the	information	needed	to	classify
that	image	(e.g.,	training	data	or	other	statistical	information)	will	be	generated
from	that	image,	and	hence	no	corrections	are	necessary.	No	comparisons
between	images	have	been	done,	so	no	normalization	or	correction	to	reflectance
is	required.	However,	if	derivative	bands	such	as	ratios	or	vegetation	indices	are
created,	then	better	results	will	occur	with	imagery	corrected	to	reflectance,
because	the	reflectance	values	better	represent	the	physical	properties	of	the
objects	of	interest.	It	is	important	to	note	that	in	some	situations,	atmospheric
correction	cannot	be	performed,	as	the	information	needed	to	do	the	correction	is
not	available.	In	this	situation,	ratios	and	vegetation	indices	are	useful	as	they	do
tend	to	have	some	normalization	effect	on	the	imagery.

Atmospheric	correction	is	needed	in	many	remote	sensing	applications.	Any
time	multiple	images	from	different	dates	are	being	used,	the	imagery	should	be
corrected.	Any	time	biophysical	parameters	are	being	determined	from	the



imagery,	correction	is	essential.	When	creating	derivative	bands	such	as	ratios
and	vegetation	indices,	correction	provides	for	better	results.

Historically,	atmospheric	correction	of	imagery	was	a	difficult	process,	and
despite	the	development	of	many	sophisticated	algorithms	in	recent	years,	the
process	has	not	gotten	much	easier.	A	key	factor	in	atmospheric	correction	is	the
requirement	of	detailed	knowledge	of	the	atmospheric	profile	at	the	time	the
image	was	acquired.	Obtaining	this	profile	is	the	most	difficult	component	of	the
entire	process.

Atmospheric	correction	can	be	divided	into	two	general	types:	relative
correction	and	absolute	correction.	Relative	correction	is	easier	and	requires	less
information,	but	only	normalizes	the	image	or	images.	Normalization	makes	the
images	directly	comparable	to	each	other	rather	than	completely	removing	the
atmospheric	effects.	The	most	common	single	image	relative	atmospheric
correction	is	known	as	dark	object	subtraction	(DOS).	This	correction	is	based
on	the	concept	that	objects	in	an	image	that	have	very	low	reflectance	should
appear	to	be	near	zero	when	plotted	on	a	histogram	(i.e.,	frequency	distribution)
of	the	objects	in	an	image	by	wavelength.	Figure	6.4	provides	an	example.
Identifying	objects	on	the	image	that	have	very	low	reflectance	for	a	given
wavelength	(i.e.,	dark	objects)	means	that	these	objects	should	appear	very	near
zero	on	a	histogram	of	the	imagery.	However,	as	shown	in	figure	6.4,	these	dark
objects	have	a	value	near	30.	The	reason	this	value	is	at	30	and	not	0	is	that
atmospheric	scattering	added	light	into	the	area.	Subtracting	the	value	of	30	from
the	entire	histogram	(see	figure	6.4)	will	then	normalize	the	image	and	remove
this	atmospheric	effect.



Figure	6.4.	Histograms	for	a	given	wavelength	(in	this	example,	NIR)	showing	the	original
distribution	of	the	image	data	without	dark	object	subtraction	(DOS)	on	the	left	and	the	corrected
histogram	after	DOS	on	the	right

A	similar	process	can	be	applied	to	multiple	images	to	normalize	each	one	so
that	they	can	be	directly	compared	without	the	impact	of	the	atmosphere.	In	this
case,	a	base	image	(usually	the	one	with	the	least	atmospheric	issues	or	one	that
has	been	previously	atmospherically	corrected)	is	selected	and	the	spectral
characteristics	of	the	other	images	are	transformed	to	match	those	of	the	base
image.	This	multidate	image	procedure	relies	on	using	regression	analysis	in
which	the	selection	of	objects	on	the	imagery	that	remain	the	same	over	time	can
be	used	as	effective	radiometric	“control	points”	to	normalize	the	images.	Figure
6.5	shows	an	example	of	how	this	normalization	looks	graphically.

Figure	6.5.	Graphic	representation	of	multidate	image	normalization	using	regression	analysis

As	previously	discussed,	absolute	atmospheric	correction	generally	requires
an	atmospheric	profile	obtained	on	the	same	day	and	at	the	same	location	as	the
imagery,	which	is	used	in	conjunction	with	an	algorithm	to	compensate	for	the
atmosphere.	As	such,	absolute	atmospheric	correction	can	be	difficult	to	perform
because	this	information	is	often	unavailable:	relative	correction	must	be
performed	instead.	Recently,	some	of	the	information	required	in	the
atmospheric	profile	can	be	obtained	from	specific	atmospheric	absorption	bands



available	in	some	image	products,	especially	hyperspectral	imagery,	which	has
more	and	narrower	spectral	bands	than	multispectral	imagery.	The	availability	of
this	information	within	the	imagery	itself,	along	with	the	development	of	more
hyperspectral	sensors,	has	sparked	a	resurgence	of	algorithm	development	to
produce	better	absolute	atmospheric	correction	methods.

Most	algorithms	used	for	absolute	atmospheric	correction	are	based	on	one
of	two	very	robust	and	time-tested	radiative	transfer	models:	MODTRAN
(MODerate	resolution	atmospheric	TRANsmission)	or	6S	(Second	Simulation	of
the	Satellite	Signal	in	the	Solar	Spectrum).	Information	gained	from	either	the
atmosphere	profile	or	the	image	absorption	bands	along	with	the	exact	location,
date,	time,	and	other	image	information	such	as	average	ground	elevation,
altitude	of	the	sensor,	and	band	wavelength	ranges	are	used	to	determine	the
amounts	of	atmospheric	absorption	and	scattering	present	when	the	image	was
acquired.	These	characteristics	are	then	used	to	convert	the	radiance	of	the	image
to	atmospherically	corrected	reflectance.	The	most	common	algorithms	used	to
perform	this	correction	are	Atmospheric	CORrection	Now	(ACORN),	Fast	Line-
of-sight	Atmospheric	Analysis	of	Spectral	Hypercubes	(FLAASH),	and
Atmospheric	CORrection	(ATCOR).

One	final	method	available	to	perform	absolute	correction	does	not	rely	on
information	about	the	atmospheric	profile.	Instead,	this	method,	called	empirical
line	calibration,	requires	on-the-ground	spectral	reflectance	measurements
collected	at	the	same	time	and	place	as	the	image	acquisition.	Areas	are	selected
on	the	ground	that	can	be	clearly	identified	on	the	image.	Some	bright	areas	such
as	pavement	or	sand	are	selected	as	well	as	dark	areas	such	as	deep,	clear	water.
Measurements	are	collected	using	a	spectroradiometer	and	are	used	to	calibrate
the	imagery	separately	for	each	band	(wavelength).

Clouds	and	Cloud	Shadows
Clouds	and	cloud	shadows	affect	most	imagery	and	introduce	unwanted
variation	that	can	be	challenging	to	control.	Even	if	the	platform	carrying	the
sensor	flies	below	the	clouds	so	that	they	are	not	part	of	the	image,	clouds	still
have	an	overall	effect	on	the	imagery	by	reducing	the	amount	of	sunlight
available	during	the	image	collection.	If	the	platform	is	above	the	atmosphere
(e.g.,	a	satellite),	then	clouds	and	cloud	shadows	are	a	constant	consideration.

Some	clouds	are	easy	to	see	and	simply	block	the	view	of	the	sensor	to	the
ground.	Other	clouds,	such	as	cirrus	clouds,	tend	to	act	more	like	the	haze	in	the



atmosphere	because	of	their	wispy,	translucent	nature	and	can	be	corrected	as
already	described	in	this	chapter.	The	latest	Landsat	8	Operational	Land	Imagery
sensor	has	a	band	dedicated	to	detecting	cirrus	clouds.	Perhaps	the	biggest	issue
with	these	types	of	clouds	that	obscure	but	do	not	block	the	ground	is	that	they
are	not	uniformly	distributed	across	the	imagery,	and	therefore	the	same
correction	cannot	be	uniformly	applied	throughout	the	image.

In	images	with	snow,	detecting	clouds	can	be	a	challenge.	Clouds	versus
snow	are	indistinguishable	in	the	visible	wavelengths	but	can	be	separated	using
other	wavelengths	of	electromagnetic	energy.	It	is	important	when	identifying
clouds	to	also	find	their	shadows	(see	figure	6.6).	Cloud	shadows	can	be	difficult
to	detect.	Depending	on	the	illumination	and	view	angles,	the	cloud	shadow	can
be	anywhere	from	directly	below	the	cloud	to	some	distance	from	it.	Cloud
shadows	appear	very	dark	on	the	imagery	and	are	easily	confused	with	other
dark	objects	such	as	water	and	dense	forests.	When	conducting	a	change	analysis
by	comparing	two	or	more	images	of	the	same	area	to	one	another,	clouds	and
cloud	shadows	are	even	more	problematic	because	both	will	appear	as	changes
from	one	image	to	the	other,	while	neither	represents	actual	change	on	the
ground.

Figure	6.6.	Image	showing	clouds	and	cloud	shadows

In	most	situations,	little	can	be	done	about	clouds	and	cloud	shadows.	The
most	common	correction	to	fix	a	single	date	of	imagery	is	to	use	pieces	of	cloud-
free	images	from	other	image	dates	as	close	as	possible	to	the	base	date	for	those



areas	impacted	by	the	clouds	and	their	shadows.	While	this	is	a	growing
practice,	it	comes	with	its	own	problems,	especially	if	the	sun	or	viewing	angle
of	the	image	patches	are	significantly	different	from	the	base	image,	as	shown	in
figure	6.7.	If	the	number	of	areas	or	the	total	area	covered	by	clouds	is	large,	it
may	be	best	to	classify	multiple	cloudy	images	of	the	area	separately,	and	then
select	the	cloud-free	areas	from	each	thematic	map	to	create	one	complete	map
of	the	area.

Clearly,	the	best	approach	is	to	acquire	imagery	with	few	or	no	clouds,	if
possible.	In	some	regions	of	the	world	such	as	the	American	West,	this	is	a
realistic	goal,	while	in	others	such	as	the	tropics	and	Southeast	Asia	it	is
extremely	rare	to	find	a	cloud-free	satellite	image.	When	clouds	are	persistent,
alternative	image	sources	such	as	radar	or	airborne	collects	may	be	the	only	way
to	remotely	sense	the	ground.

Figure	6.7.	An	example	of	different	dates	of	QuickBird	imagery	mosaicked	together	to	create	a
cloud-free	image	of	a	portion	of	Kalaupapa	National	Historical	Park	in	Hawaii.	Notice	the
distortions	in	the	mosaic	caused	by	the	different	sun	angles	and	view	angles	of	the	imagery	used
to	create	the	mosaic.	The	mountains	of	Hawaii	are	often	shrouded	in	clouds,	and	it	is	nearly
impossible	to	collect	cloud-free	imagery	at	the	same	time	for	both	the	coastal	plains	and	the
mountains.



Geometric	Correction
Geometric	correction	corrects	errors	introduced	into	the	position	(geometry)	of
the	imagery.	The	goal	is	to	fix	the	image	so	that	it	can	be	used	with	other
spatially	accurate	imagery	and	geospatial	data	layers.	In	other	words,	all	the
layers	in	our	GIS	must	line	up	with	each	other.	An	image	that	is	not	properly
registered	introduces	unwanted	variance	as	the	imagery	is	not	truly	indicative	of
what	is	on	the	ground.	This	variation	must	be	controlled	to	obtain	the	most
effective	imagery	for	use	in	any	geospatial	analysis.

Before	any	errors	can	be	corrected,	they	first	must	be	recognized	as	errors.
There	are	two	general	types	of	errors:	systematic	and	random.	Systematic	errors
occur	throughout	the	image	and	present	the	same	issue	everywhere.	They	tend	to
be	much	easier	to	correct,	because	once	the	issue	has	been	identified	it	can	be
corrected	throughout	the	image.	Random	errors	can	occur	anywhere	in	the	image
and	are	more	difficult	to	correct.	For	geometry,	random	errors	are	generally	the
result	of	poor	digital	elevation	model	data	or	the	lack	of	an	accurate	sensor
model,	which	causes	small	errors	in	the	attitude	and	position	information.

As	in	radiometric	correction,	the	altitude	of	the	platform	plays	a	role	in	what
errors	are	introduced.	For	example,	image	scanning	systems	that	are	long
distances	from	their	targets	tend	to	have	small	view	angles	that	are	nearly
vertical,	and	therefore	the	ground	area	covered	by	each	pixel	in	the	image
remains	fairly	constant.	A	similar	scanning	system	flown	in	an	airplane	close	to
the	ground	will	have	a	significantly	greater	scan	angle,	resulting	in	greater
geometric	distortion	because	the	ground	area	covered	in	a	single	pixel	toward	the
edges	of	the	scan	will	be	much	larger	than	the	areas	covered	toward	the	center.
This	issue	is	analogous	to	a	vertical	photograph	versus	an	oblique	photo.	The
vertical	photo	looks	straight	down	on	objects	and	the	scale	of	the	photo	remains
relatively	constant	except	for	changes	in	topography.	The	oblique	photo	changes
scale	and	tends	to	look	more	at	the	sides	of	objects	as	the	image	moves	toward
the	horizon.	If	the	scanning	system	is	pointable,	as	in	the	case	of	most	high-
spatial-resolution	systems	such	as	the	DigitalGlobe	and	Pleiades	constellations,
then	there	are	additional	issues	similar	to	what	we	have	discussed	in	an	oblique
photo	(i.e.,	the	images	become	oblique)	as	the	view	angle	increases.

The	type	of	sensor	is	also	important.	An	example	of	sensor	type	is	the
difference	between	a	scanner	and	a	camera.	A	camera	acquires	an	image	that
contains	a	principal	point:	the	geometric	center	of	the	image.	If	that	image	were
vertical,	then	by	definition,	the	nadir	(the	point	directly	below	the	center	of	the
camera)	and	the	principal	point	(the	geometric	center	of	the	image)	are	in	the



exact	same	spot.	An	important	concept	known	as	topographic	displacement	is
the	displacement,	caused	by	a	sensor	that	is	not	perfectly	horizontal,	which
radiates	from	the	nadir.	Objects	with	positive	elevation	are	displaced	outward
from	the	center	of	the	image	(nadir)	while	objects	with	negative	elevation	are
displaced	inward.	A	quick	look	at	any	aerial	photograph	or	high-spatial-
resolution	image	will	demonstrate	the	impact	of	topographic	displacement.	For
example,	one	of	the	first	IKONOS	images	was	of	Washington,	DC.	Topographic
displacement	is	obvious	in	this	image,	as	the	Washington	Monument	is	displaced
outward	from	the	center	of	the	image	(see	figure	6.8).	For	this	reason,	an	image
is	not	a	map	(not	planimetrically	correct)	and	geometric	correction	is	required	to
correct	for	this	displacement.	In	a	scanning	system,	the	principal	point	(or
geometric	center	of	the	image)	moves	along	with	the	scanner.	There	is	no	one
center	point,	but	many	as	the	scanner	moves	along.	This	sensor	system	results	in
a	one-dimensional	topographic	displacement	that	also	must	be	corrected	if	the
image	is	to	be	properly	registered	to	the	ground.	Other	factors	such	as	curvature
of	the	earth,	atmospheric	refraction,	and	the	earth’s	rotation	must	also	be
accounted	for	depending	on	the	altitude	and	type	of	sensor	used	to	collect	the
imagery.

Figure	6.8.	An	image	of	the	Washington	Monument	showing	topographic	displacement.	Source:
DigitalGlobe



The	following	sections	provide	an	overview	and	discussion	of	various
components	of	geometric	correction.	It	is	important	to	remember	that	the	goal	of
geometric	correction	is	to	correct	the	issues	in	the	imagery	so	that	the	imagery
best	fits	the	ground.	Remotely	sensed	imagery	is	the	source	of	much	geospatial
data.	Without	effective	geometric	correction,	this	imagery	would	be	far	less
useful.	It	is	actually	the	ability	to	make	these	corrections	that	has	dramatically
increased	the	use	of	imagery	in	GIS.

Again,	most	geometric	correction	of	imagery	is	conducted	as	a	service	and	is
not	commonly	performed	by	the	geospatial	analyst.	However,	some	coordinate
transformation	and	reprojection	are	done	by	the	analyst	depending	on	the
geospatial	data	being	used	for	a	particular	project.	The	following	section	begins
with	these	topics	and	then	provides	an	overview	of	the	other	issues	and
considerations	most	helpful	to	the	geospatial	analyst.

Coordinate	Systems	and	Map	Projections
For	geospatial	data	to	be	useful	it	must	have	a	coordinate	system	and	a	map
projection.	Coordinate	systems	are	used	to	define	the	spatial	location	of	an
object	on	the	earth	(i.e.,	to	allow	you	to	know	where	you	are).	However,	three
factors	complicate	the	use	of	coordinates.	When	most	of	us	think	of	coordinates,
we	think	of	Cartesian	coordinates	with	straight	lines	in	the	x	and	y	directions.
However,	the	earth	is	not	flat,	but	rather	curved,	so	flattening	an	image	of	it	into
a	2D	representation	causes	some	distortion.	Second,	not	only	is	the	earth	not	flat,
but	it	is	also	not	a	regular	sphere	or	even	an	ellipsoid.	Instead,	the	shape	is	quite
irregular	(a	geoid).	This	fact	makes	locating	the	coordinates	even	more	difficult.
Finally,	methods	are	constantly	being	improved	to	measure	the	shape	of	the	earth
and	also	the	position	of	objects	on	it	(e.g.,	think	about	the	advances	in	GPS	over
the	last	20	years).	However,	none	of	these	measurements	are	perfect,	and	this
introduces	errors	in	our	coordinates.

Map	projection	renders	the	locations	from	a	3D	earth	to	a	2D	map	(flat
surface).	The	process	most	often	uses	a	mathematical	algorithm	to	accomplish
this	rendering.	It	is	impossible	to	avoid	introducing	some	distortions	during	the
projection	process.	An	infinite	number	of	map	projections	distort	one	or	more	of
the	following	characteristics	during	the	projection	process:	1)	shape,	2)	distance,
3)	direction,	4)	scale,	and	5)	area.	Selection	of	the	appropriate	projection	takes
into	account	the	size	of	the	area	being	studied	and	the	objectives	of	the	analysis
to	decide	which	characteristics	should	have	minimum	distortion	and	which	do
not	matter.	For	example,	a	pilot	using	a	map	to	aid	in	navigation	would	wish	to



use	a	map	with	a	projection	that	maintains	distance	and	direction	so	to	fly	to	the
right	place.	The	pilot	would	not	care	if	the	shapes	or	areas	of	the	objects	were
distorted.	In	another	example,	everyone	has	probably	seen	a	Mercator	projection
map	in	which	Greenland	seems	to	be	the	size	of	North	America.	The	Mercator
projection	distorts	area.

Latitude	and	longitude	compose	the	geographic	coordinate	system	that	has
an	origin	at	a	line	we	call	the	equator	(0	degrees	latitude)	and	a	line	we	call	the
Prime	Meridian	going	through	Greenwich,	England	(0	degrees	longitude).
Latitude	and	longitude	are	components	of	an	unprojected	coordinate	system	that
is	not	associated	with	any	specific	map	projection.	Instead,	everything	is
measured	in	degrees	north	or	south	of	the	equator	and	east	or	west	of	the	Prime
Meridian.	It	does	not	use	a	Cartesian	coordinate	system	because	it	measures
position	on	the	curved	earth	where	the	lines	of	longitude	converge	at	the	north
and	south	poles.	Therefore,	the	distance	covered	by	a	degree	of	longitude	varies
from	the	largest	value	at	the	equator	to	zero	at	the	poles	where	the	lines
converge.

The	most	commonly	used	projected	coordinate	systems	in	the	United	States
include	the	state	plane	coordinate	system	and	the	universal	transverse	Mercator
(UTM)	coordinate	system.	The	state	plane	system	is	a	standard	set	of	projections
using	Cartesian	coordinates	for	each	state.	Depending	on	the	size	of	the	state,
each	one	might	have	more	than	a	single	zone.	In	addition,	the	projection	used	for
each	state	depends	on	the	shape	of	the	state.	States	that	are	wide	use	the	Lambert
conformal	projection,	while	states	that	are	tall	use	the	transverse	Mercator
projection	(Bolstad,	2012).

A	state	plane	coordinate	system	works	well	if	working	in	a	single	state,	but
requires	using	multiple	state	coordinate	systems	if	the	project	incorporates
multiple	states.	Therefore,	another	common	projected	coordinate	system	(the
UTM	coordinate	system)	is	a	global	system	that	is	not	limited	to	a	single	state.
The	UTM	system	is	based	on	the	transverse	Mercator	projection	and	is	used
commonly	throughout	all	of	North	America	and	the	world.

One	final	consideration	that	may	cause	a	geometric/positional	error	in
geospatial	layers	is	the	datum.	A	datum	is	the	reference	surface	used	as	the
starting	point	for	all	other	measurements.	Our	ability	and	technology	to
accurately	define	this	reference	surface	have	changed	over	time,	and,	therefore
datums	have	also	changed	over	time.	In	addition	to	knowing	the	coordinate
system	and	map	projection,	the	datum	and	if	necessary	the	transformation
between	datums	must	also	be	known	for	all	the	geospatial	data	in	a	project.	The
use	of	different	datums	with	unknown	transforms	will	result	in	positional	errors.



Converting	between	geographic	coordinates	and	projected	coordinate
systems	and	datums	is	quite	simple,	in	that	the	mathematical	conversions	are
readily	available	to	allow	this	process	to	occur.	The	conversions	are	part	of	most
image	analysis	and	GIS	software	packages	such	as	ArcGIS.	The	goal	is	to	have
all	the	geospatial	layers,	including	those	that	are	imagery-based,	in	the	same
coordinate	system	and	map	projection	and	datum	so	that	all	the	layers	directly
coincide	with	each	other.	Image	analysts	should	generally	be	aware	of	the
metadata	of	each	spatial	layer	to	confirm	these.

Image	Registration
To	enable	two	images	to	be	compared,	they	need	to	be	registered	to	each	other	so
that	for	each	pixel	in	one	image	there	is	a	corresponding	pixel	in	the	second
image.	To	do	this,	the	geometric	transform	to	warp	one	image	to	the	other	needs
to	be	determined	and	applied.	The	geometric	correction	of	imagery	can	be
performed	in	two	ways.	Either	an	image	can	be	registered	to	another	image
(image-to-image	registration)	or	an	image	can	be	registered	to	a	map	(i.e.,	the
ground).	The	processes	to	conduct	this	registration	are	similar,	with	the
exception	that	two	images	that	are	registered	to	each	other	will	not	necessarily
be	registered	to	a	map.	To	overlay	an	image	on	a	map,	the	transform	between	the
image	and	the	map	needs	to	be	known.	If	the	transforms	for	multiple	images	to
the	same	map	are	known,	then	it	becomes	possible	to	overlay	the	images	on	the
same	map	and	perform	the	required	comparison.	ArcGIS	handles	both	with	the
image	coordinate	system	(ICS).	It	is	best	to	use	image–ground	transforms,	as	this
results	in	the	image	being	registered	to	the	ground.

Image-to-map	registration,	or	geometric	correction,	is	the	process	by	which
the	image	is	made	planimetric.	That	is,	geometric	distortion	in	the	image	is
removed	so	that	the	image	aligns	directly	with	a	map	taking	on	the	same
coordinate	system	and	map	projection.	However,	this	process	may	not	remove
all	the	topographic	displacement	in	the	image	(see	the	discussion	on
orthorectification	later	in	this	chapter).	The	process	of	geometric	correction	or
image-to-map	registration	includes	two	important	components.	The	first	is
determining	the	geometric	relationship	between	the	coordinates	of	the	pixels	in
the	image	and	the	coordinates	of	the	exact	same	place	on	the	map	(or	other
image	in	image-to-image	registration).	The	second	component	is	determining	the
pixel	values	at	the	new	pixel	locations	as	a	result	of	applying	the	geometric
correction	and	resampling.

If	the	transformation	from	an	image	to	a	map	is	known,	then	that	transform



may	also	be	inverted,	resulting	in	the	map	being	transformed	to	the	image	(i.e.,
the	image	remains	unchanged	and	the	vectors	of	the	map	are	overlaid	on	the
image).	This	process	is	referred	to	as	working	in	image	space	rather	than
working	in	map	(ground)	space.	In	a	GIS,	most	image	analysis	is	done	in	map
space	with	the	image	transformed	to	the	map.	This	difference	between	working
in	map	space	and	image	space	was	one	of	the	primary	differences	between	a	GIS
and	traditional	imagery	applications.	ArcGIS,	by	default,	displays	all	image	and
vector	data	in	map	space	and	includes	tools	to	determine	the	appropriate
transformation	if	the	image	is	not	georeferenced.	ArcGIS	also	has	the	ability	to
work	in	image	space	(or	the	ICS)	by	using	the	“Focus	on	image”	option.

Most	images	that	analysts	receive	will	be	orthorectified	to	map	space,	but
this	is	not	always	the	case,	and	therefore	it	is	good	to	understand	how	these
transformations	take	place.	In	a	GIS,	each	raster	dataset	has	an	associated
geometric	transform	that	defines	the	transform	between	the	rasters	and	the
ground	in	a	specified	projection.	Depending	on	the	level	of	processing	applied	to
the	image,	this	may	be	a	simple	shift	and	scaling	(as	is	the	case	if	the	input	is	an
orthoimage	in	the	same	projection)	or	other	transforms	such	as	affine,	projective,
warp,	or	more	complex	orthorectification	transforms.	Orthorectification	is	the
process	of	transforming	an	image	so	as	to	take	into	account	the	elevation
changes	and	is	explained	in	more	detail	later.

The	transformation	of	an	image	to	fit	another	image	or	a	map	requires	that
the	image	be	resampled	so	that	the	pixels	align.	This	resampling	is	also
necessary	if	two	images	are	in	map	space,	but	not	with	the	exact	same
projection,	pixel	size,	and/or	pixel	alignment.	In	all	cases,	the	source	imagery
must	be	resampled	for	display	or	analysis	such	that	pixels	are	displayed	in	the
correct	location	on	a	screen	or	align	with	other	images.

Resampling
Resampling	of	an	image	occurs	whenever	any	transform	is	applied	for	display	or
analysis.	Resampling	an	image	will	always	have	some	effect	on	either	the
radiometry	or	geometry	of	the	image.	There	are	many	different	resampling
techniques	and	each	has	advantages	and	disadvantages.	For	optimum	results,	it	is
important	to	understand	what	resampling	has	taken	place	on	the	imagery	and
also	to	mitigate	the	number	of	resampling	steps	that	take	place.

Image	resampling	is	performed	by	defining	a	raster	in	the	required	output
coordinate	system	(or	display)	and	for	each	output	pixel	and	transforming	the	x,y
coordinates	at	the	center	of	each	pixel	to	determine	the	corresponding	column



and	row	values	of	the	input	image.	The	output	pixel	value	is	then	determined
from	the	nearest	values	of	the	pixel	or	pixels	from	the	input	image.	There	are
various	resampling	methods;	the	three	most	common	are:	1)	nearest	neighbor
interpolation,	2)	bilinear	interpolation,	and	3)	cubic	convolution	interpolation.

The	nearest	neighbor	interpolation	approach	is	the	simplest	of	the	three
methods.	The	pixel	value	from	the	original	image	that	is	closest	(nearest)	to	the
transformed	pixel	in	the	registered	image	is	assigned	to	that	pixel	(figure	6.9).
Figure	6.10	shows	the	same	approach	using	a	mathematical	example.	The	new
pixel	value	is	simply	the	closest	pixel	value	from	the	image	before	registration.
The	biggest	advantage	of	this	approach	is	that	all	the	original	pixel	values	are
preserved.	In	the	other	approaches,	some	averaging	is	performed	and	the	original
values	are	lost.	Therefore,	if	there	are	particular	pixel	values	indicative	of	a
certain	characteristic	or	property	in	the	image,	those	values	remain	to	be
discovered	and	explored	by	the	analyst.	The	biggest	disadvantage	of	nearest
neighbor	interpolation	is	that	there	can	be	significant	degradation	in	the	visual
quality	of	the	imagery	as	well	as	artifacts	such	as	step	effects,	especially	on	the
edges	of	features.	These	effects	are	also	known	as	spatial	aliasing.	Looking	at
figure	6.9,	one	could	see	that	if	a	road	or	river	was	represented	by	the	raw	pixels
(black	squares)	at	the	top	of	the	figure,	this	linear	feature	would	be	broken	and
no	longer	be	linear	in	the	corrected	image	(open	circles).	In	the	first	part	of	the
image,	the	road	or	river	pixel	values	would	be	pushed	upward	and	be	in	the	first
row,	while	in	the	second	half	of	the	image,	they	would	go	downward	and	be	in
the	second	row.	This	result	would	cause	an	unfavorable	visual	rendition	of	the
image,	and	if	the	image	were	being	used	for	visualization	purposes	would	cause
some	issues.



Figure	6.9.	A	diagram	showing	the	nearest	neighbor	interpolation	process

Figure	6.10.	A	mathematical	example	of	the	nearest	neighbor	interpolation	approach

Bilinear	interpolation	is	a	compromise	between	the	nearest	neighbor	and	the
cubic	convolution	approaches.	In	this	method,	instead	of	a	single	value	being
selected	for	the	new	pixel	location,	the	distance-weighted	average	value	for	the
surrounding	four	pixels	are	selected	(figure	6.11).	If	the	four	pixels	are	equal
distances	from	the	center,	then	the	result	is	simply	the	average	(mean).	Figure
6.12	shows	a	mathematical	example	for	a	single	pixel.	The	closest	four	pixels
from	the	original	image	are	averaged,	and	that	value	is	placed	in	the	new	pixel
location	in	the	transformed	image.	The	advantage	of	this	approach	is	that	linear
features	tend	to	be	maintained,	unlike	in	nearest	neighbor	interpolation.	Also,	the
image	is	more	visually	pleasing	without	artifacts	such	as	jagged	edges	or	linear
features	that	end	abruptly.	The	biggest	disadvantage	is	that	the	original	image
values	are	lost	in	the	averaging	process	(i.e.,	they	can	be	smoothed).	The	impact
of	this	averaging/smoothing	is	that	the	high	and	low	values	in	the	image	are
removed.	If	these	values	were	indicative	of	a	specific	feature	or	property	in	the
image,	those	values	are	now	reduced	(if	not	eliminated)	by	the	interpolation.
Bilinear	interpolation	resampling	is	the	most	commonly	used	and	generally
provides	good	results.



Figure	6.11.	A	diagram	showing	the	bilinear	interpolation	process

Figure	6.12.	A	mathematical	example	of	the	bilinear	interpolation	approach

The	third	approach	is	called	cubic	convolution	interpolation	and	uses	a
weighted	averaging	of	the	closest	16	pixels.	The	weighting	is	performed	in	such
a	way	as	to	maintain	the	sharpness	of	the	imagery.	Figure	6.13	shows	an
example	of	the	pixels	selected	to	compute	the	new	value	for	a	single	pixel.	The
result	of	this	interpolation	is	some	smoothing	of	the	imagery	despite	the
weighting	chosen	to	minimize	the	smoothing.	In	other	words,	the	high	and	low
pixel	values	(the	variation)	in	the	original	image	are	reduced,	resulting	in	a	more
uniform	image.	While	this	image	can	be	aesthetically	and	visually	pleasing,	it



has	lost	some	of	the	information	in	those	pixel	values	that	may	be	useful	in
image	analysis.	Therefore,	it	is	important	to	understand	the	purpose	of	the
imagery	before	any	resampling	is	applied.	Cubic	convolution	is	often	the	most
suitable	resampling	method	selected	for	visual	interpretations.	Those	who	wish
to	use	the	imagery	as	a	backdrop	in	their	geospatial	analysis	should	be	quite
satisfied	with	this	resampling	approach.	However,	it	is	not	necessarily	the	best
for	those	analysts	wishing	to	digitally	process	the	imagery	for	land-cover
mapping	and	other	related	purposes.

Figure	6.13.	A	diagram	showing	the	cubic	convolution	interpolation	process

In	many	cases,	the	analyst	has	a	choice	and	can	order	imagery	geometrically
corrected	with	the	resampling	approach	appropriate	for	their	purposes.	While	the
geospatial	analyst	will	typically	not	perform	resampling,	knowledge	of	which
approach	is	applied	to	the	imagery	is	important	for	deciding	the	future	use	of	the
imagery.	In	other	cases	(as	in	Landsat	imagery,	which	is	processed	using	cubic
convolution),	the	imagery	is	always	resampled	using	a	single	resampling
technique.	However,	the	geospatial	analyst	must	still	be	aware	of	which
approach	was	used	as	a	reason	for	explaining	the	results	of	their	analysis.



Georeferencing
Images	are	typically	georeferenced	to	the	ground,	which	means	that	a	transform
from	ground	coordinates	to	image	coordinates	has	been	determined.	The	new
image	is	created	by	applying	the	transforms	with	the	appropriate	resampling
either	for	displaying	or	analysis	of	the	image.	If	the	image	has	already	been
rectified,	such	as	is	the	case	with	an	orthoimage,	then	to	produce	an	output	that
has	a	different	pixel	alignment,	the	original	image	will	be	resampled	at	least
twice:	once	during	the	original	orthorectification	process	and	a	second	time	to
resample	it	for	display	or	analysis.	Remember	that	resampling	alters	the
radiometric	and/or	the	geometric	properties	of	an	image	and	should	be
performed	a	little	as	possible.	Therefore,	it	is	optimum	to	orthorectify	the	image
directly	to	the	pixel	alignment	to	be	used	for	analysis.	Alternatively,	it	is	possible
to	create	the	full	orthorectified	image	by	storing	the	original	image	and	the
required	transform,	and	then	applying	the	orthorectification	and	resampling	on
the	fly	such	that	only	a	single	defined	resampling	takes	place.	The	disadvantage
to	such	on-the-fly	processing	is	that	the	different	transforms	need	to	be
maintained	and	applied,	which	increases	the	complexity	of	the	process.	Hence
for	most	GIS	applications,	the	images	are	preorthorectified	to	ground
coordinates,	and	it	is	acknowledged	that	some	loss	of	information	will	have
taken	place	because	of	the	additional	resampling.	When	comparing	two	images,
no	additional	resampling	needs	to	take	place	so	long	as	the	two	images	are	in	the
same	projection,	pixel	size,	and	alignment.

2D	Transforms
Multiple	transforms	can	be	computed	between	image	space	and	ground	space.
The	appropriate	transform	to	use	depends	on	the	distortion	that	needs	to	be
modeled	to	correct	the	imagery,	and	the	accuracy	required.	The	transformation
parameters	also	need	to	be	determined.	These	may	be	implicit	or	may	need	to	be
determined	based	on	measuring	control	points.

Control	points	(or	ground	control	points	[GCPs])	are	locations	in	an	image
for	which	the	ground	coordinates	are	known.	They	may	be	measured	by	a
manual	process	in	which	the	user	selects	the	locations	in	the	image	and	the
corresponding	locations	on	a	map.	In	some	cases,	the	measured	ground	locations
are	determined	by	field	surveys.	It	is	imperative	that	the	control	points	be
accurately	located	on	both	the	image	and	the	map	(ground).	GCPs	need	to	be
distinct	and	easily	identifiable	on	both	the	map	and	the	image.	Usually,	it	is	far
easier	to	identify	the	exact	location	of	a	road	intersection	or	a	boundary	between



different	land-cover	types	on	a	map	than	it	is	on	the	image.	Depending	on	the
spatial	resolution	of	the	imagery	(pixel	size),	many	features	that	are	clear	on	a
map	or	the	ground	appear	to	be	fuzzy	or	indistinct	on	the	imagery.	However,
effective	modeling	of	the	geometric	relationship	between	the	image	and	the	map
is	highly	dependent	on	very	good	GCP	selection.

The	number	and	distribution	of	the	GCPs	are	also	very	important.	A
sufficient	number	of	good	points	must	be	selected	across	the	entire	image.	If	the
image	has	lots	of	road	intersections	and	other	easily	distinguishable	points,	it	is
relatively	easy	to	collect	points	throughout	the	image,	including	near	each	of	the
corners	as	well	as	in	the	middle.	Often,	points	are	more	distinguishable	in	one	or
two	sections	of	the	image,	and	more	work	must	be	devoted	to	obtaining	good
GCPs	in	the	other	parts	of	the	image.	The	key	is	to	get	sufficient	good	GCPs	to
accurately	determine	the	relationship	between	the	image	and	the	map	to	perform
the	appropriate	coordinate	transformation.

With	the	rapid	increase	of	available	accurate	basemap	imagery,	a	process	of
automated	image-to-image	registration	is	also	often	used	by	which	the	system
searches	for	locations	in	a	reference	image	that	has	already	been	accurately
georeferenced.	This	process	works	well	if	the	images	are	relatively	similar	in
appearance	and	resolution,	but	there	are	often	issues	when	imagery	from
different	seasons	are	used	or	if	significant	changes	have	taken	place	between	the
two	dates.

The	simplest	transform	is	just	a	shift	and	scale	change.	The	determination	of
such	a	transform	requires	a	minimum	of	two	known	points	in	ground	and	image
spaces	to	determine	the	parameters.	Such	a	transform	is	defined	using	four
parameters	and	is	applicable	only	to	images	that	have	already	been
orthorectified.	Figure	6.14	shows	an	example	of	how	a	shift	and	scale	can	be
applied	to	an	image	based	on	two	control	points.



Figure	6.14.	An	illustration	of	shift	and	scale	in	x	and	y

The	affine	transform	is	common	and	applies	scale	and	rotations	for	each	axis.
It	has	the	property	that	parallel	lines	remain	parallel.	A	minimum	of	three	known
points	in	ground	and	image	spaces	must	be	collected	to	determine	the
parameters.	It	is	defined	using	six	parameters	and	referred	to	as	a	first-order
polynomial	transform.	Figure	6.15	shows	an	example	of	how	an	affine	transform
can	be	defined	by	three	points	and	that	the	lines	remain	parallel.

Figure	6.15.	An	illustration	of	an	affine	transform

The	projective	transform	is	useful	because	it	is	a	good,	simple	representation
of	a	how	an	image	that	is	not	horizontal	gets	projected	to	the	ground.	Lines	that



were	straight	remain	straight,	but	need	not	remain	parallel.	A	minimum	of	four
known	points	in	ground	and	image	spaces	is	necessary	to	determine	the
parameters.	It	is	defined	using	eight	parameters.	In	figure	6.16	a	projective
transform	with	4	points	is	shown.	Such	transforms	are	common	for	oblique
imagery.

Figure	6.16.	An	illustration	of	a	projective	transform

The	second-order	polynomial	provides	additional	parameters	to	enable	the
modeling	of	some	nonlinearity	in	the	transforms.	It	is	used	relatively	rarely.	A
minimum	of	six	ground	and	image	points	are	required	to	determine	the
parameters.	It	is	defined	using	12	parameters.	Figure	6.17	shows	how	a	second-
order	polynomial	can	account	for	curved	features	in	the	input	image.



Figure	6.17.	An	illustration	of	a	second-order	polynomial	transform

Higher-order	transforms	are	also	possible,	but	rarely	used.	The	advantage	of
using	these	parameter-based	transforms	is	that	if	more	than	the	minimum
number	of	well-distributed	ground	and	image	points	are	defined,	then	residual
errors	can	be	computed	to	give	an	estimate	of	the	transformation	accuracy.

Other	methods	of	defining	such	transforms	include	corrections	grids,
modeling	using	splines,	or	the	tinning	methods	where	any	number	of	irregular
ground	and	image	points	can	be	used	and	the	transforms	are	determined	using
the	nearest	three	control	points	for	any	pixel.	In	all	these	cases,	the	aim	is	to
determine	a	transform	such	that	for	any	x,y	output	coordinate	the	appropriate
image	column	and	row	can	be	determined.

Finally,	the	quality	of	any	transformation	can	be	tested	and	reported	by
collecting	an	independent	(not	used	in	the	building	of	the	model)	set	of	GCPs
and	comparing	these	transformed	image	coordinates	to	the	ground	coordinates	to
see	whether	they	agree.

Orthorectification
Orthorectification	is	the	process	of	rectifying	an	image	by	taking	into
consideration	the	impacts	of	terrain.	When	images	are	taken	from	aerial	sensors,
the	transform	from	image	to	ground	space	cannot	be	completely	and	accurately
represented	without	taking	into	account	the	terrain	model	(i.e.,	elevation),	and	so
a	2D	transform	is	not	sufficient.	With	aerial	imagery,	two	locations	at	the	same
ground	x,y	coordinates	but	at	different	heights	would	have	different	image



coordinates.	If	the	terrain	model	is	not	taken	into	consideration	during
rectification,	significant	errors	will	result.	The	size	of	these	errors	is	dependent
on	the	angle	of	a	ray	of	light	to	the	ground	and	the	height	difference.	If	the
height	is	not	taken	into	consideration,	ground	points	that	vary	in	height	will	have
associated	ground	locations	that	are	in	error.

Figure	6.18.	Image	displacement	due	to	terrain	difference

Whereas	the	2D	transforms	described	above	required	only	values	of	x	and	y,
a	3D	transform	for	orthorectification	requires	x,	y,	and	z	values.	The	process	of
orthorectifying	an	image	is	the	same	as	rectifying	an	image	with	the	addition	of	a
z	coordinate	that	needs	to	be	determined	and	used	in	the	transform.	The
corresponding	z	value	for	each	x,y	value	is	typically	obtained	using	a	digital
terrain	model	that	defines	a	z	value	for	any	x,y	value.	The	accuracy	of	the
orthorectification	is	dependent	on	not	only	the	accuracy	of	the	transform	but	also
the	accuracy	of	the	digital	terrain	model.

A	number	of	different	transforms	can	be	defined	for	orthorectification.	The
most	appropriate	transform	to	use	is	dependent	on	the	physics	of	the	sensor	that
was	used	to	collect	the	imagery	and	the	method	used	to	determine	the
parameters.	The	most	common	models	used	by	sensors	are	the	standard	frame
model	and	rational	polynomial	coefficients	(RPCs).

The	standard	frame	camera	model	defines	the	physical	characteristics	of	a
camera	in	terms	of	the	camera	location	(x0,	y0,	z0),	the	orientation	angles



(omega,	phi,	kappa),	the	focal	length	of	the	camera,	and	parameters	that	define
the	interior	orientation	of	the	CCD	sensor	in	relation	to	the	camera	location	and
camera	distortion	parameters.

Figure	6.19.	A	frame	camera	model	defines	image	coordinates	as	a	function	of	terrain	x,y,z,
camera	exterior	orientation,	focal	length,	and	interior	orientation.

The	advantage	of	the	frame	camera	model	is	that	for	a	collection	of	images
taken	with	the	same	camera,	only	the	six	exterior	orientation	parameters	(x0,	y0,
z0,	omega,	phi,	kappa)	change	from	image	to	image.	With	the	appropriate
modern	sensors,	global	positioning	satellites,	and	inertial	measurement	units
attached	to	the	camera,	these	exterior	orientation	parameters	can	be	determined
without	the	need	for	ground	control.	The	focal	length	and	interior	orientation
parameters	remain	constant	and	need	to	be	determined	only	once.	Such	a	process
is	referred	to	as	“direct	georeferencing.”	Technologies	to	enable	direct
georeferencing	have	improved	significantly	in	the	last	15	years,	but	in	many
cases	some	GCPs	are	still	required	to	check	the	achieved	accuracies.

If	the	focal	length	and	interior	orientation	parameters	are	known,	then	the
exterior	orientation	parameters	can	be	determined	using	three	GCPs	for	each
image.	For	a	large	collection	of	images,	collecting	a	large	number	of	GCPs
would	be	very	expensive,	so	a	process	of	aerial	block	triangulation	is	used	to
reduce	the	number	of	points	needed.	Aerial	block	triangulation	works	by	first



determining	tie	points	between	images.	Tie	points	are	image	coordinates	that
define	the	same	location	in	two	or	more	images	and	can	be	used	to	determine	the
spatial	relationship	between	overlapping	images.	Image	processing	can	be	used
to	quickly	determine	a	large	number	of	such	tie	points	between	images.	Once	the
tie	points	are	computed,	a	process	called	bundle	block	adjustment	is	used	to
compute	the	exterior	orientation	parameters	for	the	images	while	requiring
significantly	fewer	control	points.	The	process	determines	the	unknown
parameters	by	an	iterative	process	that	reduces	errors	between	all	measurements
to	a	minimum.	If	there	is	sufficient	redundancy	in	the	parameter	determination,
then	other	parameters	such	as	the	camera	focal	length	or	camera	distortion
parameters	can	also	be	determined.

The	standard	frame	camera	model	is	not	normally	used	for	satellite	imagery,
because	the	satellites	are	typically	not	framing	sensors,	the	focal	lengths	are	too
long,	and	the	physics	of	the	sensor	and	the	atmosphere	are	not	sufficiently
defined.	Although	other	physical	camera	models	exist,	the	equations	become
complex	and	require	the	accurate	knowledge	of	camera	parameters	that	satellite
vendors	often	consider	proprietary.	The	RPC	model	is	therefore	often	used
instead	to	define	the	sensor	orientation.

The	RPC	is	defined	as	a	rational	polynomial	of	20	terms	for	x,y,z	in	the
numerator	and	denominator	(i.e.,	it	is	defined	by	a	total	of	80	parameters).	It
provides	a	good	approximation	to	most	airborne	and	satellite	sensor	models.	One
of	the	advantages	of	the	RPC	model	is	that	the	parameters	can	be	determined	by
the	satellite	vendors	based	on	the	physical	characteristics	of	the	sensors,	but
provided	in	a	generic	form	that	can	be	used	by	most	image	processing
applications.

Depending	on	the	accuracy	of	the	satellite	orientation	parameters,	these	RPC
parameters	can	be	determined	without	the	need	for	ground	control	to	an	accuracy
of	a	few	pixels.	However,	in	many	cases	the	provided	RPCs	are	not	sufficiently
accurate,	and	they	are	refined	by	using	GCPs	or,	for	collections	of	imagery,
using	tie	points,	control	points,	and	a	block	adjustment	process.

As	with	the	2D	georeferencing	of	imagery,	once	the	3D	transforms	for	an
image	are	known,	and	assuming	that	a	digital	terrain	model	exists,	then
orthorectification	can	be	performed	to	determine	for	each	pixel	of	an	output
image	what	the	corresponding	input	pixel	is	and	then	perform	the	resample.
Errors	are	related	to	the	accuracy	of	the	transform	and	the	accuracy	of	the
available	digital	terrain	model.	In	areas	where	the	terrain	is	smoothly	changing,
terrain	modeling	is	relatively	easy.	However,	in	cases	where	the	terrain	is
undulating	or	has	sharp	changes	caused	by	cliffs,	bridges,	or	buildings,	terrain



modeling	can	cause	shifts	or	artifacts	in	the	images.	It	is	also	important	that	the
digital	terrain	model	(DTM)	uses	the	same	datum	as	is	used	for	the	exterior
orientation.	For	example,	many	RPCs	for	satellite	imagery	are	given	using
ellipsoid	heights,	while	most	DTMs	are	stored	with	orthometric	heights,	so	these
corrections	need	to	be	made.	If	there	are	inaccuracies	in	the	DTMs	or	there	are
any	shifts	caused	by	the	use	of	incorrect	vertical	datums,	then	this	will	have	an
effect	on	the	resulting	accuracy.

In	cases	where	a	suitable	DTM	does	not	exist,	it	can	often	be	created
photogrammetrically	from	the	overlapping	images.	There	are	different
photogrammetric	methods	for	extracting	terrain	models.	As	above,	the	sensor
model	defines	the	transform	from	x,y,z	to	a	specified	row	and	column.	If	two
images	overlap,	then	for	any	x,y	point	there	should	be	a	specific	z	value	that
results	in	the	transform	returning	the	same	image	point	in	the	overlapping
images.	The	different	algorithms	work	to	find	the	best	solution.

Mosaicking
In	most	large	projects,	a	single	image	from	the	satellite	or	aerial	sensor	may	not
be	sufficient	to	cover	the	entire	project	area.	Often	tens,	hundreds,	or	even
thousands	of	individual	images	are	required	depending	on	the	extent	covered	by
each	image.	The	combining	of	many	overlapping	orthoimages	into	a	single	large
image	is	referred	to	as	mosaicking	or	creating	a	mosaic.	As	part	of	this	process,
one	needs	to	determine	what	part	of	the	overlapping	image	to	use.	Mosaics	can
be	very	large	and	are	handled	in	different	ways.	An	introduction	to	mosaicking
was	provided	in	chapter	5,	and	more	detail	on	creating	mosaics	is	covered	in
chapter	13.

Summary	—	Practical
Considerations
This	chapter	presents	a	discussion	on	controlling	the	factors	that	cause	unwanted
variation	in	imagery.	Since	remote	sensing	works	because	the	variation	in	the
imagery	is	highly	correlated	with	what	is	happening	on	the	ground,	it	is	very
important	to	minimize	any	unwanted	variation	that	reduces	this	correlation.	To
understand	this	process,	it	is	important	to	know	about	electromagnetic	energy



and	how	it	interacts	with	the	objects	being	imaged.	While	the	sensor	recording
the	imagery	measures	the	amount	of	electromagnetic	energy	reaching	that
sensor,	a	number	of	factors	actually	must	be	considered	before	using	the
imagery.	Digital	imagery	is	recorded	in	DNs	based	on	the	radiometric	resolution
of	the	sensor.	These	values	can	be	used	to	process	the	imagery,	but	are	more
often	converted	to	radiance	using	the	calibration	information	about	that
particular	image	and	then	finally	to	reflectance	using	ATCOR.

ATCOR	is	one	type	of	radiometric	correction	used	to	control	unwanted
variation	in	the	imagery.	The	other	types	of	radiometric	correction	control	either
issues	with	the	sensor	or	issues	caused	by	the	angle	of	the	sun	or	the	topography
of	the	ground.	Other	factors	that	cause	unwanted	variation	in	the	imagery	are
clouds	and	cloud	shadows.	Clouds	are	usually	easy	to	detect,	while	their
shadows	can	be	more	difficult.	Both	cause	the	information	recorded	in	the
imagery	to	be	unrepresentative	of	what	is	actually	on	the	ground.	Failure	to	deal
with	clouds	can	be	a	large	source	of	unwanted	variation	on	the	imagery.	It	is
always	better,	but	not	always	possible,	to	use	cloud-free	imagery.

In	addition	to	corrections	needed	to	the	radiometry	to	control	unwanted
variation	in	the	imagery,	geometric	corrections	are	also	very	important.	Given
that	the	power	of	a	GIS	is	to	be	able	to	very	accurately	overlay	various	data
layers,	the	use	of	imagery	in	a	GIS	relies	heavily	on	registering	the	imagery	to
the	ground.	Because	the	earth	is	a	sphere	spinning	on	its	axis,	and	its	surface	is
not	flat,	the	geometric	correction	of	imagery	is	not	trivial.	The	ability	to	register
an	image	depends	on	a	technique	called	resampling	that	accounts	for	these
factors.	Different	resampling	methods	have	varying	advantages	and
disadvantages	depending	on	how	the	imagery	will	be	used	in	the	GIS.	Nearest
neighbor	resampling	preserves	data	values	that	may	be	important	in	creating	a
thematic	map	but	is	not	the	best	choice	when	resampling	imagery	for	a	base
image	because	of	the	artifacts	it	can	introduce.	Bilinear	interpolation	and	cubic
convolution	both	solve	the	linear	feature	problem,	but	both	compute	some	type
of	averaging	of	the	data,	which	may	remove	some	information.	Finally,
correcting	the	imagery	for	changes	in	the	earth’s	surface	(elevation)	is	especially
complicated	and	requires	a	process	called	orthorectification.



Section	3
Extracting	Information

from	Imagery



Chapter	7
Understanding	Variation	on	the
Ground	—	the	Importance	of	the
Classification	Scheme

Introduction
Creating	an	accurate	map	requires	understanding	the	variation	on	the	ground	and
the	variation	on	the	imagery	and	then	relating	them	to	one	another.	The	greater
the	correlation	between	what	varies	on	the	ground	and	what	varies	on	the	image,
the	better	the	map.	In	addition,	other	spatial	data	layers	(e.g.,	slope,	aspect,
elevation,	soils)	can	aid	in	understanding	this	variation.	The	development	of	an
effective	classification	scheme	that	distinguishes	and	defines	the	variation	to	be
mapped	is	vital	to	successful	mapping.

This	chapter	focuses	on	how	to	create	a	robust	classification	scheme.	First,
we	examine	the	requirements	of	robust	classification	schemes.	Next,	we	review
common	classification	schemes	in	use	today.	The	chapter	ends	with	a	real-world
example	of	a	classification	scheme.

Definition	and	Why	Classification
Schemes	Are	Important



Classification	schemes	are	systems	for	logically	organizing	and	categorizing
information	or	data	(Cowardin	et	al.,	1979).	They	enable	the	map	producer	to
classify	a	complex	landscape	into	classes	and	allow	the	map	user	to	readily
recognize	and	use	those	classes	(Congalton	and	Green,	2009).	Therefore,
creating	a	map	requires	the	development	of	an	appropriate	and	effective
classification	scheme	that	clearly	defines	and	distinguishes	the	classes	of	objects
to	be	mapped.	The	scheme	must	be

constrained	by	minimum	mapping	units	(MMUs),
defined	by	labels	and	rules,
totally	exhaustive,
mutually	exclusive,	and
hierarchical.

The	lack	of	a	well-defined	scheme	will	doom	a	project	to	failure.	The
inability	to	develop	and	agree	on	the	scheme	very	early	on	in	the	project	will
result	in	cost	overruns	and	significant	inefficiencies.

Constrained	by	Minimum	Mapping	Units
The	MMU	is	the	smallest	area	to	be	mapped	on	the	ground.	Anything	smaller
than	the	MMU	is	grouped	into	a	neighboring	map	class	because	it	has	been
determined	to	be	too	small	to	be	of	use	or	to	discern	on	that	map.	The	choice	of
the	MMU	is	determined	by	the	scale	or	spatial	resolution	of	the	imagery	and	the
objectives	of	the	mapping.	If	the	imagery	used	to	make	a	map	has	a	spatial
resolution	(i.e.,	pixel	size)	of	30	×	30	meters,	it	would	not	be	appropriate	to	try	to
map	any	objects	smaller	than	that	size.	In	fact,	the	MMU	is	typically	larger	than
a	single	pixel,	and	a	grouping	of	pixels	is	usually	a	more	meaningful	level	of
detail	appropriate	for	a	map.	The	smaller	the	MMU,	the	more	effort	may	be
required	to	create	the	map.	Sometimes,	a	map	will	have	multiple	MMUs,	where
one	minimum	area	is	set	for	some	map	classes	and	another	is	set	for	the	other
classes.	While	multiple	MMUs	are	not	common,	they	are	possible	depending	on
the	objectives	of	the	mapping.	Therefore,	MMU	must	be	carefully	considered	so
that	the	map’s	level	of	detail	is	consistent	with	project	needs	and	budget
constraints.

Defined	by	Labels	and	Rules
Despite	what	is	often	seen	in	practice,	a	robust	classification	scheme	must	be



more	than	just	a	list	of	the	map	class	labels	(e.g.,	water,	forest,	urban,
agriculture).	A	valid	classification	scheme	includes	rules	that	define	the	map
classes.	Without	defined	rules,	different	map	users	and	producers	will	make
assumptions	about	the	map	classes	based	on	their	own	experiences,	resulting	in
significant	confusion	about	the	classes.	For	example,	it	is	not	sufficient	to	simply
list	water	as	a	class,	but	rather	water	must	be	defined	so	that	map	producers	and
users	know	what	is	meant	by	the	water	map	category.	While	water	might	sound
like	a	self-explanatory	class,	failing	to	define	the	class	will	cause	confusion.	For
example,	is	a	swimming	pool	considered	water?	In	some	maps,	such	as	those
used	by	a	fire	department,	identifying	swimming	pools	as	water	may	be	very
important	because	swimming	pools	can	provide	a	source	of	water	for
firefighting.	In	other	maps,	a	swimming	pool	may	be	considered	part	of	an	urban
class	and	not	mapped	as	water.	Besides	swimming	pools,	examples	of	classes
where	a	“water”	label	not	accompanied	by	a	rule	defining	water	include
reservoir	and	ocean	edges,	swamps,	wetlands,	and	vernal	pools,	all	of	which	are
covered	with	water	part	but	not	all	of	the	year	because	of	tides,	seasonal	rainfall,
or	the	draining	of	reservoirs.

Figures	7.1	and	7.2	illustrate	the	importance	of	rules	being	included	in
classification	schemes.	Figure	7.1	is	a	hierarchy	of	labels	for	a	very	simple	map.
However,	without	definitions	or	rules	for	distinguishing	these	very	simple	map
classes,	it	is	easy	to	see	how	confusion	and	uncertainty	may	quickly	arise.	The
first	decision	is	to	determine	whether	the	area	is	water	or	land.	We	have	already
discussed	the	need	for	defining	even	something	as	simple	as	water.	In	this	case,
we	will	create	a	rule	that	defines	water	as	an	area	that	is	80	percent	or	more
covered	in	water	all	year.

If	we	determine	we	are	on	land,	then	we	need	to	decide	whether	the	land	is
vegetated	or	nonvegetated.	If	the	land	is	mostly	just	soil	but	has	some	tufts	of
grass	every	so	often,	is	the	area	vegetation	or	nonvegetation?	Again,	it	is	clear
that	we	need	a	rule	of	vegetation	density	to	make	this	determination.	If	we	state
that	the	area	must	have	at	least	10	percent	vegetative	cover	to	be	labeled
vegetated,	then	we	can	determine	whether	the	area	is	vegetated	or	nonvegetated.
If	we	decide	it	is	vegetated,	then	we	next	need	to	decide	whether	it	is	woody	or
herbaceous	vegetation,	which	requires	a	definition	of	woody	vegetation.	If	we
decide	it	is	woody	vegetation	we	need	another	rule	that	determines	whether	the
woody	vegetation	is	forest	or	shrub.	Figure	7.2	provides	the	map	class	hierarchy
of	figure	7.1	with	the	addition	of	rules	and	MMUs.	It	is	now	a	classification
scheme.	Hopefully,	this	very	simple	example	demonstrates	the	need	for	clear	and
concise	definitions	as	a	critical	part	of	any	classification	scheme.



Figure	7.1.	A	very	simple	hierarchy	of	map	labels	demonstrating	the	need	for	rules	to	define	the
map	classes

Figure	7.2.	The	map	labels	of	figure	7.1	turned	into	a	classification	scheme	with	the	addition	of



map	label	rules	and	minimum	mapping	units	(MMUs)

Another	example	of	the	importance	of	a	class	definition	can	be	found	when
mapping	a	forest	map	class.	Most	people	believe	they	know	what	a	forest	looks
like.	However,	many	characteristics	define	a	forest	such	as	how	tall	trees	must
be,	how	large	an	area	must	contain	trees,	or	how	dense	(i.e.,	how	close	together)
the	trees	must	be.	Many	schemes	use	tree	height	to	define	a	forest,	such	as	an
area	composed	of	trees	at	least	5	meters	tall	(Congalton	et	al.,	2014).	Using	this
definition	alone,	a	group	of	recently	planted	3-meter	tall	trees	would	not	be
called	a	forest	even	though	the	trees	would	be	taller	than	we	are	when	standing
in	the	middle	of	them.

Totally	Exhaustive
A	totally	exhaustive	classification	scheme	labels	all	the	meaningful	variation
found	on	the	ground,	resulting	in	every	single	area	on	the	map	falling	into	one	of
the	map	classes	in	the	scheme.	Careful	consideration	of	what	map	classes	are
appropriate	for	your	map	will	usually	result	in	an	exhaustive	classification.
However,	it	is	not	unusual	to	create	a	classification	scheme	in	the	office	only	to
later	discover	unique	classes	in	the	field	that	need	to	be	added	to	the	scheme.

It	is	always	useful	to	include	the	class	“other”	in	a	classification	scheme	to
label	any	area	on	your	map	that	does	not	fall	into	one	of	your	defined	map
classes.	In	feature	extraction	and	identification,	most	of	the	map	will	be	in	the
“other”	class	because	only	specific	features	are	being	identified	and	mapped.	In
thematic	mapping,	a	small	proportion	of	a	final	thematic	map	should	fall	into	the
other	class.	A	large	portion	of	a	thematic	map	labeled	as	other	often	indicates
that	the	classification	scheme	is	not	capturing	all	of	the	variation	on	the	ground
and	it	may	need	improvement.

Mutually	Exclusive
Another	characteristic	of	a	good	classification	scheme	is	that	the	map	classes	are
mutually	exclusive.	That	is,	each	and	every	object	is	clearly	labeled	by	one	and
only	one	map	class.	Here	again,	having	clear	and	effective	definitions	or	rules	of
the	map	classes	should	result	in	a	mutually	exclusive	scheme.	In	other	words,	if
the	map	classes	are	well	defined	so	that	field	personnel	and	image	analysts	can
easily	understand	each	class	and	the	differences	between	the	classes,	then	each



object	ideally	should	fall	into	only	one	of	these	classes.
While	the	goal	is	to	have	a	mutually	exclusive	classification	scheme,	in

reality	this	can	be	very	difficult	to	achieve.	For	a	simple	scheme	with	only	a	few
(e.g.,	6	to	12)	general	map	classes,	one	would	expect	to	be	able	to	use	good
definitions	to	separate	the	map	classes	and	ensure	that	they	are	mutually
exclusive.	However,	as	the	complexity	of	the	scheme	and	the	number	of	map
classes	increases,	it	becomes	much	more	difficult	to	guarantee	that	the	scheme	is
mutually	exclusive.

Hierarchical
A	hierarchical	classification	scheme	is	one	that	is	divided	into	levels	that
increase	in	detail	from	level	to	level.	Figure	7.2	is	a	hierarchical	scheme.	Figure
7.3	is	another	example	of	a	hierarchical	organization	of	map	labels.



Figure	7.3.	A	typical	hierarchical	organization	of	map	labels

As	can	be	seen	in	this	simple	example,	level	1	contains	the	broadest	map
classes,	while	level	3	contains	the	most	specific.	There	is	great	power	in
organizing	classes	hierarchically,	for	a	number	of	reasons.	First,	not	every	map
class	may	need	to	be	mapped	to	the	same	level	of	classification	detail,	and
therefore	the	analyst	can	use	a	higher	level	of	the	hierarchy	where	necessary
while	using	more-general	classes	where	detail	is	not	needed.	In	addition,	when
assessing	the	accuracy	of	the	map,	it	may	not	be	feasible	or	cost	effective	to
assess	the	map	at	its	most	detailed	level.	In	this	case,	the	hierarchical	structure	of
the	classification	scheme	can	be	used	to	collapse	the	map	classes	down	to	fewer
more-general	classes	that	can	then	be	assessed	for	accuracy.	Figure	7.4	is	another
example	of	a	hierarchical	classification	scheme,	this	time	showing	different
levels	of	detail	based	on	the	objectives	of	the	map.



Figure	7.4.	An	example	of	a	hierarchical	classification	scheme	for	forest	classification	in	Sonoma
County,	California.	Source:	Sonoma	County	Agriculture	Preservation	and	Open	Space	District

Which	Classification	Scheme	to	Use
Which	classification	scheme	to	use	is	usually	a	decision	negotiated	between	the
map	producers	and	users.	There	are	always	trade-offs	between	the	detail	of	the
map	desired	by	users	versus	the	costs	and	schedule	required	to	produce	the	map.
The	more	detail,	the	higher	the	costs,	and	the	longer	the	time	required	to	make
the	map.

Once	the	characteristics	of	a	good	classification	scheme	are	adopted,	it	is
possible	to	select	or	build	the	appropriate	scheme	for	a	project.	The	first	decision
will	be	whether	to	adopt	an	existing	scheme	or	to	build	a	new	one.

Existing	Classification	Schemes



There	are	many	well-developed,	widely	used	classification	schemes	for	various
types	of	thematic	and	feature	maps.	If	an	existing	scheme	is	well	suited	to	a
project,	it	makes	sense	to	use	it	(or	adapt	it	to	the	particular	project),	rather	than
creating	a	completely	new	scheme.	Using	or	adapting	an	existing	classification
scheme	saves	the	considerable	work	of	creating	a	new	one	and	has	the	added
benefit	of	ensuring	that	the	map	will	integrate	well	with	other	existing	maps	that
use	the	same	or	similar	classification	scheme.

Many	times	an	existing	scheme	can	be	used.	For	example,	for	land-cover	and
land-use	mapping,	the	Anderson	classification	scheme	(Anderson	et	al.,	1976)	is
often	chosen	as	a	starting	point.	The	Anderson	scheme	was	developed	by
scientists	at	the	US	Geological	Survey	(USGS)	particularly	for	use	with
remotely	sensed	imagery.	There	are	other	schemes	for	land-cover	and	vegetation
mappings	such	as	the	one	used	for	USGS’s	2011	National	Land	Cover	Database
and	the	National	Vegetation	Classification	(NVC)	scheme,	which	is	the	result	of
collaboration	between	federal	agencies	through	the	Federal	Geographic	Data
Committee	and	the	private	sector	(FGDC,	2008).	The	Food	and	Agricultural
Organization	(FAO)	of	the	UN	has	also	developed	a	robust	land-cover
classification	scheme.	There	are	also	schemes	designed	specifically	for	other
applications	such	as	wetlands,	wildland	fuels,	transportation,	hydrology,	coastal
environments,	and	soils.	Table	7.1	presents	a	list	of	existing	classification
schemes	commonly	used	today.	One	should	always	search	to	see	whether	a
robust	and	appropriate	classification	scheme	exists	before	deciding	to	create	a
new	scheme.

Table	7.1.	Commonly	used	classification	schemes



Building	New	Classification	Schemes
Sometimes	it	is	necessary	to	build	a	new	or	more	detailed	classification	scheme
than	is	available	in	existing	schemes,	especially	for	vegetation	management.	For
example,	the	National	Park	Service	builds	new	classification	schemes	when	each
national	park	is	mapped	for	the	first	time,	and	the	California	Department	of	Fish
and	Wildlife	develops	new	schemes	when	performing	detailed	vegetation
mapping	of	a	section	of	the	state.	Both	agencies	rely	on	the	conceptual
framework	of	the	NVC,	which	uses	the	hierarchy	of	vegetation	grouping
displayed	in	figure	7.5.	To	determine	how	vegetation	in	an	area	should	be
grouped,	multiple	vegetation	samples	are	collected	throughout	the	areas	to	be
mapped.	Determination	of	the	area’s	vegetation	classes	is	accomplished	through
multivariate	analysis	of	the	sample	species	cover	data	using	techniques	such	as
cluster	analysis	and	ordination	(Green	et	al.,	2015).	Once	the	samples	are
grouped	into	vegetation	associations,	a	robust	classification	scheme	is	developed
that	includes	a	rigorous	key	and	vegetation	class	descriptions.



Figure	7.5.	National	vegetation	classification	(NVC)	hierarchy

When	using	any	classification	scheme,	and	especially	when	creating	a	new
one,	it	is	important	to	remember	that	it	is	possible	that	not	all	the	map	classes	to
be	mapped	can	be	distinguished	using	the	remotely	sensed	imagery.	Thinking	of
a	Venn	diagram	is	helpful	here	(figure	7.6).	One	circle	of	the	diagram	represents
the	map	classes	of	interest	in	the	classification	scheme,	while	the	other	circle
represents	what	can	be	identified	on	the	remotely	sensed	imagery.	If	these	circles
completely	overlap,	then	the	imagery	should	be	sufficient	to	create	the	thematic
map.	However,	if	these	circles	do	not	completely	overlap,	then	other	information
including	other	geospatial	data	layers	would	be	necessary	to	create	the	map.	At
this	point,	the	power	of	using	GIS	becomes	important	in	the	creation	of	the	map.
This	synthesis	of	GIS	and	imagery	is	the	central	theme	of	this	book.



Figure	7.6.	Relationship	between	the	map	classes	of	interest	in	the	classification	scheme	and	the
ability	of	the	remotely	sensed	imagery	to	distinguish	these	classes

Case	Study—Sonoma	County,	California,	Vegetation	Map
Classification	Key

A	 good	 example	 of	 a	 robust	 map	 classification	 scheme	 is	 the	 one	 created	 for
Sonoma	 County,	 California,	 by	 the	 California	 Department	 of	 Fish	 and	 Wildlife	 in
2015.	 The	 NVC	 provides	 the	 hierarchy	 for	 the	 scheme,	 and	 the	 scheme	 is
expressed	 as	 a	 classification	 key.	 To	 create	 the	 key,	 more	 than	 1,400	 detailed
vegetation	samples	were	collected	throughout	the	county.	Next,	personnel	with	the
California	Department	 of	Fish	and	Wildlife	 used	ordination	analysis	 to	 classify	 the
samples	 into	 NVC	 vegetation	 macrogroups,	 groups,	 and	 alliances.	 They	 then
created	a	key	 to	distinguish	 the	vegetation	alliances	 from	one	another.	Finally,	 the
vegetation	alliance	key	was	transformed	into	a	land-use	land-cover	mapping	key	by
including	life-form	rules	and	combining	some	alliances	into	groups	or	macrogroups.
The	following	are	important	elements	of	the	mapping	key:

The	map	key	is	more	general	than	the	vegetation	alliance	key.	The	map	key	was
developed	 by	 a	 team	 composed	 of	 vegetation	 analysts,	map	 users,	 and	map
producers	who	made	explicit	trade-offs	between	the	level	of	map	detail	desired
versus	the	mapping	technologies,	budget,	and	schedule	available.
The	key	employs	the	nationwide	standard	NVC	hierarchy,	which	means	that	the
resulting	 map	 can	 be	 compared	 with	 other	 areas	 mapped	 within	 the	 NVC
hierarchy,	 and	 map	 users	 from	 throughout	 the	 nation	 in	 many	 different
organizations	will	be	familiar	with	the	hierarchy.
Terms	used	in	the	key,	such	as	relative	cover,	dominance,	and	codominance	are
clearly	 defined.	 If	 the	 terms	 of	 a	 scheme	 are	 not	 well	 defined,	 different	 field
personnel	and	 image	analysts	will	define	the	terms	differently,	resulting	 in	map
confusion.
Unlike	 the	 NVC,	 the	 key	 starts	 with	 simple	 life-form	 classification	 rules	 that
enable	map	producers	and	users	to	clearly	decide	whether	they	are	in	a	forest,
shrubland,	perennial	cropland,	etc.

The	field	key	follows,	at	the	end	of	the	chapter.

Summary—Practical	Considerations
This	chapter	is	wholly	dedicated	to	understanding	the	importance	of	developing
a	robust	classification	scheme	when	using	imagery	to	create	a	map.	This	concept
is	so	important	and	yet	so	often	overlooked	that	it	deserves	its	own	chapter.
When	thinking	about	a	classification	scheme	it	is	most	important	to	remember
the	four	characteristics	of	any	good	scheme:	defined	by	labels	and	rules,	totally



exhaustive,	mutually	exclusive,	and	hierarchical.	This	chapter	really	emphasizes
the	importance	of	having	accurate	definitions	of	each	thematic	map	class	in	the
classification	scheme.	While	this	seems	obvious,	it	is	the	factor	that	seems	to	be
most	neglected	when	using	a	classification	scheme.	Each	class	must	be	well
defined	so	that	the	mapmakers	and	the	map	users	both	know	exactly	what	each
class	means.

The	MMU	is	also	strongly	emphasized	in	this	chapter.	While	MMU	is	a
well-known	and	common	concept	for	those	conducting	photo	or	image
interpretation,	it	is	not	as	common	in	the	digital	processing	community.
However,	deciding	the	smallest	unit	of	significance	on	the	map	is	important	no
matter	how	the	map	is	created.

Finally,	this	chapter	provides	a	practical	example	of	a	classification	scheme.
All	the	issues,	challenges,	considerations,	and	problems	presented	in	the	chapter
are	demonstrated	through	this	example.	A	poor	classification	scheme	can	cause
serious	problems	with	the	entire	mapping	project,	from	training	site	collection,
to	data	exploration,	to	image	classification,	to	map	accuracy	assessment.	A
quickly	developed	and	nonrigorous	classification	scheme	can	more	than	double
the	anticipated	costs	of	a	mapping	project.



Hierarchical	Field	Key	to	the	Vegetation	Alliances	of	Sonoma
County

This	key	is	for	the	vegetation	types	found	in	Sonoma	County,	based	on	the	classification
developed	by	analyzing	survey	data	collected	for	this	and	other	relevant	projects.	It	is	intended	as
a	guide	to	field-based	and	image	interpretation-based	identification	of	vegetation.	This	key	is	not
dichotomous;	instead	it	follows	the	hierarchy	of	the	United	States	National	Vegetation
Classification	(USNVC)	as	of	the	publication	of	the	Manual	of	California	Vegetation	(Sawyer	et	al.,
2009).	The	USNVC	hierarchy	is	promoted	by	the	Survey	of	California	Vegetation	(SCV),	Federal
Geographic	Data	Committee	(FGDC)	and	the	Ecological	Society	of	America’s	Vegetation	Panel
(FGDC	2008,	Faber-Langendoen	et	al.	2014).
This	key	lists	vegetation	types	starting	at	the	USNVC	macrogroup	level	and	proceeding	down	to
the	association	level.	The	complete	hierarchy	for	this	classification	is	listed	in	Table	1,	Final
Vegetation	Classification	for	Sonoma	County,	California.

Due	to	the	high	diversity	of	the	vegetation	types	in	the	area,	this	is	a	complex	key.	Follow	the
instructions	in	a	section	carefully	and	sequentially	to	arrive	at	the	correct	vegetation	type.	You	will
need	to	collect	or	refer	to	plant	composition	data	that	includes	not	only	those	species	that	are
dominant	but	also	those	“indicator”	or	characteristic/diagnostic	species,	whose	presence	may
cause	a	stand	to	key	to	a	particular	vegetation	type.	If	it	seems	that	a	stand	of	vegetation	could
key	to	more	than	one	type,	review	the	descriptions	(e.g.,	stand	tables,	environmental	information)
for	each	type	to	determine	which	one	fits	best.	Note	that	this	vegetation	key	may	include	types
that	are	not	accurately	detectable	in	remotely-sensed	imagery.
Terms	and	Concepts	Used	throughout	the	Key
Stand:	The	basic	physical	unit	of	plant	communities	in	a	landscape.	It	has	no	set	size.	Some
vegetation	stands	are	very	small,	such	as	certain	wetland	types,	and	some	may	be	several	square
kilometers	in	size,	such	as	certain	forest	types.	A	stand	is	defined	by	two	main	unifying
characteristics:

1.	It	has	compositional	integrity.	Throughout	the	stand,	the	combination	of	species	is	similar.
The	stand	is	differentiated	from	adjacent	stands	by	a	discernible	boundary	that	may	be	abrupt
or	occur	indistinctly	along	an	ecological	gradient.
2.	It	has	structural	integrity.	It	has	a	similar	history	or	environmental	setting	that	affords
relatively	similar	horizontal	and	vertical	spacing	of	plant	species.	For	example,	a	hillside
forest	originally	dominated	by	the	same	species	that	burned	on	the	upper	part	of	the	slopes
but	not	the	lower	would	be	divided	into	two	stands.	Likewise,	a	sparse	woodland	occupying	a
slope	with	very	shallow	rocky	soils	would	be	considered	a	different	stand	from	an	adjacent
slope	with	deeper,	moister	soil	and	a	denser	woodland	or	forest	of	the	same	species.

The	compositional	and	structural	features	of	a	stand	are	often	combined	into	a	term	called
homogeneity.	For	an	area	to	meet	the	definition	of	a	stand,	it	must	be	homogeneous	at	the	scale
being	considered.



United	States	National	Vegetation	Classification	(USNVC):	A	central	organizing	framework	for
how	all	vegetation	in	the	United	States	is	inventoried	and	studied,	from	broad	scale	formations
(biomes)	to	fine-scale	plant	communities.	The	purpose	of	the	NVC	is	to	produce	uniform	statistics
about	vegetation	resources	across	the	nation,	based	on	vegetation	data	gathered	at	local,
regional,	or	national	levels.	The	latest	classification	standard	was	published	in	by	the	FGDC
(2008).

The	hierarchy	units	in	the	USNVC	from	highest	to	lowest	(i.e.,	broadest	to	finest)	are:
						1.	Formation	Class
									2.	Formation	Subclass
												3.	Formation
															4.	Division
																		5.	Macrogroup
																					6.	Group
																								7.	Alliance
																											8.	Association

Alliance:	Plant	communities	based	on	dominant/diagnostic	species	of	the	uppermost	or	dominant
stratum.	Accepted	alliances	are	part	of	the	USNVC	hierarchy.	For	the	Sonoma	County	Vegetation
Map	(SVM),	map	classes	are	typically	at	the	alliance	level	of	the	USNVC	hierarchy.

Association:	The	most	botanically	detailed	or	finest-scale	plant	community	designation	based	on
dominant	species	and	multiple	co-dominant	or	subdominant	indicator	species	from	any	stratum.
Associations	are	also	part	of	the	USNVC	hierarchy.	The	SVM	map	classes	are	not	typically
defined	to	the	association	level.
Plant	community	nomenclature:	Species	separated	by	“–”	are	within	the	same	stratum;	species
separated	by	“/”	are	in	different	strata.

Cover:	The	primary	metric	used	to	quantify	the	importance/abundance	of	a	particular	species	or	a
particular	vegetation	layer	within	a	stand.	It	is	measured	by	estimating	the	aerial	extent	of	the
living	plants,	or	the	bird’s-eye	view	looking	from	above,	for	each	category.	Cover	in	this	mapping
project	uses	the	concept	of	“porosity”	or	foliar	cover	rather	than	“opacity”	or	crown	cover.	Thus,
field	crews	are	trained	to	estimate	the	amount	of	light	versus	shade	produced	by	the	canopy	of	a
plant	or	a	stratum	by	taking	into	account	the	amount	of	shade	it	casts	excluding	the	openings	it
may	have	in	the	interstitial	spaces	(e.g.,	between	leaves	or	branches).	This	is	assumed	to	provide
a	more	realistic	estimate	of	the	actual	amount	of	shade	cast	by	the	individual	or	stratum	which,	in
turn,	relates	to	the	actual	amount	of	light	available	to	individual	species	or	strata	beneath	it.
However,	as	a	result,	cover	estimates	can	vary	substantially	between	leaf-on	versus	leaf-off
conditions.	Stands	dominated	by	deciduous	species	(e.g.,	Aesculus	californica,	Toxicodendron
diversilobum)	should	be	sampled	during	leaf-on	since	they	will	have	substantially	less	cover	when
leaves	are	absent	and	may	key	to	another	type.
Absolute	cover:	The	actual	percentage	of	the	surface	area	of	the	survey	that	is	covered	by	a
species	or	physiognomic	group	(trees,	shrubs,	herbaceous),	as	in	“tan	oak	covers	10%	of	the
area	being	surveyed.”	Absolute	cover	of	all	species	or	physiognomic	groups,	when	added
together,	may	total	greater	than	100%,	because	this	is	not	a	proportional	number	and	plants	can
overlap	with	each	other.	For	example,	a	stand	could	have	25%	tree	cover	in	the	upper	layer,	40%
shrub	cover	in	the	middle	layer,	and	50%	herbaceous	cover	when	surveyed	on	the	ground.
However,	when	aerial	interpretation	is	being	used,	the	maximum	absolute	value	is	100%,	since
lower	levels	of	vegetation	cannot	be	seen	through	the	overstory	on	aerial	photographs.

Relative	cover:	The	percentage	of	surface	area	within	a	survey	area	that	is	covered	either	by	one
species	relative	to	other	species	within	the	same	physiognomic	stratum	(tree,	shrub,	herbaceous)
or	one	stratum	relative	to	the	total	vegetation	cover	in	a	polygon.	Thus,	50%	relative	cover	of



Quercus	douglasii	in	the	tree	layer	means	that	Q.	douglasii	composes	half	the	cover	of	all	tree
species	within	a	stand,	while	50%	relative	shrub	cover	means	that	shrubs	make	up	half	the	cover
of	all	vegetation	within	a	stand.	Relative	cover	values	are	proportional	numbers	that,	when	added
together,	total	100%	for	each	species	within	a	stratum	or	each	stratum	within	a	stand	of
vegetation.
Dominance:	Dominance	refers	to	the	preponderance	of	vegetation	cover	in	a	stand	of	uniform
composition	and	site	history.	It	may	refer	to	cover	of	an	individual	species	as	in	“dominated	by	tan
oak,”	or	it	may	refer	to	dominance	by	a	physiognomic	group,	as	in	“dominated	by	shrubs.”	When
we	use	the	term	in	the	key,	a	species	is	dominant	if	it	is	in	relatively	high	cover	in	each	stand.	See
“dominance	by	layer,”	below,	for	further	explanation.
Strongly	dominant:	A	species	in	the	dominant	life-form	stratum	has	60%	or	greater	relative	cover.

Co-dominant:	Codominance	refers	to	two	or	more	species	in	a	stand	with	similar	cover.
Specifically,	each	species	has	between	30%	and	60%	relative	cover.	For	example	in	a	coastal
scrub	stand	with	5%	Baccharis	pilularis,	4%	Frangula	californica,	and	3%	Rubus	ursinus	(total
13%	shrub	cover),	technically	only	the	Baccharis	(5/13	=	39%	relative	cover)	and	the	Frangula
(4/13	=	31%	relative	cover)	would	be	co-dominant	because	Rubus	would	only	have	23%	relative
cover	(3/13	=	23%).
Characteristic/Diagnostic	species:	Should	be	present	in	at	least	80%	of	the	stands	of	the	type,
with	no	restriction	on	cover.	Relatively	even	spacing	throughout	the	stand	is	important,	particularly
in	vegetation	with	low	total	cover,	since	an	even	distribution	of	the	diagnostic	species	is	a	much
better	indicator	than	overall	cover.	Characteristic	species	that	are	evenly	distributed	are	better
indicators	of	a	type	than	species	with	higher	cover	and	patchy	distribution.

Dominance	by	layer/stratum:	Tree,	shrub,	and	herbaceous	layers	are	considered
physiognomically	distinct.	Alliances	are	usually	named	by	the	dominant	and/or	characteristic
species	of	the	tallest	characteristic	layer	(see	tree-characterized,	shrub-characterized,	and	herb-
characterized	vegetation	definitions	below).	Average	covers	within	the	dominant	layer	reflect	the
“modal”	concept	of	the	health/age/environment	of	a	particular	vegetation	type.	For	example,	a
higher	average	cover	of	woody	plants	within	a	stand	not	recently	affected	by	disturbance	reflects	a
mode	of	general	availability	of	water,	nutrition,	and	equitable	climate,	while	lower	average	cover
under	similar	conditions	would	reflect	lower	availability	of	these	things.
Woody	plant:	A	vascular	plant	species	that	has	a	noticeably	woody	stem	(e.g.,	shrubs	and	trees).
It	does	not	include	herbaceous	species	with	woody	underground	portions	such	as	tubers,	roots,	or
rhizomes.

Tree:	A	one-stemmed	woody	plant	that	normally	grows	to	be	greater	than	5	meters	tall.	In	some
cases,	trees	may	be	multistemmed	(ramified	due	to	fire	or	other	disturbance)	but	the	height	of
mature	plants	typically	exceeds	5	meters.	If	less	than	5	meters	tall,	undisturbed	individuals	of
these	species	are	usually	single-stemmed.	Certain	species	that	sometimes	resemble	shrubs	but
may	be	trees	in	other	areas	(e.g.,	Aesculus	californica)	are,	out	of	statewide	tradition	or	by	the
USNVC,	called	trees.	It	behooves	one	to	memorize	which	species	are	“traditionally”	placed	in	one
life-form	or	another.	We	use	the	accepted	life-forms	in	the	USNVC	or	the	PLANTS	Database
(USDA	NRCS	2015)	to	do	this.
Tree-characterized	vegetation:	Trees	are	evenly	distributed	throughout	the	stand.	In	the
Mediterranean	climate	of	the	North	Coast,	tree-dominated	alliances	typically	have	>10%	absolute
tree	cover,	providing	a	consistent	structural	component.

Forest:	In	the	USNVC,	a	forest	is	defined	as	a	tree-dominated	stand	of	vegetation	with	60%	or
greater	absolute	cover	of	trees.	Most	forest	alliances	tend	to	have	an	average	cover	of	trees
<60%,	but	individual	stands	under	certain	conditions	may	drop	lower	than	60%.
Woodland:	In	the	USNVC,	a	woodland	is	defined	as	a	tree-dominated	stand	of	vegetation	with



between	25%	and	60%	absolute	cover	of	trees.	Most	woodland	alliances	tend	to	have	an	average
cover	of	trees	with	25-60%,	but	individual	stands	under	certain	conditions	may	drop	higher	or
lower	than	this	range.

Emergent:	A	plant	(or	vegetation	layer)	is	considered	emergent	if	it	has	low	cover	and	rises	above
a	layer	with	more	cover	in	the	stand.	For	example,	individual	Pseudotsuga	menziesii	trees	may
compose	an	emergent	tree	layer	of	2%	cover	over	dense	Gaultheria	shallon	and	Rubus
parviflorus	in	the	shrub	understory;	the	stand	would	be	considered	within	the	Gaultheria	shallon	–
Rubus	(ursinus)	Shrubland	Alliance	because	the	total	tree	cover	is	<10%	and	the	shrub	cover	is
>10%.	Medium	to	tall	shrubs	are	not	considered	emergent	over	shorter	shrubs,	but	short	trees	are
considered	emergent	over	tall	shrubs.
Shrub:	A	multistemmed	woody	plant	that	is	usually	0.2-5	meters	tall.	Definitions	are	blurred	at	the
low	and	high	ends	of	the	height	scales.	At	the	tall	end,	shrubs	may	approach	tree	size	based	on
disturbance	frequencies	(e.g.,	old-growth	resprouting	chaparral	species	such	as	Cercocarpus
montanus,	Fremontodendron	californicum,	Prunus	ilicifolia,	and	so	on,	may	frequently	attain	“tree
size,”	but	are	still	typically	multistemmed	and	are	considered	shrubs	in	this	key).	At	the	short	end,
woody	perennial	herbs	or	subshrubs	of	various	species	are	often	difficult	to	categorize	into	a
consistent	life-form	(e.g.,	Eriogonum	latifolium,	Lupinus	chamissonis);	in	such	instances,	we	refer
to	the	PLANTS	Database	or	“pick	a	lane”	based	on	best	available	definitions.

Subshrub:	A	multistemmed	plant	with	noticeably	woody	stems	less	than	0.5	meter	tall.	May	be
easily	confused	with	a	perennial	herb	or	small	shrub.	We	lump	them	into	the	“shrub”	category	in
stand	tables	and	descriptions	of	vegetation	types.
Shrub-characterized	vegetation:	Shrubs,	including	subshrubs,	are	evenly	distributed	throughout
the	stand,	providing	a	consistent	(even	if	sparse)	structural	component;	the	stand	cannot	be
characterized	as	a	tree	stand;	and	one	or	both	of	the	following	criteria	are	met:	1)	shrubs	influence
the	distribution	or	population	dynamics	of	other	plant	species;	2)	shrubs	play	an	important	role	in
ecological	processes	within	the	stand.	Shrub	alliances	typically	have	at	least	10%	absolute	shrub
cover.

Herbaceous	plant:	Any	species	of	plant	that	has	no	main	woody	stem	development;	includes
grasses,	forbs,	and	perennial	species	that	die	back	each	year.
Herb-characterized	vegetation:	Herbs	are	evenly	distributed	throughout	the	stand,	providing	a
consistent	(even	if	sparse)	structural	component	and	playing	an	important	role	in	ecological
processes	within	the	stand.	The	stand	cannot	be	characterized	as	a	tree	or	shrub	stand.

Nonvascular	vegetation:	Nonvascular	organisms	characterize	a	stand,	providing	a	consistent
(even	if	sparse)	structural	component	and	playing	an	important	role	in	ecological	processes	within
the	stand.
Botanical	nomenclature:	We	use	the	PLANTS	Database	(USDA	NRCS	2015)	as	our	standard	for
botanical	names,	except	in	two	cases.	When	a	more	current	name	has	been	assigned	in	The
Jepson	Manual,	second	edition	(Baldwin	et	al.	2012),	that	name	is	frequently	used	and	a	code
beginning	with	“2JM”	is	assigned.	General	vegetation	types,	such	as	moss	and	lichen,	have	codes
beginning	with	the	number	2	(e.g.,	2MOSS).



KEY	TO	NATURAL	AND	SEMINATURAL	VEGETATION	OF	SONOMA	COUNTY
Class	A.	Vegetation	dominated,	co-dominated,	or	characterized	by	an	even	distribution	of
overstory	trees.	The	tree	canopy	is	generally	greater	than	10%,	but	may	occasionally	be	less	than
10%	over	a	denser	understory	of	shrubs	and/or	herbs	=	Tree-Overstory	(Woodland	/	Forest)
Vegetation.
Class	B.	Vegetation	dominated,	co-dominated,	or	characterized	by	woody	shrubs	in	the	canopy.
Shrubs	usually	have	at	least	5%	cover.	Tree	species,	if	present,	generally	total	less	than	10%
absolute	cover.	Herbaceous	species	may	have	higher	cover	than	shrubs	=	Shrubland	Vegetation
Class	C.	Vegetation	dominated,	co-dominated,	or	characterized	by	nonwoody,	herbaceous
species	in	the	canopy,	including	grasses,	graminoids,	and	broad-leaved	herbaceous	species.
Shrubs,	if	present,	usually	compose	less	than	5%	of	the	vegetation	cover.	Trees,	if	present,
generally	compose	less	than	5%	cover	=	Herbaceous	Vegetation.
Class	A.	Tree-Overstory	(Woodland	/	Forest)	Vegetation

Section	I:	Woodlands	and	forests	dominated	or	characterized	by	needle	or	scale-leaved
conifer	trees.	Includes	Abies,	Hesperocyparis,	Pinus,	Pseudotsuga,	and	Sequoia.
1.	Temperate	rainforest	dominated	or	co-dominated	by	Sequoia	sempervirens	or	Abies	grandis.
Found	in	maritime	climates	with	summertime	fog.

Vancouverian	Rainforest	Macrogroup
Vancouverian	Hypermaritime	Lowland	Rainforest	Group
1a.	Sequoia	sempervirens	dominates,	co-dominates,	or	characterizes	(rarely	with	as	little
as	5%	cover)	stands	near	streams,	along	all	slopes	and	aspects,	or	on	ridges.
Associated	trees	include	Acer	macrophyllum,	Notholithocarpus	densiflorus,	Pseudotsuga
menziesii,	Torreya	californica,	and	Umbellularia	californica,	which	are	typically	sub-	to	co-
dominant	but	may	occasionally	exceed	Sequoia	in	cover.	Vaccinium	ovatum,	Oxalis
oregana,	and	Woodwardia	fimbriata	may	intermix	in	the	understory.

Sequoia	sempervirens	Alliance
Sequoia	sempervirens	–	Acer	macrophyllum	–	Umbellularia	californica	Association

Sequoia	sempervirens	–	Notholithocarpus	densiflorus	/	Vaccinium	ovatum	Association
Sequoia	sempervirens	–	Pseudotsuga	menziesii	–	Notholithocarpus	densiflorus

Provisional	Association
Sequoia	sempervirens	—	Pseudotsuga	menziesii	–	Umbellularia	californica	Association

Sequoia	sempervirens	—	Umbellularia	californica	Association
Sequoia	sempervirens	/	Oxalis	oregana	Association

Sequoia	sempervirens	/	Woodwardia	fimbriata	Riparian	Provisional	Association

1b.	Abies	grandis	has	strong	dominance	in	the	tree	overstory,	with	Pinus	muricata	and
Sequoia	sempervirens	intermixing	locally	as	subdominants.	Stands	are	rare	in	the
county.	One	stand,	found	on	a	convexity	running	along	a	middle	slope	up	to	the	ridgetop,



was	sampled	for	this	project.

Abies	grandis	Alliance

2.	Cool-temperate	coniferous	forests	and	woodlands	influenced	by	warm,	relatively	dry	summers
and	cool	rainy	winters.	Stands	are	dominated	or	co-dominated	by	Pinus	ponderosa,	Pseudotsuga
menziesii,	or	P.	menziesii	in	combination	with	Notholithocarpus	densiflorus	in	the	tree	overstory.

Californian–Vancouverian	Montane	and	Foothill	Forest	Macrogroup
2a.	Vegetation	characterized	by	a	mixture	of	Pseudotsuga	menziesii	and
Notholithocarpus	densiflorus	in	the	canopy.	Pseudotsuga	is	typically	dominant	to	co-
dominant	with	Notholithocarpus,	but	may	occasionally	be	slightly	subdominant.

			Vancouverian	Evergreen	Broadleaf	and	Mixed	Forest	Group
Pseudotsuga	menziesii	–	Notholithocarpus	densiflorus	Alliance
Pseudotsuga	menziesii	–	Notholithocarpus	densiflorus	Association

2b.	Vegetation	characterized	by	Pinus	ponderosa	and/or	Pseudotsuga	menziesii.	If
Notholithocarpus	densiflorus	is	present,	it	is	subdominant	with	relatively	low	cover.
			Upland	Vancouverian	Mixed	Woodland	and	Forest	Group

2b1.	Pinus	ponderosa	is	dominant	to	co-dominant	with	Pseudotsuga	menziesii.
Stands	with	significant	Pinus	ponderosa	were	only	encountered	twice	for	this	project
–	in	the	higher	elevation,	eastern	portion	of	the	county	in	The	Geysers.	In	both
instances,	Arbutus	menziesii,	Arctostaphylos	manzanita,	and	Quercus	chrysolepis
were	present.

Pinus	ponderosa	–	Pseudotsuga	menziesii	Alliance
Pinus	ponderosa	–	Pseudotsuga	menziesii	Association

2b2.	Pseudotsuga	menziesii	not	as	above,	but	instead	dominant	or	co-dominant
with	Arbutus	menziesii,	Quercus	agrifolia,	Q.	chrysolepis,	or	Umbellularia	californica.
When	P.	menziesii	co-dominates	with	hardwoods,	key	to	P.	menziesii,	except	when
with	Quercus	garryana,	Q.	kelloggii,	or	Notholithocarpus	densiflorus	(see	Q.
garryana	(step	4a3)	or	Q.	kelloggii	Alliance	(step	5c4)	below,	or	P.	menziesii	–	N.
densiflorus	Alliance	above,	step	2a).

Pseudotsuga	menziesii	Alliance
Pseudotsuga	menziesii	–	Arbutus	menziesii	Association
Pseudotsuga	menziesii	–	Quercus	agrifolia	Association

Pseudotsuga	menziesii	–	Quercus	chrysolepis	Association
Pseudotsuga	menziesii	–	Umbellularia	californica	Association

Pseudotsuga	menziesii	–	Umbellularia	californica	/	Polystichum	munitum	Association

3.	Closed-cone	or	xerophyllic	conifers,	including	Hesperocyparis	spp.,	Pinus	attenuata,	Pinus
muricata,	Pinus	radiata,	or	Pinus	sabiniana	is	dominant,	co-dominant,	or	characteristic	in	the
overstory.

California	Forest	and	Woodland	Macrogroup
Californian	Evergreen	Coniferous	Forest	and	Woodland	Group
3a.	Stands	dominated	by	a	native	or	planted	species	of	Hesperocyparis.

3a1.	Planted	Hesperocyparis	macrocarpa	dominates	in	patches	or	along	roads.	In
this	region	of	California,	stands	are	considered	seminatural	since	they	are	not
naturally	occurring.

Hesperocyparis	macrocarpa	Special	Stands	and	Seminatural	Alliance



Hesperocyparis	macrocarpa	Provisional	Seminatural	Association

3a2.	A	native	cypress	species,	Hesperocyparis	macnabiana	or	H.	sargentii,
dominates	or	characterizes	stands	on	serpentine,	volcanic,	or	other	ultramafic
substrates.	Adenostoma	fasciculatum,	Arctostaphylos	spp.,	Ceanothus	jepsonii,	and
Quercus	durata	are	commonly	found	in	stands.
3a2a.	Hesperocyparis	macnabiana	characterizes	the	tree	canopy	(sometimes	with
<10%	cover)	and	may	be	similar	in	height	to	surrounding	shrubs.	Found	on	open
slopes	and	ridges	and	only	known	locally	in	the	eastern	part	of	the	county.

Hesperocyparis	macnabiana	Alliance
Hesperocyparis	macnabiana	/	Arctostaphylos	viscida	Association

3a2b.	Hesperocyparis	sargentii	dominates	on	slopes,	ridges,	or	along	stream
benches	and	terraces.	Sites	are	known	near	Harrison	Grade	or	The	Cedars.

Hesperocyparis	sargentii	Alliance
Hesperocyparis	sargentii	/	Ceanothus	jepsonii	–	Arctostaphylos	spp.	Provisional

Association
Hesperocyparis	sargentii	/	Quercus	durata	(mesic)	Provisional	Association

Hesperocyparis	sargentii	Riparian	Association
3b.	Stands	dominated	by	Pinus	attenuata,	P.	muricata,	P.	radiata,	or	P.	sabiniana.

3b1.	Pinus	attenuata	dominates	in	the	tree	overstory,	sometimes	with	a	moderately
dense	cover	of	shrubs	such	as	Adenostoma	fasciculatum,	Arctostaphylos	spp.,	and
Ceanothus	cuneatus	in	the	understory.

Pinus	attenuata	Alliance
Pinus	attenuata	/	Arctostaphylos	(manzanita,	canescens)	Provisional	Association

Pinus	attenuata	/	Arctostaphylos	viscida	Association

3b2.	Pinus	muricata	is	the	sole	dominant	or	may	co-dominate	with	Hesperocyparis
pigmaea	in	the	tree	overstory.	The	understory	may	include	moderate	to	dense	cover
of	shrubs	such	as	Arctostaphylos	nummularia,	Gaultheria	shallon,	and	Vaccinium
ovatum.

Pinus	muricata	Alliance
Pinus	muricata	Provisional	Association

Pinus	muricata	–	Hesperocyparis	pigmaea	Provisional	Provisional	Association
Pinus	muricata	/	Vaccinium	ovatum	Provisional	Association

3b3.	Pinus	sabiniana	dominates	or	co-dominates	with	Umbellularia	californica	in	the
tree	overstory.	Adenostoma	fasciculatum,	Arctostaphylos	viscida,	Quercus	durata,
and	other	shrubs	may	exceed	P.	sabiniana	in	cover.

Pinus	sabiniana	Alliance
Pinus	sabiniana	/	Quercus	durata	Provisional	Association

Pinus	sabiniana	/	Arctostaphylos	viscida	Association

3b4.	Planted	stands	of	Pinus	radiata	are	found	along	roadsides	or	on	slopes	where
they	were	introduced	after	fires	in	the	1960’s.

Pinus	radiata	Alliance
Pinus	radiata	Provisional	Seminatural	Association

Section	II.	Woodlands,	forests,	and	riparian	vegetation	characterized	and/or	dominated
mainly	by	native	and	nonnative	broad-leaved	evergreen	and	deciduous	trees.	Includes
species	of	Aesculus,	Acer,	Alnus,	Arbutus,	Fraxinus,	Juglans,	Notholithocarpus,	Populus,



Quercus,	Salix,	and	Umbellularia.
4.	Vegetation	dominated,	co-dominated,	or	characterized	by	one	or	more	of	the	following
broadleaf	trees:	Acer	macrophyllum,	Arbutus	menziesii,	Notholithocarpus	densiflorus,	or	Quercus
garryana.

Californian–Vancouverian	Montane	and	Foothill	Forest	Macrogroup
4a.	Broadleaf	trees	such	as	Arbutus	menziesii,	Notholithocarpus	densiflorus,	or	Quercus
garryana	dominate,	co-dominate,	or	characterize	moist,	coastal,	mixed	evergreen	forests
and	woodlands.	Stands	of	Quercus	garryana	may	also	occur	in	more	interior	settings,
where	the	winters	are	cooler	and	the	summers	are	warmer.

			Vancouverian	Evergreen	Broadleaf	and	Mixed	Forest	Group
4a1.	Arbutus	menziesii	is	either	dominant	with	subdominant	Quercus	agrifolia	or	is
dominant	to	co-dominant	with	Quercus	kelloggii	and/or	Umbellularia	californica.
Pseudotsuga	menziesii,	Heteromeles	arbutifolia,	and	Toxicodendron	diversilobum
are	often	present.	If	Arbutus	is	sub-	to	co-dominant	with	Quercus	agrifolia,	Q.
chrysolepis,	or	Notholithocarpus	densiflorus,	key	to	one	of	these	alliances	instead	of
A.	menziesii.

Arbutus	menziesii	Alliance
Arbutus	menziesii	–	Quercus	agrifolia	Association

Arbutus	menziesii	–	Umbellularia	californica	Provisional	Association	Arbutus
menziesii	–	Umbellularia	californica	–	Quercus	kelloggii	Association

4a2.	Notholithocarpus	densiflorus	is	strongly	dominant	in	the	tree	canopy	or	co-
occurs	with	sub-dominant	to	co-dominant	Arbutus	menziesii.

Notholithocarpus	densiflorus	Alliance
Notholithocarpus	densiflorus	Provisional	Association

Notholithocarpus	densiflorus	–	Arbutus	menziesii	Association
4a3.	Quercus	garryana	dominates	or	co-dominates	with	other	broadleaf	trees	or
Pseudotsuga	menziesii.	Stands	are	of	two	types:	1)	relatively	dense	woodlands
without	a	significant	understory	herb	component	or	2)	open	woodlands	over
moderate	to	dense	native	and	nonnative	herbs	(e.g.,	Cynosurus	echinatus	and
Festuca	californica).	Pseudotsuga	menziesii,	Umbellularia	californica,	Quercus
agrifolia,	and/or	Q.	kelloggii	commonly	intermix,	typically	as	subdominants.	If	two	or
more	species	of	Quercus	are	present	and,	collectively,	they	are	dominant	or	co-
dominant	with	Q.	garryana,	key	to	the	Quercus	(agrifolia,	douglasii,	garryana,
kelloggii,	lobata,	wislizeni)	Alliance	(step	5c1).

Quercus	garryana	(tree)	Alliance
Quercus	garryana	–	Umbellularia	californica	–	Quercus	(agrifolia,	kelloggii)	Provisional

Association
Quercus	garryana	/	(Cynosurus	echinatus	–	Festuca	californica)	Provisional	Association
4b.	Acer	macrophyllum	dominates	or	co-dominates	with	Umbellularia	californica	or,
occasionally,	Fraxinus	latifolia	in	riparian	or,	occasionally,	upland	stands.	Pseudotsuga
menziesii,	Quercus	agrifolia,	and	Q.	chrysolepis	may	intermix.	Acer	stands	were	found
farther	than	15	miles	from	the	coast	or	closer	to	the	eastern	boundary	of	the	county,
usually	in	low-lying,	rocky,	steep	canyons.

			Upland	Vancouverian	Mixed	Woodland	and	Forest	Group
Acer	macrophyllum	Alliance
Acer	macrophyllum	Association



5.	Vegetation	dominated	or	co-dominated	by	the	following	broadleaf,	primarily	upland	tree
species:	Aesculus	californica,	Quercus	agrifolia,	Q.	chrysolepis,	Q.	douglasii,	Q.	kelloggii,	Q.
lobata,	Q.	parvula	var.	shrevei,	Q.	wislizeni,	and/or	Umbellularia	californica.

California	Forest	and	Woodland	Macrogroup
Californian	Broadleaf	Forest	and	Woodland	Group
5a.	Aesculus	californica	dominates	in	open	to	moderately	dense	woodlands.	If
Umbellularia	californica	is	present,	it	is	subdominant.	A	variety	of	herbs	may	be	found	in
the	understory.

Aesculus	californica	Alliance
Aesculus	californica	/	Toxicodendron	diversilobum	/	Moss	Association

5b.	Umbellularia	californica	is	either	dominant	or	co-dominant	with	Quercus	agrifolia	in
open	to	dense	woodlands.	Found	in	a	variety	of	settings,	such	as	streamsides,	valley
bottoms,	coastal	bluffs,	inland	ridges,	steep	north-facing	slopes,	rocky	outcrops,	and
postfire	landscapes.	If	U.	californica	is	co-dominant	with	Arbutus,	Acer,	or	Pinus
sabiniana	on	serpentine,	or	Pseudotsuga	menziesii,	Quercus	garryana,	Q.	kelloggii,	or
Sequoia,	key	to	one	of	these	other	hardwood	or	conifer	alliances	instead.

Umbellularia	californica	Alliance
Umbellularia	californica	–	Acer	macrophyllum	Association

Umbellularia	californica	–	Notholithocarpus	densiflorus	Association
Umbellularia	californica	–	Pseudotsuga	menziesii	/	Rhododendron	occidentale

Association
Umbellularia	californica	–	Quercus	agrifolia	Provisional	Association
Umbellularia	californica	(Pure	–	Coastal)	Provisional	Association

Umbellularia	californica	/	Polystichum	munitum	Association
5c.	One	or	more	species	of	Quercus	listed	above	(step	5),	other	than	Quercus	garryana
(step	4a3),	dominates	or	co-dominates	in	the	tree	overstory	or	Quercus	garryana	co-
dominates	with	two	other	oak	species.

5c1.	Quercus	agrifolia,	Quercus	garryana,	and/or	Quercus	kelloggii	are	present	and
at	least	two	of	the	oak	species	co-dominate.	Other	oaks	such	as	Q.	chrysolepis,	Q.
douglasii,	and	Q.	lobata	may	also	be	present.	This	mixed	type	is	for	stands	where
multiple	Quercus	tree	species	intermix	and	it	is	difficult	to	assign	to	an	alliance
defined	by	one	oak	species	–	read	steps	to	key	to	individual	oak	alliances	below.

Quercus	(agrifolia,	douglasii,	garryana,	kelloggii,	lobata,	wislizeni)	Alliance
Quercus	agrifolia	–	Quercus	garryana	–	Quercus	kelloggii	Provisional	Association

5c2.	Quercus	chrysolepis	is	dominant	or	co-dominant	with	Arbutus	menziesii	in	the
tree	overstory.	Quercus	wislizeni	is	occasionally	found	as	a	subdominant	tree.

Quercus	chrysolepis	(tree)	Alliance
Quercus	chrysolepis	–	Arbutus	menziesii	Provisional

Association	Quercus	chrysolepis	–	Quercus	wislizeni	Association

5c3.	Quercus	douglasii	or	Quercus	×eplingii	(the	hybrid	between	Q.	douglasii	and	Q.
garryana)	dominates	or	co-dominates	with	Quercus	agrifolia	or	Arbutus	menziesii	in
the	tree	overstory.	The	understory	herbaceous	layer	is	often	moderately	dense	to
dense,	with	a	mixture	of	native	and	nonnative	forbs	and	grasses.

Quercus	douglasii	Alliance
Quercus	×	eplingii	/	Grass	Provisional	Association
Quercus	douglasii	–	Quercus	agrifolia	Association

Quercus	douglasii	/	Arctostaphylos	manzanita	/	Herbaceous	Association



Quercus	douglasii	/	Grass	Association

5c4.	Quercus	kelloggii	dominates	or	co-dominates	with	Pseudotsuga	menziesii,	Q.
agrifolia,	and/or	Umbellularia	californica	in	the	tree	overstory.	Arbutus	menziesii	is
often	present	as	a	sub-dominant	species.	Stands	in	Sonoma	County	are	found
inland,	above	maritime	influence,	on	northern	exposures.

Quercus	kelloggii	Alliance
Quercus	kelloggii	–	Arbutus	menziesii	–	Quercus	agrifolia	Association

Quercus	kelloggii	–	Pseudotsuga	menziesii	–	Umbellularia	californica	Association

5c5.	Quercus	lobata	dominates	or	co-dominates	with	Fraxinus	latifolia	and/or
Quercus	agrifolia	in	the	tree	overstory.	Stands	are	typically	found	along	valley
bottoms,	lower	slopes,	and	summit	valleys	on	seasonally	saturated	soils	that	may
flood	intermittently.	Common	understory	shrubs	include	Rosa	californica,	Rubus
spp.,	and	Toxicodendron	diversilobum.

Quercus	lobata	Alliance
Quercus	lobata	–	Fraxinus	latifolia	/	(Vitis	californica)	Association

Quercus	lobata	–	Quercus	agrifolia	/	Grass	Association
Quercus	lobata	/	Grass	Association

Quercus	lobata	/	Rubus	ursinus	–	Rosa	californica	Provisional	Association

5c6.	Quercus	parvula	var.	shrevei	dominates	as	a	tree	or	shrubby	regenerating	tree,
co-occurring	with	Umbellularia,	Adenostoma,	and	a	variety	of	other	shrubs	that
prefer	more	mesic,	northerly	exposures.	One	stand	was	sampled	and	classified	in
Sonoma	County,	and	likely	further	variation	will	be	seen.

Quercus	parvula	var.	shrevei	Provisional	Alliance
5c7.	The	tree	form	of	Quercus	wislizeni	dominates	or	co-dominates	in	the	tree
canopy,	often	with	Arbutus	menziesii,	Pseudotsuga	menziesii,	and/or	Umbellularia
californica.	If	Q.	wislizeni	has	a	shrubby	habit	or	is	a	regenerating	tree	intermixing
with	a	variety	of	other	shrub	species,	key	to	the	Quercus	wislizeni	(shrub)	Alliance,
step	9b.

Quercus	wislizeni	(tree)	Alliance
Quercus	wislizeni	–	Arbutus	menziesii	/	Toxicodendron	diversilobum	Association

5c8.	Quercus	agrifolia	dominates	or	co-dominates	with	Arbutus	menziesii	in	the
canopy.	If	Q.	douglasii	(or	hybrid	Q.	×eplingii),	Q.	lobata,	or	Umbellularia	californica
is	co-dominant,	key	to	one	of	these	other	alliances	instead	of	Q.	agrifolia.	The
understory	herbaceous	layer	often	contains	a	mixture	of	native	and	nonnative	herbs
and/or	shrubs.

Quercus	agrifolia	Alliance
Quercus	agrifolia	–	Arbutus	menziesii	–	Umbellularia	californica	Association

Quercus	agrifolia	/	Grass	Association
Quercus	agrifolia	/	Toxicodendron	diversilobum	Association

6.	Acer	negundo,	Juglans	hindsii,	Populus	fremontii,	or	Salix	laevigata	is	dominant,	co-dominant
or	characteristic	in	permanently	moist	or	riparian	settings,	where	subsurface	water	is	available	all
year.	Nearby	upland	vegetation	is	often	dominated	by	broadleaf	evergreen	or	deciduous	trees,	as
opposed	to	conifers.

Southwestern	North	American	Riparian,	Flooded,	and	Swamp	Forest	Macrogroup
Southwestern	North	American	Riparian	Evergreen	and	Deciduous	Woodland	Group
6a.	Acer	negundo	dominates	in	the	tree	overstory,	often	along	major	streams	and	rivers,



with	other	riparian	plants	such	as	Fraxinus,	Populus,	Rubus,	and	Salix.	Stands	are
considered	rare	in	the	state	and	may	be	small	and	monospecific.

Acer	negundo	Alliance
6b.	Juglans	hindsii	or	hybrids	dominate	in	naturalized	stands	along	riparian	corridors,
floodplains,	stream	banks,	and	terraces.	Other	riparian	species	may	be	present,
including	Acer,	Fraxinus,	and	Rubus.

Juglans	hindsii	and	Hybrids	Special	Stands	and	Seminatural	Alliance
6c.	Populus	fremontii	dominates	or	co-dominates	with	Acer	negundo,	Juglans,	and/or
Salix,	sometimes	with	Populus	having	as	little	as	5%	absolute	cover.	If	Juglans	hindsii	is
dominant,	but	Populus	has	at	least	20%	relative	cover	in	the	tree	layer,	key	to	this
alliance.

Populus	fremontii	Alliance
Populus	fremontii	–	Acer	negundo	Association
Populus	fremontii	/	Salix	exigua	Association

6d.	Salix	laevigata	dominates	along	streams,	rivers,	ditches,	floodplains,	and	lake	edges.
Associated	trees	and	shrubs	include	Alnus	rhombifolia,	Populus	fremontii,	Quercus
agrifolia,	Rubus,	Salix,	and	others.

Salix	laevigata	Alliance
Salix	laevigata	/	Salix	lasiolepis	Association

7.	Alnus	rhombifolia,	Fraxinus	latifolia,	and/or	Salix	lucida	are	dominant,	co-dominant,	or
characteristic	of	broadleaf	riparian	tree	vegetation.	Stands	are	more	likely	to	occur	near	cool-
temperate	coniferous	forests,	unlike	vegetation	of	the	Southwestern	North	American	Riparian,
Flooded,	and	Swamp	Forest	Macrogroup	described	above.	Found	along	riparian	corridors,	incised
canyons,	seeps,	stream	banks,	midchannel	bars,	floodplains,	and	terraces.

Western	Cordilleran	Montane–Boreal	Riparian	Scrub	Macrogroup
Vancouverian	Riparian	Deciduous	Forest	Group
7a.	Alnus	rhombifolia	dominates	or	co-dominates	with	Acer	macrophyllum	or
Umbellularia	californica	in	the	tree	overstory.	If	Fraxinus	latifolia	is	co-dominant,	key	to
the	Fraxinus	latifolia	Alliance	below.	A	variety	of	shrubs	and	herbs	may	be	found	in	the
understory,	including	Carex,	Rubus,	Toxicodendron,	Xerophyllum,	and	Woodwardia.
Careful	identification	of	alder	stands	closer	to	the	coast	is	necessary	to	differentiate	from
A.	rubra	stands.

Alnus	rhombifolia	Alliance
Alnus	rhombifolia	Association

Alnus	rhombifolia	–	Acer	macrophyllum	Association
Alnus	rhombifolia	/	Carex	(nudata)	Association

7b.	Alnus	rubra	dominates	in	the	tree	canopy	in	riparian	settings,	typically	within	a	few
miles	of	the	coast.	The	understory	often	comprises	one	to	many	species	of	Rubus,	which
may	exceed	Alnus	in	cover.	Alnus	rubra	stands	were	encountered	usually	less	than	10
miles	from	the	coast	in	riparian	or	swampy	bottomlands,	but	can	occur	along	rocky
streambeds	in	similar	settings	to	A.	rhombifolia	stands.	Careful	identification	of	the
species	of	Alnus	is	important	closer	to	the	coast.

Alnus	rubra	Alliance1
Alnus	rubra	/	Rubus	spp.	Provisional	Association

7c.	Fraxinus	latifolia	dominates	or	co-dominates	with	Alnus	rhombifolia	or	Umbellularia



californica	in	the	tree	overstory.	Stands	for	this	project	were	encountered	and	surveyed	in
the	southern	half	of	Sonoma	County.

Fraxinus	latifolia	Alliance
Fraxinus	latifolia	Association

Fraxinus	latifolia	–	Alnus	rhombifolia	Association
7d.	Salix	lucida	ssp.	lasiandra	dominates	in	the	overstory,	sometimes	with	higher	or
similar	cover	by	shrubs	in	the	understory,	such	as	Rubus	spp.	and	Salix	lasiolepis.
Adjacent	stands	may	be	dominated	by	Alnus	spp.,	Quercus	agrifolia	or	conifers.

Salix	lucida	Alliance
Salix	lucida	ssp.	lasiandra	Association

8.	A	tree	species	of	Eucalyptus	dominates	in	planted	or	naturalized	stands.	Often	found	in	groves,
windbreaks,	uplands,	and	along	stream	courses.	Stands	were	observed,	but	not	sampled	for	this
project.

Introduced	North	American	Mediterranean	Woodland	and	Forest	Macrogroup	and
Group

Eucalyptus	(globulus,	camaldulensis)	Seminatural	Alliance



Class	B.	Shrubland	Vegetation

Section	I.	Riparian	or	moist	hillside	settings	with	vegetation	dominated	or	co-dominated	by
the	following	shrubs:	Frangula	californica	(including	all	subspecies),	Morella	californica,
Rhododendron	occidentale,	Rubus	armeniacus,	R.	spectabilis,	Salix	breweri,	S.	exigua,	S.
lasiolepis,	S.	melanopsis,	S.	sitchensis,	and/or	Sambucus	nigra.
*Note:	if	Rubus	ursinus	dominates,	key	to	the	Gaultheria	shallon	–	Rubus	(ursinus)
Alliance	in	Section	II	below	(step	5b3).
1.	Rubus	armeniacus,	a	nonnative	from	Europe,	is	strongly	dominant	in	riparian	sites,	mesic
clearings,	disturbed	areas,	and	stock	ponds.

Vancouverian	Lowland	Grassland	and	Shrubland	Macrogroup
Naturalized	Nonnative	Deciduous	Scrub	Group

Rubus	armeniacus	Seminatural	Alliance
Rubus	armeniacus	Seminatural	Association

2.	Morella	californica,	Rubus	parviflorus,	R.	spectabilis	and/or	Salix	sitchensis	dominate	or	co-
dominate	with	Rubus	spp.

Western	Cordilleran	Montane–Boreal	Riparian	Scrub	Macrogroup
Vancouverian	Coastal	Riparian	Scrub	Group
2a.	Vegetation	dominated	or	characterized	by	Morella	californica,	Rubus	parviflorus,
and/or	Rubus	spectabilis.	Stands	may	be	small	and	are	generally	found	close	to	the
coast	on	moist	or	wet	soils.

Morella	californica	–	Rubus	spectabilis	Provisional	Alliance
Morella	californica	–	Rubus	spp.	Provisional	Association

Rubus	parviflorus	Association
Rubus	spectabilis	Association

2b.	Salix	sitchensis	dominates	or	co-dominates	with	S.	lasiolepis	along	coastal	or	low-
elevation	streams,	lagoons.	A	variety	of	subdominant	trees	and	shrubs	may	be	present,
including	Acer,	Alnus,	Fraxinus,	Salix,	and	Rubus.

Salix	sitchensis	Provisional	Alliance
Salix	sitchensis	Provisional	Association

3.	Frangula	californica,	Rhododendron	occidentale,	Salix	breweri,	S.	exigua,	S.	lasiolepis,	S.
melanopsis,	and/or	Sambucus	nigra	dominant	or	co-dominant	with	Baccharis	pilularis	or	Rubus
spp.

Southwestern	North	American	Riparian,	Flooded	and	Swamp	Forest	Macrogroup
Southwestern	North	American	Riparian/Wash	Scrub	Group



3a.	Frangula	californica	and/or	Rhododendron	occidentale	dominate	or	co-dominate	with
Baccharis	pilularis	or	Rubus.	Stands	are	found	along	springs,	seeps,	ravines,	and
hillslopes,	often	on	sedimentary	and	serpentine	substrates	that	retain	water	much	of	the
year.

Frangula	californica	–	Rhododendron	occidentale	Provisional	Alliance
Frangula	californica	ssp.	californica	Provisional	Association

Rhododendron	occidentale	–	Frangula	californica	ssp.	tomentella	Provisional	Association
3b.	Salix	breweri	dominates	along	creeks	and	stream	terraces,	on	serpentine-derived
alluvium.	Locally	present	along	streams	on	serpentine	in	The	Cedars	area.	Commonly
found	with	other	moisture	loving	plants,	such	as	Alnus	rhombifolia,	Baccharis	salicifolia,
Rubus,	and	Stachys	albens.

Salix	breweri	Alliance
Salix	breweri	Provisional	Association

3c.	Salix	exigua	or	Salix	melanopsis	dominates	along	rivers	and	streams,	or	close	to
springs.	They	are	often	the	first	plants	to	colonize	bars	and	cut	banks,	followed	later	by
trees	such	as	Populus	and	Salix	spp.

Salix	exigua	Alliance
Salix	exigua	Association

Salix	exigua	–	Salix	melanopsis	Association
3d.	Sambucus	nigra	dominates	in	the	shrub	overstory,	often	preferring	stream	terraces,
bottomlands,	and	localized	areas	in	uplands,	where	there	was	past	disturbance.	One
stand	was	encountered	for	this	project,	along	a	draw	that	was	burned.

Sambucus	nigra	Alliance
Sambucus	nigra	Association

3e.	Salix	lasiolepis	dominates	or	co-dominates	with	Rubus	along	stream	banks	and
benches,	slope	seeps,	and	drainage	stringers.	If	S.	sitchensis	is	co-dominant,	key	to	the
S.	sitchensis	Alliance	instead	(step	2b).	Emergent	riparian	trees	are	often	present,	such
as	Acer,	Alnus,	Fraxinus,	Salix,	and	others.

Salix	lasiolepis	Alliance
Salix	lasiolepis	/	Rubus	spp.	Association

Section	II.	Coastal	scrub,	dune/bluff,	and	disturbance-following	vegetation	dominated	or
co-dominated	by	drought-deciduous	or	seral	(both	deciduous	and	evergreen)	shrubs.
Includes	Artemisia	californica,	Baccharis	pilularis,	Ceanothus	thyrsiflorus,	Ericameria
ericoides,	Eriodictyon	californicum,	Eriogonum	fasciculatum,	Gaultheria	shallon,	Lupinus
albifrons,	L.	arboreus,	L.	chamissonis,	Rubus	ursinus,	and	Toxicodendron	diversilobum.
Resprouting,	deep-rooted,	sclerophyllous	shrubs	may	at	times	be	characteristic,	but	not
dominant.
4.	Ericameria	ericoides,	Lupinus	arboreus,	and/or	Lupinus	chamissonis	are	dominant,	co-
dominant,	or	characteristic	(sometimes	with	as	little	as	5%	cover)	in	the	shrub	overstory	on
coastal	dunes	or	bluffs.	A	variety	of	herbs,	including	many	of	the	following	nonnatives,	may	be
present	with	high	cover	in	the	understory:	Bromus	diandrus,	Carduus,	Holcus,	Rumex	acetosella,
and	Vulpia	bromoides.

Vancouverian	Coastal	Dune	and	Bluff	Macrogroup
California	Coastal	Evergreen	Bluff	and	Dune	Scrub	Group
4a.	Lupinus	arboreus	dominates	or	co-dominates	with	Baccharis	pilularis,	and	may	co-



occur	with	high	cover	by	Vulpia	bromoides,	Festuca	perennis,	Bromus	diandrus,	and
other	nonnative	grasses.

Lupinus	arboreus	Alliance	and	Seminatural	Alliance
Lupinus	arboreus	Association

4b.	Ericameria	ericoides	and/or	Lupinus	chamissonis	dominate	as	individuals	or	in
combination	with	Baccharis	pilularis	or	Lupinus	arboreus.

Lupinus	chamissonis	–	Ericameria	ericoides	Alliance
Lupinus	chamissonis	–	Ericameria	ericoides	Association

5.	Shrublands	dominated	or	co-dominated	by	native,	disturbance-following,	naturalized,	or	planted
species	including	Artemisia	californica,	Cistus,	Eriodictyon	californicum,	Eriogonum	fasciculatum,
Genista,	Heterotheca	oregana,	Lupinus	albifrons,	Baccharis	pilularis,	Ceanothus	thyrsiflorus,
Gaultheria	shallon,	Rubus	ursinus,	Toxicodendron	diversilobum,	and/or	Ulex	europaeus.

California	Coastal	Scrub	Macrogroup
5a.	Eriodictyon	californicum,	Heterotheca	oregana,	or	Lupinus	albifrons	dominates	in	the
overstory.

			Central	and	South	Coastal	California	Seral	Scrub	Group
5a1.	Eriodictyon	californicum	or	Lupinus	albifrons	dominates,	often	in	stands	that
are	open	and/or	display	recent	evidence	of	fire	or	other	disturbance.	The	understory
may	be	composed	of	mixed	native	and	nonnative	herbs,	which	sometimes	have
higher	cover	than	the	overstory	shrubs.

Eriodictyon	californicum	–	Lupinus	albifrons	Provisional	Alliance
Eriodictyon	californicum	/	Herbaceous	Association

Lupinus	albifrons	Association
5a2.	Heterotheca	oregona,	a	perennial	herb	that	acts	like	a	short-lived	shrub,
dominates	herbaceous	stands	that	have	seasonal	hydrologic	disturbance.	Found
along	sunny,	rocky	stream	terraces,	seasonally	dry	streambeds,	sandbars	in	river
drainages,	and	cobbled	gravel	bars	in	floodplains.

Heterotheca	(oregona,	sessiliflora)	Provisional	Alliance
Heterotheca	oregona	Provisional	Association

5b.	Baccharis	pilularis,	Ceanothus	incanus,	C.	thyrsiflorus,	Gaultheria	shallon,	Rubus
ursinus,	and/or	Toxicodendron	diversilobum	dominate	or	co-dominate	as	shrubs.	Shrubs
are	typically	evergreen	or	winter-deciduous,	not	sclerophyllous	or	drought-deciduous
species.	Found	along	cool,	coastal	strips	or	on	sheltered	inland	ravines	and	lower
slopes,	where	species	are	tolerant	of	disturbance	and	tend	to	be	overtopped	and
excluded	by	trees.

			California	North	Coastal	&	Mesic	Scrub	Group
5b1.	Baccharis	pilularis	dominates	or	co-dominates	with	Frangula	californica,
Toxicodendron	diversilobum,	or	Rubus	spp.	in	the	shrub	overstory.	If	Calamagrostis
nutkaensis	is	co-dominant	with	B.	pilularis,	key	to	the	C.	nutkaensis	Alliance	(see
Class	C,	step	9c3a).	A	variety	of	native	and	nonnative	forbs	and	grasses	may
intermix	in	the	herbaceous	layer,	sometimes	with	higher	cover	than	Baccharis	–
including	Avena,	Bromus,	Danthonia,	Deschampsia,	Elymus	glaucus,	Festuca,
Hypochaeris,	Nassella	pulchra,	and	others.

Baccharis	pilularis	Alliance
Baccharis	pilularis	–	Frangula	californica	–	Rubus	spp.	Provisional	Association

Baccharis	pilularis	–	Toxicodendron	diversilobum	Association



Baccharis	pilularis	/	Annual	Grass	–	Herb	Association
Baccharis	pilularis	/	Danthonia	californica	Association

Baccharis	pilularis	/	Deschampsia	cespitosa	Association
Baccharis	pilularis	/	Nassella	pulchra	Association

Baccharis	pilularis	/	Native	Grass	(Mixed)	Association
5b2.	Ceanothus	incanus	or	C.	thyrsiflorus	dominates	in	the	overstory	shrub	layer,
often	with	moderately	dense	cover.	Diplacus	aurantiacus,	Heteromeles,
Pseudotsuga	menziesii,	Quercus	wislizeni,	and	other	species	may	intermix	as
subdominants	in	the	shrub	and	tree	layers.	Stands	of	C.	incanus	are	included	in	the
C.	thyrsiflorus	Alliance	since	they	are	more	limited	in	distribution	and	are
ecologically	similar	to	C.	thyrsiflorus.

Ceanothus	thyrsiflorus	Alliance
Ceanothus	incanus	Provisional	Association

5b3.	Gaultheria	shallon	and/or	Rubus	ursinus	dominate	or	co-dominate	with
Anthoxanthum	odoratum,	Holcus	lanatus,	or	Toxicodendron	diversilobum	on
hillslopes,	rock	outcrops,	coastal	bluffs,	or	flats.	If	Arctostaphylos	nummularia	is	co-
dominant	with	Gaultheria,	key	to	the	Arctostaphylos	(nummularia,	sensitiva)	Alliance
below	(step	6).

Gaultheria	shallon	–	Rubus	(ursinus)	Provisional	Alliance
Gaultheria	shallon	–	Rubus	spp.	Provisional	Association

Rubus	ursinus	Association

5b4.	Toxicodendron	diversilobum	dominates,	sometimes	intermixing	with
subdominant	Baccharis	pilularis	and	Rubus	spp.	If	B.	pilularis	is	present	and	co-
dominant,	key	to	the	Baccharis	pilularis	Alliance	(step	5b1).	For	this	project,	stands
were	encountered	close	to	the	coast,	although	they	are	likely	to	occur	inland	as	well.

Toxicodendron	diversilobum	Alliance
Toxicodendron	diversilobum	–	Baccharis	pilularis	Provisional	Association

5c.	Artemisia	californica	dominates	and	may	intermix	with	Baccharis	pilularis,	Diplacus
aurantiacus,	and	others.	One	stand,	which	may	represent	the	northernmost	occurrence
of	A.	californica	in	the	state,	was	encountered	during	field	reconnaissance	along
Highway	1,	approximately	two	miles	southeast	of	Fort	Ross.
			Central	and	South	Coastal	Californian	Coastal	Sage	Scrub	Group

Artemisia	californica	Alliance	(no	description	provided)
5d.	Cistus,	Eriogonum	fasciculatum,	Genista,	Ulex,	or	other	Mediterranean	shrubs	not
native	to	Sonoma	County	dominates	in	naturalized	or	planted	stands.	May	be	found
invading	disturbed	areas,	grasslands,	or	forest	openings.

			Naturalized	Nonnative	Mediterranean	Scrub	Group
5d1.	Genista	monspessulana,	Ulex	europaeus,	or	other	broom	species/hybrids
dominate	in	the	shrub	overstory.	Fire	promotes	broom	invasions	in	woodland
settings,	however	broom	may	invade	coastal	grasslands	without	fire.

Broom	(Cytisus	scoparius	and	Others)	Seminatural	Alliance
5d2.	Cistus,	Eriogonum	fasciculatum	or	other	naturalized/planted	species	dominates
in	the	shrub	overstory.	Eriogonum	fasciculatum,	while	native	to	other	parts	of
California,	does	not	occur	naturally	in	Sonoma	County.	E.	fasciculatum	is	often
chosen	for	erosion	control	and	slope	stabilization	projects	because	it	grows
relatively	quickly,	spreads	well,	and	maintains	a	nice	appearance	year	round.	One



stand	was	observed	during	field	reconnaissance	near	Lake	Sonoma,	though	other
stands	may	be	found	elsewhere	in	the	County.	Planted	stands	do	not	fit	under	the
Eriogonum	fasciculatum	Alliance,	which	is	reserved	for	native	vegetation.

Naturalized	Nonnative	Mediterranean	Scrub	Group	(key	to	group	level	only)

Section	III.	Shrub	vegetation	dominated	by	evergreen	sclerophyll-leaved	species,	including
many	that	have	developed	growth	strategies	driven	by	a	Mediterranean	climate.	Most	of
the	core	diagnostic	species	are	endemic	to	California,	including	Adenostoma,
Arctostaphylos,	Ceanothus	cuneatus,	C.	oliganthus,	Cercocarpus	montanus,	Quercus
berberidifolia,	Q.	durata,	and	shrubby	Q.	wislizeni.
California	Chaparral	Macrogroup
6.	Arctostaphylos	nummularia	ssp.	nummularia	dominates	or	co-dominates	with	Gaultheria
shallon	or	Vaccinium	ovatum	in	maritime	chaparral	stands.	Arctostaphylos	columbiana,
Chrysolepis	chrysophylla	var.	minor,	Pinus	muricata,	and	Pteridium	aquilinum	are	often	present.

Californian	Maritime	Chaparral	Group
Arctostaphylos	(nummularia,	sensitiva)	Alliance

Arctostaphylos	nummularia	ssp.	nummularia	Provisional	Association

7.	Cercocarpus	montanus	and/or	Quercus	berberidifolia	dominate	or	co-dominate	with
Adenostoma	fasciculatum.	Stands	are	mostly	found	inland	from	the	coastal	fog	belt	and	are	often
composed	of	large	shrubs	occupying	mesic	sites	such	as	north-facing	slopes,	concavities,	and
toeslopes	with	well-drained	soils.

Californian	Mesic	Chaparral	Group
7a.	Cercocarpus	montanus	dominates	or	co-dominates	with	Adenostoma	fasciculatum.
Diplacus	aurantiacus	and	Toxicodendron	diversilobum	are	often	present.	Stands	are
frequently	found	on	rocky,	north-facing	slopes,	though	they	can	occur	on	all	aspects.

Cercocarpus	montanus	Alliance
Cercocarpus	montanus	–	Adenostoma	fasciculatum	Association

7b.	Quercus	berberidifolia	dominates	or	co-dominates	with	Cercocarpus	montanus.
Stands	are	found	primarily	on	north-facing,	steep	slopes	with	well-drained	soils.	If
Adenostoma	fasciculatum	is	co-dominant	with	Q.	berberidifolia,	key	to	the	mixed
Quercus	berberidifolia-Adenostoma	fasciculatum	Alliance	directly	below.

Quercus	berberidifolia	Alliance
Quercus	berberidifolia	Association

Quercus	berberidifolia	–	Cercocarpus	montanus	Association
7c.	Quercus	berberidifolia	and	Adenostoma	fasciculatum	co-dominate	and	often	occupy
ecological	interfaces	between	mesic	sites	that	Quercus	prefers	and	xeric	sites	that
Adenostoma	prefers.	A	variety	of	shrubs	may	intermix	as	subdominants.

Quercus	berberidifolia	–	Adenostoma	fasciculatum	Alliance
Quercus	berberidifolia	–	Adenostoma	fasciculatum	Association

8.	Arctostaphylos	bakeri,	Ceanothus	jepsonii,	and/or	Quercus	durata	dominate	or	co-dominate	in
shrub	vegetation	restricted	to	or	adapted	to	ultramafic	soils	and	substrates	(e.g.,	serpentine,
gabbro).

Californian	Serpentine	Chaparral	Group
8a.	Arctostaphylos	bakeri,	a	serpentine	endemic,	dominates	or	co-dominates	with



Quercus	durata	in	the	shrub	overstory,	often	on	upper	slopes,	flats,	and	ridges.
Ceanothus	jepsonii,	Hesperocyparis	sargentii,	Heteromeles	arbutifolia,	and	Melica
torreyana	are	commonly	present.

Arctostaphylos	(bakeri,	montana)	Provisional	Alliance
Arctostaphylos	bakeri	Provisional	Association

8b.	Quercus	durata	dominates	or	co-dominates	with	Adenostoma	fasciculatum	or
Ceanothus	jepsonii	on	ultramafic	soils.	Heteromeles	arbutifolia	and/or	Umbellularia
californica	are	often	present	in	stands.

Quercus	durata	Alliance
Quercus	durata	–	Adenostoma	fasciculatum	Provisional	Association

Quercus	durata	–	Ceanothus	jepsonii	Provisional	Association
Quercus	durata	–	Heteromeles	arbutifolia	/	Umbellularia	californica	Association

9.	Ceanothus	oliganthus	and/or	Quercus	wislizeni	var.	frutescens	dominate	or	co-dominate	in	the
shrub	overstory.	These	shrublands	are	more	frost	tolerant	and	typically	found	at	higher,	cooler,
and	more	mesic	sites	than	those	in	the	California	Xeric	Chaparral	Group.

Californian	Pre-Montane	Chaparral	Group
9a.	Ceanothus	oliganthus	dominates	in	shrublands	that	are	often	found	in	localized
patches	following	fires.	If	Quercus	wislizeni	is	co-dominant,	key	to	the	Q.	wislizeni
(shrub)	Alliance	directly	below.

Ceanothus	oliganthus	Alliance
Ceanothus	oliganthus	Association

9b.	Regenerating	or	shrubby	Quercus	wislizeni	(var.	frutescens)	dominates	or	co-
dominates	with	Ceanothus	oliganthus.	Stands	that	represent	the	possibly	distinct	Q.
wislizeni	var.	frutescens	and	those	with	Q.	wislizeni	having	shorter	stature	due	to	factors
that	limit	height	(e.g.,	fire)	are	included	in	this	alliance.	When	Q.	wislizeni	dominates	or
co-dominates	as	an	overstory	tree,	key	to	the	Q.	wislizeni	(tree)	Alliance.	Umbellularia
californica	is	often	emergent,	while	a	variety	of	thick-	and	soft-leaved	shrubs	intermix	as
subdominants.

Quercus	wislizeni	(shrub)	Alliance
Quercus	wislizeni	var.	frutescens	Provisional	Association

Quercus	wislizeni	–	Ceanothus	oliganthus	Provisional	Association

10.	Sclerophyll	(i.e.,	thick-leaved)	shrublands	dominated	by	one	or	more	of	the	following	taxa:
Adenostoma,	Arctostaphylos	canescens,	A.	glandulosa,	A.	manzanita,	A.	stanfordiana,	A.	viscida,
or	Ceanothus	cuneatus.	Most	stands	occur	on	well-drained	soils	along	exposures	that	are	in	full
sun	much	of	the	growing	season,	including	upper	slopes,	spur	ridges,	and	convexities.

Californian	Xeric	Chaparral	Group
10a.	Arctostaphylos	canescens,	A.	manzanita	and/or	A.	stanfordiana	dominate	or	co-
dominate,	sometimes	with	co-dominant	Adenostoma	fasciculatum.	Found	typically	on
volcanic,	Franciscan,	and	greenstone	substrates.	One	alliance	is	recognized	for	all	three
Arctostaphylos	vegetation	types,	with	associations	specific	to	each	species.

Arctostaphylos	(canescens,	manzanita,	stanfordiana)	Provisional	Alliance
Arctostaphylos	canescens	Provisional	Association
Arctostaphylos	manzanita	Provisional	Association

Arctostaphylos	stanfordiana	Provisional	Association
10b.	Arctostaphylos	glandulosa	dominates	or	co-dominates	with	Adenostoma
fasciculatum	on	convexities,	outcrops,	ridges,	or	slopes.	Soils	may	be	derived	from



serpentine	or	gabbro.	Species	commonly	found	as	emergent	trees	or	subdominant
shrubs	include	Arbutus	menziesii,	Arctostaphylos	spp.,	Diplacus	aurantiacus,	and
Heteromeles	arbutifolia.

Arctostaphylos	glandulosa	Alliance2
Arctostaphylos	glandulosa	Association

Arctostaphylos	glandulosa	–	Adenostoma	fasciculatum	Association
10c.	Arctostaphylos	viscida	(e.g.,	A.	viscida	ssp.	pulchella)	dominates	or	co-dominates
with	Ceanothus	jepsonii	on	serpentine	substrates.	Ceanothus	jepsonii	may	occasionally
exceed	A.	viscida	in	cover	when	present.

Arctostaphylos	viscida	Alliance
Arctostaphylos	viscida	–	Ceanothus	jepsonii	Provisional	Association

10d.	Ceanothus	cuneatus	dominates	or	co-dominates	with	Adenostoma	fasciculatum,
often	on	convexities	with	westerly	exposures.	A	variety	of	shrubs	may	intermix,	including
Arctostaphylos,	Baccharis,	Eriodictyon,	Heteromeles,	Quercus	durata,	and	others.

Ceanothus	cuneatus	Alliance
Ceanothus	cuneatus	–	Adenostoma	fasciculatum	Association

10e.	Adenostoma	fasciculatum	dominates,	often	with	subdominant	shrubs	such	as
Arctostaphylos	manzanita,	A.	stanfordiana,	or	Diplacus	aurantiacus.	Salvia	sonomensis,
an	understory	shrub,	may	have	higher	cover	than	Adenostoma.	If	A.	fasciculatum	co-
dominates	with	Arctostaphylos	spp.,	Ceanothus	cuneatus,	Cercocarpus	montanus,
Quercus	berberidifolia,	or	Q.	durata,	key	to	one	of	the	latter	alliances	instead	of	A.
fasciculatum.

Adenostoma	fasciculatum	Alliance
Adenostoma	fasciculatum	Association

Adenostoma	fasciculatum	–	Arctostaphylos	manzanita	Association
Adenostoma	fasciculatum	–	Arctostaphylos	stanfordiana	/	Salvia	sonomensis	Provisional

Association
Adenostoma	fasciculatum	–	Diplacus	aurantiacus	Association

Adenostoma	fasciculatum	Serpentine	Association



Class	C.	Herbaceous	Vegetation

Section	I.	Vegetation	of	a)	freshwater	wetland	or	riparian	settings	with	water	or	wet	ground
present	temporarily,	seasonally,	or	throughout	the	growing	season,	b)	saline	or	alkaline
lowlands	where	water	accumulates	in	the	winter,	or	c)	tidal	salt	or	brackish	marshes	with
seasonal	or	ephemeral	inundations.	Includes	herbaceous	vegetation	dominated,	co-
dominated,	or	characterized	by:	Argentina,	Azolla,	Bidens,	Bolboschoenus,	Brasenia,
Carex,	Ceratophyllum,	Distichlis,	Eleocharis	macrostachya,	Grindelia	stricta,	Juncus
arcticus,	J.	effusus,	J.	lescurii,	J.	patens,	Lasthenia	glaberrima,	Lemna,	Lepidium
latifolium,	Leymus	triticoides,	Ludwigia,	Mimulus	guttatus,	Nuphar,	Oenanthe,	Persicaria,
Pleuropogon,	Sarcocornia	(=Salicornia),	Schoenoplectus,	Scirpus,	Spartina,	Typha,	and/or
Xanthium.

1.	Freshwater	stands	dominated	by	aquatic,	floating	or	submerged	plants,	including	Azolla,
Brasenia,	Ceratophyllum,	Lemna,	Ludwigia,	and/or	Nuphar.	Found	along	slow-moving	streams,
still	ponds,	lakes,	or	on	ground	surfaces	after	water	levels	have	dropped.

Western	North	American	Freshwater	Aquatic	Vegetation	Macrogroup
1a.	Ludwigia	hexapetala	or	L.	peploides	dominates,	creating	mats	in	shallow	water	or
overwet	soil.	Other	aquatic	plants	such	as	Azolla,	Lemna,	Polygonum,	and	Sparganium
may	be	present.

			Naturalized	Temperate	Pacific	Freshwater	Vegetation	Group
Ludwigia	(hexapetala,	peploides)	Provisional	Seminatural	Alliance
Ludwigia	(hexapetala,	peploides)	Provisional	Seminatural	Association

1b.	Azolla	filiculoides	or	Azolla	mexicana	(=A.	microphylla)	dominates	or	characterizes
stands	on	water	or	wet	ground	surfaces.	If	Lemna	is	co-dominant,	key	to	this	alliance.
			Temperate	Freshwater	Floating	Mat	Group

Azolla	(filiculoides,	mexicana)	Alliance
1c.	Brasenia,	Ceratophyllum,	Lemna,	or	Nuphar	dominates	on	water	surfaces	of
streams,	ponds,	or	lakes.

			Temperate	Pacific	Freshwater	Aquatic	Bed	Group
1c1.	Ceratophyllum	demersum	dominates.	One	stand	was	encountered	for	this
project,	near	the	eastern	border	of	Sonoma	County	in	a	dammed	pond.	Other
stands	are	likely	to	occur	in	the	county.

Ceratophyllum	demersum	Provisional	Alliance
Ceratophyllum	demersum	Western	Provisional	Association

1c2.	Brasenia	schreberi	or	Nuphar	lutea	dominates	on	the	water	surface.	Algae	and
a	variety	of	hydrophytes	may	intermix,	including	Alisma,	Carex,	Hippuris	vulgaris,
Polygonum,	and	Oenanthe.



Nuphar	spp.	–	Potamogeton	spp.	–	Lemna	spp.	Freshwater	Aquatic	Provisional
Alliance

Brasenia	schreberi	Provisional	Association
Nuphar	lutea	ssp.	polysepala	Provisional	Association

2.	Freshwater	or	brackish	stands	dominated	by	Argentina,	Carex	pansa,	C.	obnupta,	C.
praegracilis,	Juncus	effusus,	J.	lescurii,	J.	patens,	Oenanthe,	Schoenoplectus,	Scirpus
microcarpus,	and/or	Typha,	where	water	is	present	throughout	all	or	most	of	the	growing	season.
Soils	have	high	organic	content	and	may	be	poorly	aerated.

Western	North	American	Freshwater	Marsh	Macrogroup
2a.	Schoenoplectus	and/or	Typha	dominate	in	the	herbaceous	layer.	Stands	are	found
along	streams,	ditches,	shores,	bars,	and	channels	of	river	mouth	estuaries;	around
ponds	and	lakes;	and	in	sloughs,	swamps,	and	freshwater	to	brackish	marshes.
			Arid	West	Freshwater	Emergent	Marsh	Group

2a1.	Schoenoplectus	acutus	dominates	or	co-dominates	with	a	species	of	Typha.
Schoenoplectus	acutus	Alliance
Schoenoplectus	acutus	Association

2a2.	Schoenoplectus	californicus	dominates	or	co-dominates	with	a	species	of
Typha.

Schoenoplectus	californicus	Alliance
Schoenoplectus	californicus	Association

2a3.	Typha	angustifolia,	T.	domingensis,	and/or	T.	latifolia	dominate	in
semipermanently	flooded	freshwater	or	brackish	marshes.	If	Schoenoplectus	acutus
or	S.	californicus	is	co-dominant,	key	to	the	appropriate	Schoenoplectus	Alliance.

Typha	(angustifolia,	domingensis,	latifolia)	Alliance
Typha	domingensis	Association

Typha	latifolia	Association

2b.	Argentina	egedii,	Bolboschoenus	maritimus,	Carex	nudata,	C.	obnupta,	C.
praegracilis,	C.	pansa,	Distichlis	spicata,	Eleocharis	macrostachya,	Juncus	effusus,	J.
lescurii,	J.	patens,	J.	occidentalis,	J.	phaeocephalus,	Oenanthe,	and/or	Scirpus
microcarpus	dominate	or	co-dominate	in	mesic	or	wetland	settings.	Holcus,	Hypochaeris,
Leontodon,	Rumex,	and	Vulpia	bromoides	may	intermix	with	similar	cover.	Stands	may
be	found	along	seasonally	flooded	brackish	marshes,	coastal	sand	dunes,	swales	and
plains,	shallowly	inundated	woods,	meadows,	roadside	ditches,	mudflats,	coastal
swamps,	lakeshores,	marshes,	and	riverbanks.
			Vancouverian	Coastal/Tidal	Marsh	and	Meadow	Group

2b1.	Argentina	egedii	(=A.	anserina	or	Potentilla	anserina	ssp.	pacifica)	dominates
or	co-dominates	with	Bolboschoenus	maritimus,	Carex	nudata,	Distichlis	spicata,
Eleocharis	macrostachya,	Holcus	lanatus,	Juncus	lescurii,	Leontodon	taraxacoides,
and	Rumex	acetosella.	If	Oenanthe	sarmentosa	is	co-dominant,	key	to	the	O.
sarmentosa	Alliance	below.

Argentina	egedii	Alliance
Argentina	egedii	Association

2b2.	Carex	praegracilis,	C.	pansa,	or	C.	tumulicola	dominates	or	co-dominates	with
Holcus	lanatus	or	Lolium	perenne.	Stands	of	C.	praegracilis	are	not	restricted	to	the
coast.	One	stand	was	sampled	near	the	eastern	boundary	of	the	county	in	a	moist
depression	on	a	hillside.



Carex	(pansa,	praegracilis)	Provisional	Alliance
Carex	praegracilis	Provisional	Association

2b3.	Carex	obnupta	dominates	in	the	herbaceous	layer	in	a	variety	of	freshwater
and	brackish	settings	near	the	coast.

Carex	obnupta	Alliance
Carex	obnupta	Association

2b4.	Juncus	effusus,	J.	patens,	J.	occidentalis,	and/or	J.	phaeocephalus	dominate
individually	or	in	combination	near	the	coast	or	farther	inland.	Co-dominant	species
may	include	Carex	densa,	Holcus	lanatus,	Hypochaeris	radicata,	Juncus	bufonius,
and	Vulpia	bromoides.

Juncus	(effusus,	patens)	Provisional	Alliance
Juncus	effusus	Association

Juncus	patens	Provisional	Association
Juncus	patens	–	Holcus	lanatus	Provisional	Association

Juncus	patens	–	Juncus	occidentalis	Provisional	Association
Juncus	phaeocephalus	Provisional	Association

2b5.	Juncus	lescurii	dominates	or	co-dominates	with	Agrostis	stolonifera,	Argentina
egedii,	Eleocharis	macrostachya,	or	Juncus	phaeocephalus	in	slightly	brackish
marshes	or	seeps	near	salt	marshes.

Juncus	lescurii	Alliance
Juncus	lescurii	Association

2b6.	Oenanthe	sarmentosa	dominates	or	co-dominates	with	Argentina	egedii	in
freshwater	to	slightly	brackish	marshes.

Oenanthe	sarmentosa	Alliance
Oenanthe	sarmentosa	Association

2b7.	Scirpus	microcarpus	dominates	in	marshes,	roadside	ditches,	and	along
stream	banks.	Larger	forbs	such	as	Conium	maculatum,	Oenanthe,	Heracleum
maximum,	and	Urtica	dioica	may	be	present	as	subdominants.

Scirpus	microcarpus	Alliance
Scirpus	microcarpus	Association

3.	Salt	and	brackish	marshes	dominated	or	co-dominated	by	Bolboschoenus,	Distichlis,
Sarcocornia	(=Salicornia),	and/or	Spartina.	May	appear	as	sparsely	vegetated	mudflats	at	low
tide,	or	during	restoration	(as	along	San	Pablo	Bay).	Mudflats	with	trace	amounts	of	cover	by
herbs	are	included	here	(see	3e).

North	American	Pacific	Coastal	Salt	Marsh	Macrogroup
Temperate	Pacific	Tidal	Salt	and	Brackish	Meadow	Group
3a.	Bolboschoenus	maritimus	dominates	or	co-dominates	with	Sarcocornia	(=Salicornia)
pacifica.

Bolboschoenus	maritimus	Alliance
Bolboschoenus	maritimus	Association

Bolboschoenus	maritimus	–	Sarcocornia	pacifica	Association
3b.	Distichlis	spicata	dominates	or	co-dominates	with	Frankenia	salina	and/or	Jaumea
carnosa.	Sarcocornia	pacifica	may	present	as	a	subdominant.

Distichlis	spicata	Alliance
Distichlis	spicata	–	Frankenia	salina	–	Jaumea	carnosa	Association



3c.	Sarcocornia	pacifica	dominates	or	co-dominates	with	Jaumea	carnosa,	Distichlis
spicata,	and/or	Lepidium	latifolium.

Sarcocornia	pacifica	(Salicornia	depressa)	Alliance
Sarcocornia	pacifica	Association

Sarcocornia	pacifica	–	Jaumea	carnosa	–	Distichlis	spicata	Association
Sarcocornia	pacifica	–	Lepidium	latifolium	Association

3d.	Spartina	foliosa	dominates	on	mudflats,	banks,	berms,	and	margins	of	bays	and
deltas.

Spartina	foliosa	Alliance
Spartina	foliosa	Association

3e.	Mudflats	or	dry	pond	bottoms	(sometimes	in	sites	undergoing	restoration)	with	trace
amounts	of	cover	by	Agrostis	avenacea,	Sarcocornia	pacifica,	Sesuvium,	and	others.
Cover	by	plants	is	so	sparse	and/or	uneven	that	stands	are	not	recognized	by	the
USNVC.

Mudflat/Dry	Pond	Bottom	Mapping	Unit

4.	Herbaceous	stands	dominated	or	characterized	by	Eleocharis	macrostachya,	Grindelia	stricta,
Lasthenia	glaberrima,	or	Pleuropogon	californicus.	In	the	Manual	of	California	Vegetation	(Sawyer
et	al.	2009),	these	stands	are	recognized	in	a	macrogroup	associated	with	vernal	pools,	even
though	they	do	not	always	occur	in	vernal	pool	settings.	Future	versions	of	the	hierarchy	will	likely
split	vernal	pool	and	non–vernal	pool	stands	into	different	alliances,	groups,	and	macrogroups
based	on	ecological	and	environmental	differences.	Many	true	vernal	pool	types	occur	in	Sonoma
County	but	are	not	treated	in	this	report3.

Western	North	America	Vernal	Pool	Macrogroup
Californian	Mixed	Annual/Perennial	Freshwater	Vernal	Pool	/	Swale	Bottomland

Group
4a.	Pleuropogon	californicus	and/or	Lasthenia	glaberrima	are	present	with	high	cover	in
the	herbaceous	layer.	If	Eleocharis	macrostachya	or	E.	palustris	is	present	and	co-
dominant,	key	to	this	alliance	instead	of	Eleocharis.	Stands	typically	occur	in	vernal	pools
or	vernally	influenced	marshes.

Lasthenia	glaberrima	Alliance
Lasthenia	glaberrima	–	Pleuropogon	californicus	Association

4b.	Eleocharis	macrostachya	dominates	in	the	herbaceous	layer	along	lakeshores,
streambeds,	swales,	vernal	pools,	pastures,	ditches,	and	ponds.	If	Lasthenia	glaberrima
or	Pleuropogon	californicus	is	present	with	high	cover,	key	to	the	L.	glaberrima	Alliance
above.

Eleocharis	(acicularis,	macrostachya)	Provisional	Alliance
Eleocharis	macrostachya	Association

4c.	Grindelia	stricta	dominates	or	co-dominates	with	nonnative	herbs	such	as	Raphanus
sativus,	Vulpia	bromoides,	and	Bromus	diandrus.	Stands	may	be	found	on	slightly
elevated	or	drier	ground	adjacent	to	coastal	dunes,	salt	or	alkaline	marshes,	or	on	bluffs,
levees,	and	road	margins.

Grindelia	(stricta)	Provisional	Alliance
Grindelia	stricta	Provisional	Association

5.	Wetland	herbaceous	vegetation	dominated	or	characterized	by	Bidens	frondosa,	Carex
barbarae,	C.	nudata,	C.	serratodens,	Juncus	arcticus,	Lepidium	latifolium,	Leymus	triticoides,



Mimulus	guttatus,	Persicaria	lapathifolia,	or	Xanthium	strumarium.	Stands	occupy	settings	where
saturated	soil	or	standing	water	throughout	the	growing	season	are	key	characteristics.

Western	North	America	Wet	Meadow	and	Low	Shrub	Carr	Macrogroup
5a.	Stands	dominated	or	characterized	by	the	species	of	Carex,	Juncus,	Leymus,	or
Mimulus	mentioned	above.
			Californian	Warm-Temperate	Marsh/Seep	Group

5a1.	Carex	barbarae	dominates	in	seasonally	or	intermittently	saturated	wetlands.
Carex	barbarae	Alliance

Carex	barbarae	Association

5a2.	Carex	nudata	dominates	along	rocky	creeks	and	streams	below	the	high	water
mark.	If	Argentina	egedii	is	co-dominant,	key	to	the	A.	egedii	Alliance	(see	2b1).

Carex	nudata	Alliance
Carex	nudata	Association

5a3.	Carex	serratodens	dominates	or	co-dominates	with	Agoseris	heterophylla,
Juncus	arcticus,	or	Leymus	triticoides.	Stands	are	often	found	on	serpentine
substrates.

Carex	serratodens	Provisional	Alliance
Carex	serratodens	Provisional	Association

5a4.	Juncus	arcticus	(var.	balticus	or	mexicanus	)	dominates	in	freshwater,	brackish,
or	alkaline	settings.	Mentha	pulegium,	Poa	pratensis,	and	other	hydrophytes	may
intermix	as	subdominants.

Juncus	arcticus	(var.	balticus,	mexicanus)	Alliance
Juncus	arcticus	(var.	balticus,	mexicanus)	Association

5a5.	Leymus	triticoides	dominates	or	co-dominates	with	Briza	maxima,	Lolium
perenne,	or	other	nonnative	grasses	or	forbs.	Stands	are	found	on	poorly	drained
floodplains,	valley	bottoms,	and	brackish	marsh	margins.

Leymus	triticoides	Alliance
Leymus	triticoides	Association

Leymus	triticoides	–	Lolium	perenne	Association

5a6.	Mimulus	guttatus	or	another	wetland	Mimulus	species	dominates	or	co-
dominates	in	the	herbaceous	layer	with	Eleocharis,	Juncus,	or	Lolium	perenne.
Stands	are	found	in	moist	or	saturated	settings	along	streams,	ephemeral	cascades,
ditches,	fens,	seeps,	and	springs.

Mimulus	(guttatus)	Alliance
Mimulus	guttatus	Association

5b.	Stands	dominated	or	characterized	by	the	nonnative	or	ruderal	taxa	mentioned
above:	Bidens,	Lepidium,	Persicaria,	and/or	Xanthium.
			Naturalized	Warm-Temperate	Riparian	and	Wetland	Group

5b1.	Lepidium	latifolium	dominates	in	the	herbaceous	layer	along	intermittently	and
seasonally	flooded	freshwater	and	brackish	marshes	and	riparian	corridors.	In
alkaline	or	saline	settings,	Distichlis	spicata	is	commonly	present.

Lepidium	latifolium	Seminatural	Alliance
Lepidium	latifolium	–	Distichlis	spicata	Seminatural	Association



5b2.	Bidens	frondosa,	Persicaria	spp.,	and/or	Xanthium	spp.	dominate	in	marshes
and	regularly	disturbed	vernally	wet	ponds,	fields,	and	stream	terraces.

Persicaria	lapathifolia	–	Xanthium	strumarium	Provisional	Alliance
Bidens	frondosa	Provisional	Association

Section	II.	Vegetation	dominated	or	characterized	by	herbaceous	species	that	occupy	dry,
seasonally	moist,	and	usually	well-drained	sites	that	range	from	interior	dry	ridges	and
cliffs	to	ocean	bluffs,	dunes,	and	terraces	with	cooling	summer	fog	and	salty	breezes.
Stands	are	not	wet	or	inundated	as	in	Section	I	above.	This	group	includes	native	and
nonnative	annual	and	perennial	grasslands,	seral	herbaceous	stands,	dry	cliff	and	canyon
vegetation,	and	coastal	dune/bluff	vegetation.	Dominant,	co-dominant,	and	characteristic
taxa	include:	Abronia,	Agrostis	gigantea,	A.	stolonifera,	Allium	falcifolium,	Ambrosia,
Ammophila,	Anthoxanthum,	Asclepias	solanoana,	Avena,	Brachypodium,	Brassica,	Briza,
Bromus,	Calamagrostis,	Carpobrotus,	Centaurea,	Cynosurus,	Danthonia,	Deschampsia,
Elymus	elymoides,	E.	glaucus,	E.	multisetus,	Eriogonum	cedrorum,	E.	luteolum,	E.	nudum,
Erodium,	Eryngium	armatum,	Eschscholzia,	Festuca	arundinacea,	F.	californica,	F.
idahoensis,	Heterotheca,	Holcus,	Hordeum,	Lasthenia	californica,	Leymus	mollis,	Lolium,
Melica,	Mesembryanthemum,	Nassella,	Phalaris,	Plagiobothrys	nothofulvus,	Plantago
erecta,	Pteridium,	Raphanus,	Selaginella	bigelovii,	Streptanthus,	and/or	Vulpia.
6.	Allium	falcifolium,	Asclepias	solanoana,	Eriogonum	cedrorum,	E.	luteolum,	E.	nudum,
Selaginella	bigelovii,	and/or	Streptanthus	morrisonii	characterize	or	dominate	stands	on	exposed
rock.

California	Cliff,	Scree,	and	Other	Rock	Vegetation	Macrogroup
Central	California	Coast	Ranges	Cliff	and	Canyon	Group
6a.	Selaginella	bigelovii	dominates	or	characterizes	small	stands	on	rock	outcrops,	cliff
faces,	or	skeletal	soils	over	gently	to	steeply	sloping,	impervious	substrates.	Moss	and
lichen	species	often	intermix.

Selaginella	bigelovii	Alliance
6b.	Sparsely	vegetated	herbaceous	stands	(generally	less	than	2%	absolute	cover)
characterized	by	Allium	falcifolium,	Asclepias	solanoana,	Eriogonum	cedrorum,	E.
luteolum,	E.	nudum,	and/or	Streptanthus	morrisonii,	growing	on	steep	serpentine	barrens
with	exposed	gravel	and	bedrock.

Allium	falcifolium	–	Eriogonum	spp.	–	Streptanthus	spp.	Provisional	Alliance
Eriogonum	luteolum	–	Streptanthus	morrisonii	Provisional	Association

7.	Eriogonum	nudum	or	Heterotheca	oregona	dominates	or	co-dominates	with	nonnative	herbs	in
stands	with	recent	or	seasonal	disturbance.

California	Coastal	Scrub	Macrogroup
Central	and	South	Coastal	California	Seral	Scrub	Group
7a.	Eriogonum	nudum	dominates	or	co-dominates	with	Bromus	diandrus,	Erodium
botrys,	Vulpia	bromoides,	and	others	in	herbaceous	stands	often	occupying	exposed
convexities.

Eriogonum	(elongatum,	nudum)	Provisional	Alliance
Eriogonum	nudum	Provisional	Association

7b.	Heterotheca	oregona,	a	perennial	herb	that	acts	like	a	short-lived	shrub,	dominates
herbaceous	stands	with	seasonal	hydrologic	disturbance.	Found	along	sunny,	rocky
stream	terraces,	seasonally	dry	streambeds,	sandbars	in	river	drainages,	and	cobbled



gravel	bars	in	floodplains.

Heterotheca	(oregona,	sessiliflora)	Provisional	Alliance
Heterotheca	oregona	Provisional	Association

8.	Native	and	nonnative	annual	forb/grass	vegetation	AND	native	perennial	grasslands	growing
within	the	California	Mediterranean	climate.	Stands	are	generally	found	in	relatively	drier	sites
than	those	in	the	Western	North	American	Temperate	Grassland	and	Meadow	Macrogroup,	which
is	more	common	near	the	coast	(see	step	9).	Includes	vegetation	characterized	by,	but	not	limited
to,	Avena,	Brassica,	Bromus,	Centaurea,	Cynosurus,	Elymus	glaucus,	Eschscholzia,	Lasthenia
californica,	Lolium,	Nassella,	Melica,	Plantago	erecta,	Pteridium	aquilinum,	Vulpia	microstachys,
and	Plagiobothrys	nothofulvus.

California	Annual	and	Perennial	Grassland	Macrogroup
8a.	Herbaceous	vegetation	dominated,	co-dominated,	or	characterized	by	native	annual
forbs	and	grasses	such	as	Eschscholzia,	Lasthenia	californica,	Lupinus,	Plagiobothrys,
Plantago	erecta,	and	Vulpia	microstachys.	Commonly	occurring	taxa	include	Avena,
Bromus,	Cryptantha,	Geranium,	Dichelostemma,	Lolium,	and	Vulpia.	Stands	are	found
on	upland	slopes,	flats,	and	ridges.

			California	Annual	Herb/Grass	Group
8a1.	Eschscholzia	californica,	Lupinus	bicolor,	and/or	L.	nanus	dominate	or	co-
dominate	with	a	variety	of	native	and	nonnative	forbs	and	grasses.

Eschscholzia	(californica)	–	Lupinus	(nanus)	Provisional	Alliance
Bromus	hordeaceus	–	Lupinus	nanus	–	Trifolium	spp.	Association

Eschscholzia	californica	Association
8a2.	Plagiobothrys	nothofulvus	dominates	and	intermixes	with	a	variety	of	native
and	nonnative	forbs	and	grasses.

Plagiobothrys	nothofulvus	Alliance
Plagiobothrys	nothofulvus	–	Daucus	pusillus	–	Trifolium	microcephalum	Provisional

Association
8a3.	Lasthenia	californica,	Erigeron	glaucus,	Calycadenia	multiglandulosa,	C.
truncata,	Hemizonia	congesta,	Lomatium,	Lotus	humistratus,	Micropus	californicus,
Plantago	erecta,	and/or	Vulpia	microstachys	dominate	individually	or	in	combination
in	the	herbaceous	layer.	Lasthenia	californica,	Plantago	erecta,	and/or	Vulpia
microstachys	are	often	present,	sometimes	with	sparse	cover.

Lasthenia	californica	–	Plantago	erecta	–	Vulpia	microstachys	Alliance
Erigeron	glaucus	–	Lasthenia	californica	Provisional	Association
Hemizonia	congesta	–	Lolium	perenne	Provisional	Association

Lotus	humistratus	–	Plantago	erecta	–	Lomatium	spp.	Provisional	Association
Micropus	californicus	Provisional	Association

Vulpia	microstachys	–	Plantago	erecta	–	Calycadenia	(truncata,	multiglandulosa)
Association

8b.	Bromus	carinatus,	Elymus	glaucus,	Melica	californica,	Nassella	pulchra,	and/or
Pteridium	aquilinum,	all	native	perennial	grasses,	are	dominant	or	characteristic	in
stands,	sometimes	with	equal	or	greater	cover	of	nonnative	herbs.

			California	Perennial	Grassland	Group
8b1.	Bromus	carinatus,	Elymus	glaucus	and/or	Pteridium	aquilinum	dominate	or	co-
dominate	near	meadows,	in	forested	openings,	and	on	elevated	flats.	Anagallis
arvensis,	Bromus	hordeaceus,	Geranium	dissectum,	Rumex	acetosella,	and	Vulpia



bromoides	are	often	present.

Elymus	glaucus	–	Bromus	carinatus	Provisional	Alliance
Bromus	carinatus	Provisional	Association

Elymus	glaucus	Association
Pteridium	aquilinum	Provisional	Association

8b2.	Melica	californica	and/or	Nassella	pulchra	are	dominant,	co-dominant,	or
characteristic	in	stands.	Achnatherum	lemmonii,	Avena,	Bromus,	Hemizonia
congesta,	Lolium	perenne,	Plantago	erecta,	and/or	P.	lanceolata	intermix	as
dominant,	co-dominant,	or	characteristic	taxa	in	associations	of	this	alliance.

Nassella	spp.	–	Melica	spp.	Provisional	Alliance
Melica	californica	Provisional	Association

Nassella	pulchra	Association
Nassella	pulchra	–	Achnatherum	lemmonii	Provisional	Association

Nassella	pulchra	–	Avena	spp.	–	Bromus	spp.	Association
Nassella	pulchra	–	Hemizonia	congesta	Provisional	Association

Nassella	pulchra	–	Lolium	perenne	–	Plantago	erecta	Serpentine	Provisional	Association
Nassella	pulchra	–	Melica	californica	–	Annual	Grass	Association
Nassella	pulchra	–	Plantago	lanceolata	Provisional	Association

8c.	Herbaceous	vegetation	strongly	dominated	by	nonnative	grasses	and	forbs	such	as
Avena,	Brachypodium,	Brassica,	Briza,	Bromus,	Centaurea,	Cynosurus,	Danthonia
pilosa,	Erodium,	Lolium,	Nassella	manicata,	and	Raphanus.	Native	herbaceous	species
have	insignificant	cover	in	these	stands,	especially	during	the	active	growing	season.
Stands	are	found	in	foothills,	rangelands,	fallow	fields,	woodland	openings,	riparian
areas,	and	disturbed	settings.

			Mediterranean	California	Naturalized	Annual	and	Perennial	Grassland	Group
8c1.	Avena,	Brachypodium,	Briza,	Bromus,	and/or	Erodium	dominate	individually	or
in	combination.

Avena	spp.	–	Bromus	spp.	Provisional	Seminatural	Alliance
Avena	barbata	Seminatural	Association

Brachypodium	distachyon	Seminatural	Association	Briza
maxima	Provisional	Seminatural	Association	Bromus

diandrus	–	Avena	spp.	Seminatural	Association
Bromus	hordeaceus	–	Erodium	botrys	Seminatural	Association

8c2.	Brassica	nigra,	Raphanus	sativus,	or	another	nonnative	mustard	dominates	in
the	herbaceous	layer,	often	in	old	or	active	agriculture	lands.

Brassica	nigra	and	Other	Mustards	Seminatural	Alliance
Brassica	nigra	Seminatural	Association

Raphanus	sativus	Seminatural	Association
8c3.	Centaurea	solstitialis	or	another	nonnative	species	of	Centaurea	dominates
herbaceous	stands.

Centaurea	(solstitialis,	melitensis)	Seminatural	Alliance
Centaurea	solstitialis	Seminatural	Association

8c4.	Cynosurus	echinatus,	Danthonia	pilosa,	and/or	Nassella	manicata	dominate	or
co-dominate	in	the	herbaceous	layer.	Anagallis,	Avena,	Lolium,	Plantago	lanceolata,
Rumex,	and	Vulpia	bromoides	are	often	present.

Cynosurus	echinatus	Seminatural	Alliance
Cynosurus	echinatus	–	(Danthonia	pilosa	–	Nassella	manicata)	Provisional	Seminatural



Association

8c5.	Lolium	perenne	dominates	or	co-dominates	with	Avena	barbata,	Bromus
hordeaceus,	Hordeum	marinum,	H.	murinum,	Medicago,	Trifolium	subterraneum,
and	other	nonnatives	in	herbaceous	stands.	Often	found	on	moist	or	poorly	drained
sites,	on	or	off	serpentine.

Lolium	perenne	Seminatural	Alliance
Lolium	perenne	Seminatural	Association

9.	Herbaceous	vegetation	dominated,	co-dominated,	or	characterized	by	native	or	nonnative
perennial	grasses.	Stands	are	generally	found	in	moister	settings	than	those	in	the	California
Annual	and	Perennial	Grassland	Macrogroup	(see	step	8),	and	are	often	coastal.	The	grasses
included	are:	Agrostis	gigantea,	A.	stolonifera,	Anthoxanthum,	Calamagrostis	nutkaensis,
Danthonia	californica,	Deschampsia	cespitosa,	Elymus	elymoides,	E.	multisetus,	Festuca
arundinacea,	F.	idahoensis,	Holcus,	Hordeum	brachyantherum	and/or	Phalaris	aquatica.	Note:
stands	dominated	by	Lolium	perenne	key	out	in	step	8	above.

9a.	Agrostis,	Anthoxanthum,	Festuca	arundinacea,	Holcus,	and/or	Phalaris	are
dominant,	co-dominant,	or	characteristic	in	herbaceous	stands.

			Western	North	American	Temperate	Grassland	and	Meadow	Macrogroup
9a1.	Nonnative,	slightly	mesic,	disturbed	pasturelands	dominated	or	co-dominated
by	the	following	perennial	grasses:	Agrostis	gigantea,	A.	stolonifera,	Anthoxanthum,
Festuca	arundinacea,	Holcus,	and/or	Phalaris.	If	native	species	are	present	and	co-
dominant,	key	to	an	alliance	dominated	or	characterized	by	natives.	Found	in	wet
settings,	including	brackish	marshes,	meadows,	stream	terraces,	wet	pastures,
agricultural	wetlands,	or	tidal	zones.

			Vancouverian	and	Rocky	Mountain	Naturalized	Perennial	Grassland	Group
9a1a.	Agrostis	gigantea,	A.	stolonifera,	and/or	Festuca	arundinacea	dominate
or	co-dominate	in	the	herbaceous	layer.	The	stands	encountered	for	this	project
were	dominated	by	F.	arundinacea,	though	stands	dominated	by	Agrostis	may
be	present	in	Sonoma	County.

Agrostis	(gigantea,	stolonifera)	–	Festuca	arundinacea	Seminatural	Alliance
Festuca	arundinacea	Provisional	Seminatural	Association

9a1b.	Holcus	lanatus	and/or	Anthoxanthum	odoratum	dominate	individually	or
in	combination.	Other	co-dominants	may	include	Briza	maxima,	Pteridium
aquilinum,	Rumex	acetosella,	and	Vulpia	bromoides.

Holcus	lanatus	–	Anthoxanthum	odoratum	Seminatural	Alliance
Holcus	lanatus	Seminatural	Association

Holcus	lanatus	–	Anthoxanthum	odoratum	Seminatural	Association
9a1c.	Phalaris	aquatica	dominates	in	naturalized	or	planted	stands.	Other
nonnative	herbs,	such	as	Carduus	pycnocephalus	may	be	present	with	similar
cover.

Phalaris	aquatica	Seminatural	Alliance
Phalaris	aquatica	Provisional	Seminatural	Association

9b.	Native	grasslands	dominated,	co-dominated,	or	characterized	by	the	following
perennial	grasses:	Bromus	carinatus,	Elymus	elymoides,	E.	glaucus,	E.	multisetus,
Festuca	californica,	F.	idahoensis,	or	Pteridium	aquilinum.	May	occur	near	the	coast	or
inland.

			Western	Dry	Upland	Perennial	Grassland	Group



9b1.	Elymus	elymoides	or	E.	multisetus	dominates	or	co-dominates	in	stands	on
serpentine	soils,	often	on	southerly	exposures.	Stands	of	Elymus	multisetus	with
Eschscholzia	californica	and/or	Plantago	erecta	were	encountered	most	often	in	the
sites	visited	for	this	project;	Dichelostemma	capitatum,	Eriogonum	nudum,	Lotus
humistratus,	and	Minuartia	douglasii	were	also	commonly	present.

Elymus	(elymoides,	multisetus)	Provisional	Alliance
Elymus	multisetus	–	(Eschscholzia	californica	–	Plantago	erecta)	Provisional	Association

9b2.	Festuca	idahoensis	dominates	or	co-dominates	with	Danthonia	californica
and/or	Elymus	multisetus.	Bromus	carinatus,	Elymus	glaucus,	Plantago	erecta,	and
a	variety	of	native	and	non-native	forbs	and	grasses	may	intermix	as	subdominants.
Occasionally,	the	larger	Festuca	californica	may	replace	F.	idahoensis	in	somewhat
shadier	or	less	exposed	sites.

Festuca	idahoensis	Alliance
Festuca	californica	Provisional	Association

Festuca	idahoensis	–	Bromus	carinatus	Association
Festuca	idahoensis	–	Danthonia	californica	Provisional	Association

Festuca	idahoensis	Ultramafic	Provisional	Association
9c.	Native,	mesic	to	moist,	primarily	coastal	grasslands	dominated,	co-dominated,	or
characterized	by	Calamagrostis	nutkaensis,	Deschampsia	cespitosa,	Danthonia
californica,	Eryngium	armatum,	and/or	Hordeum	brachyantherum.	Baccharis	pilularis,
Briza	maxima,	Holcus	lanatus,	Nassella	pulchra,	and/or	Vulpia	bromoides	commonly
intermix	in	stands.	Found	in	a	variety	of	settings,	including	dunes,	bluffs,	meadows,
valley	bottoms,	alluvial	slopes,	terraces,	meadows,	and	seasonally	flooded	areas	with
moderate	salinity.

9c1.	Deschampsia	cespitosa,	Danthonia	californica,	and/or	Eryngium	armatum
dominate	or	co-dominate	individually	or	in	combination	(if	Holcus	lanatus	has	the
highest	cover,	but	these	three	species	have	at	least	10%	combined	cover,	key	to
Deschampsia).	Settings	range	from	coastal	dunes	and	bluffs	to	inland	plains	(e.g.,
Santa	Rosa	Plain)	to	montane	meadows.
Western	Cordilleran	Montane–Boreal	Wet	Meadow	Macrogroup
Western	Cordilleran	Montane–Boreal	Mesic	Wet	Meadow
Group

Deschampsia	cespitosa	Alliance
Deschampsia	cespitosa	–	Danthonia	californica	Association

Deschampsia	cespitosa	–	Eryngium	armatum	Provisional	Association
Deschampsia	cespitosa	–	Holcus	lanatus	Provisional	Association

9c2.	Hordeum	brachyantherum	dominates	or	co-dominates	with	Bromus	carinatus,
Hypochaeris,	Lolium	perenne,	Lotus	corniculatus,	Plantago	erecta,	and	Trifolium
subterraneum	in	moist	meadows,	along	stream	terraces	and	coastal	bluffs,	and	near
seeps	and	springs.

Western	Cordilleran	Montane	Shrubland	and	Grassland	Macrogroup
Western	Cordilleran	Montane	Moist	Graminoid	Meadow	Group

Hordeum	brachyantherum	Alliance
Hordeum	brachyantherum	Association

9c3.	Calamagrostis	nutkaensis	dominates	or	co-dominates	with	Baccharis	pilularis
OR	stands	are	dominated	or	characterized	by	Danthonia	californica	with	Briza



maxima,	Nassella	pulchra,	and/or	Vulpia	bromoides.	Stands	are	found	along	valley
bottoms,	lower	portions	of	alluvial	slopes,	terraces,	floodplains,	and	ridges.

Vancouverian	Lowland	Grassland	and	Shrubland	Macrogroup
Vancouverian	Coastal	Grassland	Group
9c3a.	Calamagrostis	nutkaensis	dominates	or	co-dominates	with	Baccharis
pilularis.	Heracleum	maximum,	Holcus	lanatus,	Juncus	patens,	and/or	Rubus
ursinus	often	intermix	in	stands.

Calamagrostis	nutkaensis	Alliance
Calamagrostis	nutkaensis	/	Baccharis	pilularis	Association

9c3b.	Danthonia	californica	dominates	OR	characterizes	stands	in	combination
with	1)	Nassella	pulchra	or	2)	Briza	maxima	and/or	Vulpia	bromoides.	In	the
latter	two	cases,	Danthonia	and	the	other	species	share	at	least	15%	relative
cover	in	the	herb	layer,	with	other	nonnative	grasses	and	forbs	sometimes
having	higher	cover	(e.g.,	Cynosurus	echinatus,	Holcus	lanatus,	and
Hypochaeris	radicata).

Danthonia	californica	Alliance
Danthonia	californica	–	(Briza	maxima	–	Vulpia	bromoides)	Provisional	Association

Danthonia	californica	–	Nassella	pulchra	Provisional	Association

10.	Coastal	dune,	bluff,	meadow,	and	other	vegetation	dominated	by	herbaceous	species	such	as
Abronia,	Ambrosia,	Ammophila,	Carpobrotus,	Leymus	mollis,	and	Mesembryanthemum.

10a.	Native	species,	including	Abronia	latifolia,	Ambrosia	chamissonis,	Artemisia
pycnocephala,	and/or	Leymus	mollis	dominate	or	co-dominate	on	dunes	or	bluffs.	Plants	are
adapted	to	salt	spray,	wind,	and	shifting	sands	and	are	thus	capable	of	colonizing	relatively
unstable	and	sterile	substrates.
			Vancouverian	Coastal	Dune	and	Bluff	Macrogroup
						Vancouverian/Pacific	Dune	Mat	Group

10a1.	Abronia	latifolia,	Ambrosia	chamissonis,	and/or	Artemisia	pycnocephala	dominate,
sometimes	with	Calystegia	soldanella	or	Polygonum	paronychia	occurring	as	associated
species.	Cakile	maritima,	Ammophila	arenaria,	Camissonia	cheiranthifolia,	and
Eriogonum	latifolium	may	be	present.

Abronia	latifolia	–	Ambrosia	chamissonis	Alliance
Ambrosia	chamissonis	Provisional	Association

Artemisia	pycnocephala	–	Calystegia	soldanella	Association
Artemisia	pycnocephala	–	Polygonum	paronychia	Association

10a2.	Leymus	mollis	dominates	in	the	herbaceous	layer.	Abronia,	Artemisia
pycnocephala,	Cakile,	and	other	herbaceous	species	may	be	present	as	subdominants.

Leymus	mollis	Alliance
Leymus	mollis	–	Abronia	latifolia	–	(Cakile	spp.)	Association

10b.	Nonnatives,	including	Ammophila,	Carpobrotus,	and/or	Mesembryanthemum	dominate
on	dunes,	bluffs,	or	disturbed	lands.	Emergent	shrubs	such	as	Baccharis	pilularis	or	Lupinus
arboreus	may	be	present.

			California–Vancouverian	Seminatural	Littoral	Scrub	and	Herb	Vegetation	Group	10b1.
Ammophila	arenaria	is	strongly	dominant	in	the	herbaceous	layer.

Ammophila	arenaria	Seminatural	Alliance



Ammophila	arenaria	Seminatural	Association
10b2.	Carpobrotus	and/or	Mesembryanthemum	dominate	on	bluffs,	dunes,	or	disturbed
lands,	often	forming	impenetrable	mats	that	prevent	natives	from	establishing.

Mesembryanthemum	spp.	–	Carpobrotus	spp.	Provisional	Seminatural
Alliance

Carpobrotus	(edulis)	Provisional	Seminatural	Association

___________________________
1The	Alnus	rubra	Alliance	is	placed	in	the	Upland	Vancouverian	Mixed	Woodland	and	Forest	Group	of	the
USNVC.	It	will	likely	be	incorporated	under	the	Vancouverian	Riparian	Deciduous	Forest	Group	in	the
future	as	it	has	been	for	this	project.
2The	Arctostaphylos	glandulosa	Alliance	is	placed	in	the	Pre-Montane	Chaparral	Group	of	the	USNVC.	For
this	project,	it	fits	better	under	the	Xeric	Chaparral	Group	because	stands	occupy	relatively	dry,	southerly
facing	sites	with	shallow	soils	and	are	more	similar	ecologically	to	other	xeric	chaparral	alliances	of
Sonoma	County.	Future	versions	of	the	USNVC	may	include	an	alliance	of	A.	glandulosa	under	the	Xeric
Chaparral	Group.
3Vernal	pool	data	collected	from	over	100	relevés	in	the	Santa	Rosa	Plain	from	2007–2009	have	not	been
completely	analyzed.	The	final	classification	and	mapping	will	be	treated	under	a	separate	vernal	pool
phase	of	the	Sonoma	County	vegetation	project.	The	vernal	pool	stands	studied	so	far	appear	to	fall	largely
within	the	Lasthenia	glaberrima	Alliance,	but	new	associations	may	be	defined	and	some	samples	may
represent	other	alliances.



Chapter	8
Digital	Elevation	Models

Introduction
As	introduced	in	chapter	2,	three	types	of	information	can	be	derived	from
imagery:	elevation	models,	feature	maps,	and	thematic	maps.	This	chapter
reviews	elevation	models	with	a	focus	on	digital	elevation	models	(DEMs).	The
chapter	introduces	the	types	of	DEMs	and	DEM-derived	products	and	reviews
the	methods	used	to	create	them.	It	ends	with	a	discussion	on	sources	of	DEM
data.	Chapter	9	furthers	the	discussion	of	DEMs	by	examining	how	DEMs	and
their	derivatives	can	be	used	to	support	feature	extraction	and	thematic	mapping.

What	Is	a	DEM?
Elevation	models	are	created	from	point	data	that	samples	the	x,	y,	and	z
coordinates	of	locations	on	the	earth’s	surface.	Two	main	types	of	elevation
models	exist:	DEMs,	which	are	raster	datasets	depicting	the	earth’s	topography
as	a	regularly	spaced	grid,	and	triangular	irregular	networks,	which	connect
irregularly	spaced	elevation	points	with	triangular	surfaces.	In	general,	DEMs
tend	to	be	created	from	imagery,	with	triangular	irregular	networks	created	from
survey	data.	DEMs	are	more	commonly	used	and	are,	therefore,	the	focus	of	this
chapter.

The	earth’s	topography	forms	the	natural	foundation	for	working	in	three
dimensions,	where	objects	are	placed	above,	on,	or	below	the	terrain	surface.	To



work	in	3D,	the	GIS	analyst	must	have	a	model	of	the	earth’s	topography.	By
representing	topography,	elevation	models	provide	a	3D	context	for	mapping	and
analysis	and	are	an	indispensable	tool	for	the	GIS	analyst.	For	example,	a	GIS
analyst	who	creates	digital	or	hard-copy	maps	uses	DEM	derivatives	like
hillshades	and	contours	for	displaying	topography.	An	analyst	creating	a
vegetation	map	or	habitat	map	relies	on	DEM	derivatives	such	as	slope	and
aspect	to	help	predict	vegetation	and	habit	type.	An	analyst	attempting	to	find
the	optimal	location	for	a	solar	energy	generation	facility	uses	DEMs	to	find	the
amount	of	solar	insolation	that	illuminates	his	landscape	of	interest.

Types	of	DEMs
There	are	many	variations	of	DEMs.	These	include	bare-earth	DEMs,	also
known	as	digital	terrain	models	(DTMs),	highest	hit	DEMs,	also	known	as
digital	surface	models	(DSMs),	and	digital	height	models	(DHMs),	also	known
as	canopy	height	models	(CHMs).	Figure	8.1	provides	a	visual	illustration	of	the
different	types	of	DEMs.

Figure	8.1.	Lidar-derived	DEMs



DTMs
DTMs—also	known	as	bare-earth	digital	elevation	models—depict	the	elevation
of	the	ground,	typically	in	vertical	units	above	or	below	sea	level,	which	is
typically	represented	by	a	raster	value	of	0.	In	figure	8.2,	the	blue	line	on	the
left-side	image	shows	the	location	of	the	ground	surface	that	the	elevation	values
in	the	DTM	will	represent.	The	higher	the	spatial	resolution	of	the	image	used	to
make	the	DTM,	the	more	detailed	the	DTM.

Figure	8.2.	A	conceptual	illustration	of	a	DTM	and	a	DSM

Of	notable	importance	to	hydrologic	modeling	and	mapping	of	water
features	and	riparian	areas	is	the	hydro-enforced	DTM.	Hydro-enforcement	of	a
DTM	incorporates	the	true	elevations	of	culverts,	pipelines,	and	other	buried
passages	for	water	into	a	DTM,	creating	a	DTM	suitable	for	modeling	the	flow
of	surface	water.	A	hydro-enforced	DTM	is	a	prerequisite	for	accurate	flood
zone	modeling,	dam	breach	modeling,	riparian	zone	modeling/mapping,	and
many	other	types	of	hydrologic	modeling.	A	cousin	of	the	hydro-enforced	DEM
is	the	hydro-flattened	DEM.	Hydro-flattened	DEMs	are	not	hydro-enforced
(underground	passages	to	water	are	not	burned	in),	but	surface	water	is
“flattened”	using	hydrographic	breaklines.	Hydro-flattening	improves	the
appearance	of	DEMs	for	display	and	cartography;	it	is	required	for	lidar-derived
DEMs	that	are	to	be	included	in	the	National	Elevation	Dataset	(NED).

DSMs



DSMs,	also	known	as	digital	surface	models,	represent	the	highest	locations	on
the	landscape.	For	open	areas,	the	DSM	will	be	equal	to	the	DTM,	because	no
feature	is	higher	than	the	ground.	In	areas	where	buildings	and	vegetation	exist,
the	pixel	values	of	the	DSM	will	represent	the	elevations	of	the	vegetation	and
buildings.	In	figure	8.1,	the	red	line	on	the	right-side	image	shows	the	location	of
the	surfaces	that	the	pixel	elevation	values	in	the	DSM	will	represent.	Lidar-
derived	DSMs	are	also	known	as	first	return	(or	highest	hit)	elevation	models,
because	the	DSM	elevation	of	a	given	location	is	equal	to	the	highest	elevation
of	the	feature	the	laser	pulse	encounters	at	that	location.	For	example,	in	a	tree
canopy,	a	single	laser	pulse	may	have	a	first	return	from	the	top	of	a	tree,	a
second	return	from	a	branch	lower	on	the	tree,	and	a	last	return	from	the	ground.
The	first	return,	or	highest	hit,	is	the	return	from	the	top	of	the	tree.

DHMs
DHMs—also	known	as	normalized	digital	surface	models	or	CHMs—depict	the
absolute	height	of	features	above	the	ground,	such	as	trees	and	buildings.	DHMs
represent	the	value	of	the	DSM	minus	the	value	of	the	DTM,	resulting	in	a
measure	of	feature	height.	For	example,	a	DSM	pixel	representing	the	top	of	a
tree	has	a	pixel	value	of	1,100	feet	above	sea	level.	The	corresponding	DTM
pixel	representing	the	area	of	ground	of	the	bottom	of	the	tree	has	a	value	of
1,000	feet	above	sea	level.	The	difference	between	these	two	values—1,100	feet
minus	1,000	feet—is	100	feet,	representing	the	height	of	the	tree	at	this	location.
DHMs	are	extremely	useful	in	urban	planning,	forest	management,	and	forest
mapping	because	they	provide	accurate,	high-resolution	information	about	the
height	of	forested	stands	and	the	heights	of	individual	trees.

How	DEMs	Are	Created
DEMs	are	created	from	imagery	using	one	of	two	techniques:	by	using	lidar
point	clouds	or	by	using	photogrammetry	to	extract	points	from	optical	or	radar
images	taken	from	two	or	more	perspectives.	Lidar	and	interferometric	synthetic
aperture	radar	(IFSAR)	are	relatively	new	approaches	to	creating	DEMs.	Many
DEMs	are	still	produced	using	traditional	photogrammetric	approaches,	which
extract	elevation	information	from	imagery	collected	in	stereo.	In	fact,	very-
high-resolution	DEMs	created	from	photogrammetric	techniques	are



proliferating	because	of	the	recent	boom	in	high-resolution	aerial	and	UAS-
collected	imagery	as	well	as	new	image	processing	techniques.	Photogrammetric
methods	can	generate	elevation	values	for	every	photo	pixel	from	the	photos
being	collected,	creating	a	very-high-resolution	DEM.

DEMs	Produced	by	Photogrammetry
DEMs	produced	by	photogrammetry	use	imagery	collected	by	either	optical
passive	sensors	or	active	radar	sensors.	The	process	of	creating	DEMs	from
remotely	sensed	stereo	imagery—whether	the	imagery	is	collected	in	analog	or
digital	format	by	an	unmanned	aerial	vehicle	(UAV),	airplane,	or	satellite—
hinges	on	the	basic	concept	of	parallax	(McGlone,	2013).	Parallax	is	the
apparent	displacement	or	difference	in	the	position	of	an	object	viewed	along
two	different	lines	of	sight.	Objects	that	are	closer	have	a	greater	parallax	than
objects	that	are	farther	away.	The	concept	of	parallax	can	be	used	to	determine
elevations	from	remotely	sensed	imagery	if	the	imagery	is	collected	from	two
perspectives	with	overlap	between	them.

A	simple	example	demonstrates	the	concept	of	parallax.	With	both	eyes
open,	extend	your	index	figure	straight	up	in	front	of	your	face	about	half	an
arm’s	length	in	front	of	you.	Using	both	eyes	pick	a	distinct	vertical	object,	and
keeping	your	finger	straight	up,	center	your	finger	on	the	vertical	object.	Now,
without	moving	your	finger,	close	your	left	eye.	Open	both	eyes	again	and	then
close	your	right	eye.	What	happened?	When	closing	one	of	your	eyes,	your
finger	appeared	to	move	(this	is	apparent	movement	because	you	did	not	move
your	hand).	Now,	bring	your	finger	closer	to	your	face	and	repeat	the
experiment.	What	happened?	You	should	have	detected	greater	apparent	motion.
As	stated	in	the	definition,	parallax	is	an	apparent	difference	(not	a	real	one),	and
nearer	objects	have	greater	parallax	than	farther	ones.	Moving	your	finger	closer
to	your	face	increased	the	parallax.	The	parallax	created	by	the	images	captured
by	our	eyes	is	what	allows	humans	to	see	in	three	dimensions.

The	science	and	discipline	of	photogrammetry	rely	on	the	concept	of
parallax	along	with	some	mathematics—including	a	method	called	triangulation
—to	derive	elevation	data	from	stereo	imagery	(McGlone,	2013).	Traditionally,
photogrammetry	was	performed	using	a	stereo	pair	of	analog	(film)	aerial	photos
(i.e.,	two	photos	taken	from	two	perspective	views	with	at	least	a	50	percent
overlap).	More	recently,	the	same	processes	have	been	applied	to	digital	airborne
and	satellite	imagery.	The	biggest	advantage	of	using	digital	imagery	is	the
ability	to	automate	the	photogrammetric	process	(i.e.,	remove	the	human



analyst)	and	create	higher	resolution	elevation	models	in	a	mostly	automated
workflow.	The	biggest	disadvantage	of	creating	elevation	models	using
photogrammetry	is	that	the	process	requires	imagery	for	at	least	two	points	of
view	for	every	ground	location.	This	becomes	challenging	in	forested	areas	and
dense	urban	areas.

Airborne	platforms	were	the	original	source	for	photogrammetric	DEMs	and
are	still	the	workhorse	for	detailed	photogrammetric	terrain	mapping	today.	The
advent	of	UAVs	in	the	past	several	years	has	only	increased	the	use	of	airborne-
derived	photogrammetric	terrain	mapping.

The	first	widespread	civilian	effort	to	create	DEMs	from	digital	satellite
imagery	used	the	French	SPOT	(Satellite	Pour	l’Observation	de	la	Terre)	satellite
launched	into	orbit	in	1986.	SPOT	was	a	pointable	satellite	and	therefore	able	to
capture	two	perspective	views.	Until	SPOT	was	launched,	civilian	earth-
observing	satellites	were	static	in	the	vertical	viewing	position	and	lacked
sufficient	overlap	to	create	parallax	for	a	very	large	area.	Now,	several	satellites
including	WorldViews	1–3,	GeoEye-1,	and	Pleiades-1A	and	-1B	are	able	to
collect	stereo	imagery	for	creating	DEMs	over	large	areas.

Photogrammetric	methods	can	also	be	used	with	IFSAR	or	dual-antenna
radar	imagery	to	collect	surface	elevation	points.	IFSAR	image	pairs	for	DEM
generation	are	collected	from	slightly	different	positions,	and	the	phase
difference	between	the	two	images	is	analyzed	to	extract	elevation	information
(McGlone,	2013).	An	example	is	the	2001	NASA	Shuttle	Radar	Topography
Mission	(SRTM),	which	used	dual-antenna	radar	to	map	surface	elevations	for
the	near-global	scale	from	56°	south	to	60°	north	at	a	30-meter	resolution.

DEMs	Produced	from	Lidar
Lidar	capitalizes	on	a	synthesis	of	technologies	including	accurate	global
positioning	systems	(GPSs)	and	inertial	measurement	units	to	create	a
completely	new	way	of	deriving	elevation	data	(Renslow,	2012).	As	discussed	in
chapter	3,	airborne	lidar	sensors	send	out	discrete	pulses	of	laser	light	that
bounce	back	and	are	recaptured	by	the	aircraft’s	sensor.	The	durations	of	their
paths	are	recorded	and	analyzed	to	extract	elevation	information.	A	single	lidar
pulse	can	have	multiple	returns	indicating	multiple	objects	such	as	treetops,
branches,	and	the	ground.	This	remote	sensing	technology	has	radically	altered
the	collection	of	elevation	data,	resulting	in	significantly	higher	spatial
resolution	DEMs	with	very	good	vertical	accuracy.



Lidar’s	laser	pulses	produce	a	highly	accurate	and	dense	“point	cloud”	of
elevation	points	and—because	lidar	penetrates	the	tree	canopy—DEMs
produced	from	lidar	data	can	very	accurately	depict	both	the	ground	(DTM)	and
the	highest	surface	(DSM).	In	ArcGIS,	DTMs,	DSMs,	and	DHMs	can	be
produced	from	the	lidar	point	cloud	by	referencing	the	point	clouds	in	LAS	data
format	datasets	or	mosaic	datasets.	The	various	types	of	lidar-derived	DEMs	can
then	be	derived	by	rasterizing	the	data	using	different	filters.	Other	software
packages	offer	solutions	for	creating	the	various	flavors	of	lidar-derived	DEMs
from	lidar	point	clouds.

DEM	Derivatives
DEMs	are	the	source	of	myriad	derivative	products—both	raster	and	vector—with	a
wide	 range	 of	 applications	 for	 many	 disciplines.	 Below	 is	 a	 list	 of	 some	 of	 these
useful	DEM-derived	products,	many	of	which	are	discussed	in	more	detail	in	chapter
9.

Slope	and	Aspect.	Slope	rasters	represent	the	rate	of	change	of	elevation	(rise
over	run)	for	each	pixel;	aspect	rasters	represent	the	direction	each	pixel	on	the
landscape	 is	 facing.	 These	 important	 DEM	 derivatives	 are	 very	 useful	 for
thematic	 mapping,	 modeling,	 and	 planning.	 In	 ArcGIS,	 slope	 and	 aspect	 are
easily	created	using	 raster	 functions	or	using	 the	spatial	analyst	or	3D	analyst
extensions.
Hillshade	 Rasters.	 These	 are	 “shaded	 relief”	 depictions	 of	 the	 landscape.
Hillshades	are	great	for	visual	reference	when	mapping	features	such	as	roads.
New	algorithms—such	as	 the	Esri	multidirectional	hillshade	algorithm—provide
more	 cartographic	 detail	 and	 a	 better	 depiction	 of	 hilly	 terrain	 than	 traditional
hillshade	 algorithms.	 In	 ArcGIS,	 hillshades	 are	 easily	 created	 using	 raster
functions	or	using	the	spatial	analyst	or	3D	analyst	extensions.
Viewsheds.	A	viewshed	represents	the	area	that	can	be	seen	by	a	human	from	a
selected	 point	 on	 the	 landscape.	 Viewshed	 analysis	 is	 a	 critical	 tool	 for
architects,	 planners,	 and	engineers.	Viewsheds	are	produced	 in	ArcGIS	using
the	spatial	analyst	or	3D	analyst	extensions.
Elevation	 Profiles.	 DEMs	 can	 be	 used	 to	 create	 elevation	 profiles.	 Elevation
profiles	graphically	show	the	change	of	elevation	for	a	route	or	a	linear	transect.
Elevation	 profiles	 are	 commonly	 used	 for	 transportation	 planning,	 outdoor
recreation,	engineering,	and	hydrological	analysis	and	flood	modeling.	Elevation
profiles	are	produced	in	ArcGIS	using	the	Elevation	Profile	Add-In	and	are	built-
in	functionality	for	versions	of	ArcGIS	Pro	after	1.4.
Elevation	 Contours.	 These	 are	 line	 vectors,	 with	 each	 line	 representing	 a
constant	elevation.	Contours	are	widely	used	 to	depict	elevation	on	hard-copy
topographic	maps,	 site	 plans,	 and	 engineering	 diagrams.	 In	 ArcGIS,	 contours
are	easily	created	using	the	spatial	analyst	or	3D	analyst	extensions.
Volumetric	Analysis.	DEMs	are	used	to	determine	the	amount	of	material	that	is
removed	 or	 added	 to	 an	 area	 that	 changes	 because	 of	 natural	 or	man-made
topographic	modification.	In	ArcGIS,	the	cut	and	fill	tools	allow	for	comparisons
of	DEMs	before	and	after	a	change,	producing	models	that	highlight	the	areas	of



erosion	(or	man-made	material	 removal),	and	 the	areas	of	deposition	(or	man-
made	 filling).	 The	 cut	 and	 fill	 tools	 also	 provide	 the	 volume	 of	 material	 that
eroded	or	was	deposited	in	each	area	of	the	landscape.
Solar	Insolation	Rasters.	These	quantify	the	amount	of	sunshine	that	illuminates
a	 given	 area	 for	 a	 user-defined	 period.	 Solar	 insolation	 rasters	 are	 extremely
useful	 for	 vegetation	 and	 habitat	 mapping,	 for	 planning,	 and	 for	 siting	 solar
generation	 projects.	 Solar	 insolation	 is	 derived	 from	 DEMs	 in	 ArcGIS	 using
Spatial	Analyst.
Hydrologic	Derivatives.	There	are	many	DEM	derivatives	crucial	for	the	study	of
hydrology	and	hydrologic	processes	 including	 flow	accumulation	and	proximity
to	water.
Lidar-Derived	Forest	Canopy	Metrics.	Several	 lidar	forest	canopy	metrics	(e.g.,
tree	 height	 and	 canopy	 density)	 are	 very	 useful	 for	 understanding	 and
measuring	forest	structure.

GIS	analysts	can	produce	the	DEM	derivatives	discussed	above	using
ArcGIS.	Many	of	these	derivatives	can	be	directly	rendered	from	the	DEMs	as
part	of	image	services	served	to	web	applications	or	accessible	through
geoprocessing	services.	For	example,	an	elevation	profile	geoprocessing	service
could	easily	be	deployed.	The	end	user	of	the	service	would	simply	digitize	a
line	on	a	map	in	a	JavaScript	app,	in	a	web	map,	or	in	ArcGIS,	and	the	service
would	process	their	input	and	return	an	elevation	profile	graphic.

Sources	of	Data	for	DEMs
DEMs	are	freely	available	in	the	USA	through	the	National	Elevation	Dataset
(NED).	For	the	continental	United	States,	1/3-arcsecond	(approximately	10-
meter)	and	1-arcsecond	(approximately	30-meter)	DEMs	are	available
seamlessly.	The	USGS’s	3D	Elevation	Program	(3DEP)	has	resulted	in	an
increasing	availability	of	higher	resolution,	more	accurate	lidar-derived	DEMs
over	ever-increasing	areas	of	the	country.	These	products	include	1-meter	bare-
earth	DEMs	where	lidar	data	are	available	that	meets	or	exceeds	USGS
specifications	(3DEP	quality	level	2).

Some	states	and	counties	have	collected	lidar	data	and	provide	access	to	the
point	cloud	and/or	derivatives	like	DEMs,	building	footprints,	stream
centerlines,	and	other	lidar-derived	features.	Examples	include	the	State	of
Indiana	(http://gis.iu.edu/datasetInfo/statewide/in_2011.php)	and	Sonoma
County,	California	(http://sonomavegmap.org/).

DEMs	are	available	for	download	at	the	following	national	portals:
The	National	Map	(http://nationalmap.gov)	—	Provides	access	to	the	NED

http://gis.iu.edu/datasetInfo/statewide/in_2011.php
http://sonomavegmap.org/
http://nationalmap.gov


and	to	USGS’s	3D	Elevation	Program	Data
NOAA’s	Digital	Coast—Provides	access	to	lidar	data	and	lidar-derived
DEMs	for	coastal	areas	of	the	United	States
USGS	makes	worldwide	SRTM-derived	DEMs	available	on
EarthExplorer.

ArcGIS	users	have	access	to	the	World	Elevation	services	through	ArcGIS
Online.	This	provides	simple	access	to	the	best	available	DEMs	for	any	given
area.	Since	it’s	an	image	service,	the	raw	pixel	values	representing	elevation	are
available.	The	service	has	multiple	functions	configured,	so	users	can	display	the
service	as	raw	elevation	or	as	one	of	several	derivatives	including	slope,	aspect,
or	as	a	hillshade.	Many	of	the	other	DEM	derivatives	mentioned	in	this	chapter
can	be	also	accessed	as	analysis	services	in	ArcGIS	Online	or	as	ArcGIS	Server
geoprocessing	services.

Quality	and	Accuracy
The	quality	and	accuracy	of	a	DEM	are	the	most	important	variables	for
determining	the	type	and	scale	of	mapping	that	the	elevation	data	will	support.
For	example,	DEMs	from	high-resolution	lidar	datasets	with	many	ground
elevations	collected	per	square	meter	are	required	for	deriving	accurate	1-foot
contours	used	in	engineering	planning,	while	lower	resolution	datasets	may
support	the	derivation	of	5-	to	10-foot	contours.	When	planning	new	collections
of	elevation	data,	it	is	very	important	to	match	the	quality	requirements	of	the
data	collection	with	the	planned	end	uses	of	the	elevation	data	being	collected.

The	accuracy	of	a	DEM	is	an	important	consideration.	To	assess	the	accuracy
of	elevation	data,	highly	accurate	elevation	ground	survey	points	are	collected
across	the	project	area.	These	checkpoints	are	used	only	for	assessing	the
accuracy	of	the	elevation	data	and	not	as	an	input	in	creating	the	DEM.	Once	the
checkpoints	are	collected,	the	ground	survey	elevations	at	the	locations	of	the
checkpoints	are	compared	to	the	elevations	of	the	mapped	ground	locations	(as
measured	by	a	lidar/IFSAR	instrument	or	mapped	photogrammetrically).	The
absolute	values	of	the	differences	(deltas)	between	the	surveyed	elevations	and
mapped	elevations	represent	the	vertical	errors	at	each	surveyed	location.	See
chapter	12	for	a	more	in-depth	discussion	of	positional	accuracy	assessment.

Quality	and	accuracy	are	often	linked.	For	example,	vertical	accuracy	of
lidar	data	is	highest	in	open	terrain	and	decreases	as	the	density	of	vegetation
increases.	Lidar	accuracy	decreases	in	vegetated	areas	for	two	reasons.	First,	as



vegetation	density	increases	fewer	lidar	pulses	are	able	to	penetrate	all	the	way
to	the	ground,	decreasing	the	resolution	of	the	DTM.	Second,	if	vegetation	and
ground	returns	are	both	present,	ground	returns	can	sometimes	be	confused	with
vegetation	returns	and	vice	versa.	As	a	general	rule,	increasing	the	point	density
of	a	lidar	collection	will	increase	the	accuracy	of	a	lidar	dataset.	As	a	result,
point	density	is	the	most	critical	consideration	when	planning	a	lidar	collection.

Figure	8.3	illustrates	the	sparseness	of	lidar	ground	returns	in	areas	of	dense
vegetation.	The	figure	shows	a	lidar-derived	bare-earth	hillshade	for	an	area	in
western	Sonoma	County,	California.	The	area	is	very	densely	forested	with	very
large,	extremely	tall,	coast	redwood	trees	(Sequoia	sempervirens).	In	the
hillshade,	areas	of	sparse	returns	are	evidenced	by	the	large	triangles	where	the
hillshade	algorithm	had	few	ground	returns	to	work	with.	The	lidar	collection	in
Sonoma	County	averaged	eight	pulses	per	square	meter;	had	it	been	collected	at
a	higher	point	density,	ground	returns	from	these	very	densely	forested	areas
would	have	been	less	sparse.

Figure	8.3.	Sparse	lidar	ground	returns	in	a	dense	forest

Summary	—	Practical
Considerations
DEMs	are	among	the	most	useful	raster	datasets	available	to	a	GIS	analyst.	They
are	used	to	visually	depict	topography	in	the	form	of	slope,	aspect,	and	shaded



relief	(discussed	in	chapter	9).	They	are	used	for	thematic	mapping	to	model	or
predict	land	cover,	habitat	suitability,	etc.	They	are	used	to	derive	vector	datasets
such	as	contour	lines	and	flood	inundation	areas.	DEMs	(along	with	solar
information)	are	used	to	model	the	amount	of	solar	radiation	that	a	location
receives.	These	are	just	a	few	use	cases	for	DEMs—the	list	is	long	and	crosses
many	GIS	disciplines.



Chapter	9
Data	Exploration:	Tools	for
Linking	Variation	in	the	Imagery
to	Variation	on	the	Ground

Introduction
Remotely	sensed	imagery	can	be	used	to	create	maps	mainly	because	a	very
strong	positive	correlation	exists	between	what	occurs	on	the	ground	and	what
occurs	on	a	remotely	sensed	image	of	the	ground.	Anything	that	detracts	from
this	relationship	can	cause	problems,	errors,	or	both	in	using	remotely	sensed
data	to	create	a	map	(see	chapter	6	for	a	discussion	of	these	causes).

Linking	variation	in	the	imagery	to	variation	on	the	ground	is	done	through	a
process	called	data	exploration	or	data	mining.	The	goal	is	to	discover	the
relationships	between	the	imagery	and	the	ground	to	most	effectively	extract
information	from	the	imagery	and	produce	the	best	map	possible.	Now	that	you
understand	the	fundamental	concepts	of	imagery,	it	is	time	to	look	at	the
methods	for	extracting	information	from	the	imagery.	These	methods	represent
not	only	a	series	of	historical	developments	over	the	last	75	years	or	so,	but	also
a	progression	of	improvements	in	computer	processing,	automation,	and
algorithm	development.

This	chapter	reviews	tools	and	techniques	for	linking	variation	in	the
imagery	to	variation	on	the	ground.	It	begins	by	introducing	the	elements	of	an
image	that	are	used	to	make	a	map.	The	next	section	presents	information	about



creating	additional	derivative	bands	that	might	aid	in	strengthening	the	link
between	the	ground	and	the	imagery.	The	third	section	presents	tools	that	can	be
used	to	further	evaluate	the	variability	between	the	ground	and	the	imagery.
Finally,	the	last	section	discusses	nonimagery	geospatial	datasets,	which	may	be
highly	correlated	with	variation	on	the	ground	and	can	be	used	to	augment	the
imagery.

Image	Elements
All	methods	of	using	imagery	to	create	a	map	rely	on	exploiting	the	confluence
of	evidence	produced	by	the	convergence	of	the	elements	of	an	image:	its
tone/color,	shape,	size,	pattern,	shadow,	texture,	location,	context,	height,	and
date	(Spurr,	1960).

Table	9.1.	Image	elements

Tone	and	Color
Tone	and	color	are	perhaps	the	most	recognizable	of	the	image	elements.	Tone	is
measured	as	the	intensity	of	spectral	response	of	each	band.	In	a	panchromatic



image,	if	the	object	reflects	or	radiates	lots	of	energy,	the	object	will	be	white.	If
the	object	reflects	or	radiates	little	energy,	the	object	will	be	black.	Shades	of
gray	represent	the	intermediate	amounts	of	energy	reflected	or	emitted	by	the
object.

Color	is	derived	from	combinations	of	the	various	spectral	bands	of	the
imagery	(e.g.,	true	color,	infrared).	Color	works	the	same	way	as	tone,	except
that	instead	of	using	a	single	value	to	represent	the	shades	of	gray,	color	is
expressed	using	three	values	because	there	are	three	primary	colors.	As
introduced	in	chapter	3,	the	color	that	your	eyes	see	depends	on	the	combination
of	blue,	green,	and	red	light	reflected	by	an	object,	because	you	see	in	only	these
three	portions	of	the	electromagnetic	spectrum.	Analog	(film)	photos	use	the
subtractive	primary	colors	(yellow,	magenta,	and	cyan),	while	digital	imagery	is
displayed	on	a	computer	monitor,	which	uses	the	additive	primary	colors	(blue,
green,	and	red).	One	of	the	most	powerful	aspects	of	remote	sensing	is	the	ability
to	sense	energy	in	wavelengths	of	the	electromagnetic	spectrum	beyond	those
your	eyes	can	see.	The	nonvisible	areas	of	the	spectrum	can	be	visualized	on	a
computer	screen	or	by	using	specialized	films.

Both	analog	and	digital	remote	sensors	can	detect	energy	in	the	near-infrared
portion	of	the	spectrum,	creating	photos/images	that	are	called	color	infrared
composites.	These	photos/images	allow	you	to	“see”	in	the	near-infrared	portion
of	the	spectrum	when	we	substitute	the	reflectance	of	the	near-infrared	light	into
one	of	the	primary	colors	that	humans	can	see.	When	you	use	film	or	a	digital
sensor	to	create	a	natural	color	photo/image,	you	use	the	same	wavelengths	that
your	eyes	see	(blue,	green,	and	red)	in	order	to	mimic	your	eyes.	However,	to
create	a	color–infrared	composite,	you	must	eliminate	one	of	the	visible
wavelengths	and	substitute	the	near	infrared.	You	do	this	by	eliminating	the	blue
wavelength	and	then	producing	a	photo/image	that	shows	the	green,	red,	and
near-infrared	wavelengths	displayed	with	the	infrared	band	in	red,	the	red	band
in	green,	and	the	green	band	in	blue.

In	this	way,	wavelengths	beyond	what	your	eyes	can	see	can	be	made	visible
to	you	for	use	in	both	manual	and	digital	interpretation.	However,	because
manual	interpretation	is	restricted	to	the	colors	humans	can	see,	manual	analysis
is	restricted	to	three	bands	at	a	time,	while	digital	analysis	allows	you	to	mine	all
of	the	imagery	bands	simultaneously.	Additionally,	film	sensors	are	limited	to
only	the	visible,	ultraviolet,	and	near-infrared	wavelengths,	while	digital	sensors
can	obtain	imagery	in	many	other	wavelengths.

Variation	in	tone	allows	you	to	discern	other	image	elements	such	as	shape,
size,	texture,	and	pattern.	Figure	9.1	shows	several	combinations	of	different



Landsat	bands,	chosen	to	highlight	different	types	of	features	on	the	ground.	You
can	see	that	color	(a	measure	of	spectral	response	in	each	wavelength	sensed)	is
an	extremely	important	element	of	imagery	interpretation	and	analysis.

Figure	9.1.	New	Orleans,	Louisiana,	and	the	Mississippi	River	delta.	Comparison	of	different
combinations	of	Landsat	8	Operational	Land	Imager	bands	available	as	a	dynamic	service	from
Esri.	(esriurl.com/IG91)

Shape
Shape	refers	to	the	form	of	the	outline	of	an	object	and	is	one	of	the	most
powerful	elements	of	interpretation,	especially	for	objects	that	have	a	unique
shape.	For	example,	streams	tend	to	be	sinewy	and	utility	lines	straight.	Three-
dimensional	shape	is	also	important.	Trees	that	are	conical	indicate	conifers.
Trees	with	more	rounded	crowns	indicate	hardwoods.	It	is	common	for	objects
built	by	humans	to	have	regular	shapes	such	as	circles,	squares,	rectangles,	etc.,
while	objects	in	nature	tend	to	be	more	amorphous.	Pivot	irrigation	plots	are
round,	buildings	are	often	rectangular,	and	agricultural	fields	are	usually	angular.
Perhaps	the	most	used	example	of	the	power	of	shape	for	identifying	objects

http://esriurl.com/IG91


created	by	humans	are	the	pyramids	in	Egypt	and	the	Pentagon	near	Washington,
DC	(figure	9.2).

Figure	9.2.	The	easily	recognizable	shape	of	the	Pentagon	in	National	Agricultural	Imagery
Program	(NAIP)	imagery

Size
Size	is	the	extent	of	the	object	being	identified.	Size	can	mean	the	actual
measurements	of	an	object’s	dimensions	or	its	size	relative	to	other	objects
whose	size	is	well	known	and	fairly	standardized	(e.g.,	a	car	or	a	soccer	field).
Actual	measurements	can	be	made	only	if	the	scale	of	the	photo	or	imagery	is
known.	Size	must,	of	course,	be	considered	relative	to	the	scale	of	the	imagery.

Pattern
Pattern	is	derived	from	the	spatial	arrangement	or	configurations	of	objects.
Human-created	features	tend	to	have	regular	patterns	as	well	as	shapes.	For
example,	orchards	and	vineyards	can	be	identified	by	the	linear	pattern	of	the
trees	or	vines	(figure	9.3).	In	addition	to	a	regular	pattern,	objects	may	be



spatially	arranged	in	clusters,	randomly,	or	in	some	other	uniform	or	nonuniform
way.

Figure	9.3.	The	distinctive	pattern	of	vineyards	on	Sonoma	County	6-inch	infrared	imagery

Shadow
Shadows	exist	when	the	ability	of	the	sensor	to	capture	reflectance	or	radiance	of
a	visible	feature	on	the	ground	is	hindered	by	another	feature.	Hence,	the	object
casts	a	shadow	on	the	ground.	This	is	significant	because	the	illumination	on	the
ground,	in	the	shadow,	is	interfered	with	by	the	object	casting	the	shadow.	As	a
result,	the	spectral	response	for	the	shadowed	feature	is	lower	than	that	of	a
nonshadowed	illuminated	feature.	Shadow	is	a	useful	element	in	interpretation
because	it	can	yield	information	about	an	object	that	is	not	apparent	by	looking
at	the	object	itself	in	an	image.	While	most	imagery	is	acquired	with	the
constraint	to	minimize	shadows	by	obtaining	imagery	while	the	sun	is	highest	in
the	sky,	objects	that	have	height	will	still	cast	some	shadow	regardless	of	the	sun
angle.	Shadows	can	hinder	image	interpretation	and	analysis	because	they
obscure	objects	on	the	ground.	However,	the	shape	of	a	shadow	can	reveal	the
shape	of	the	casting	object.	For	example,	figure	9.4	shows	an	image	of	oak	trees.
The	species	of	the	oak	is	indistinguishable	from	other	oak	species	if	you	look
only	at	the	trees.	But	if	you	look	at	the	shadows,	you	can	see	that	the	valley	oak



trees	have	spindly,	complex	shadows	which	let	some	light	through,	while	the
nearby	live	oak	trees	have	round,	compact	shadows.

Figure	9.4.	The	unique	shadow	of	valley	oaks	(Quercus	lobata)	versus	those	of	coast	live	oaks
(Quercus	agrifolia)

The	pattern	of	shadows	can	also	provide	information.	For	example,	on	a
high-spatial-resolution	image,	a	young	field	of	corn	will	be	uniform	with	few
shadows,	while	a	cornfield	close	to	harvest	will	have	a	pattern	of	illumination
and	shadow	caused	by	the	individual	corn	plants.	Likewise,	on	a	moderate-
spatial-resolution	Landsat	image,	a	regenerating	stand	of	trees	will	be	uniform
with	few	shadows,	while	an	old	growth	stand’s	illumination	will	be	scattered	and
have	dark	pixels	caused	by	the	shadows	of	the	large	trees.

Texture
Texture	is	traditionally	defined	as	the	feel	or	appearance	of	the	surface	of	an
object.	Is	it	soft	or	hard,	smooth	or	rough?	It	is	easiest	to	think	about	this	element
by	imagining	placing	your	hand	on	what	you	are	seeing	and	then	describing	how



it	feels.	Is	it	smooth	or	rough?	Is	it	sharp	or	dull?	Is	it	uniform	or	mottled?	By
imagining	how	objects	in	an	image	actually	feel,	you	can	better	understand
texture.	For	example,	Christmas	trees	are	conical	in	a	regular	pattern	of	rows.
Now	imagine	taking	your	hand	and	pushing	it	down	from	above	on	the
Christmas	trees.	You	would	cry	out	in	pain	because	this	would	be	analogous	to
pushing	your	hand	down	on	a	bunch	of	nails	sticking	up.	The	pointy	conifer	tops
would	hurt	your	hand	as	you	pushed	down	on	them.	By	contrast,	pushing	your
hand	down	on	a	peach	orchard	would	be	much	more	pleasant.	The	orchard’s
deciduous	fruit	trees,	with	their	billowy	canopies,	would	feel	soft	to	the	touch.

However,	in	remote	sensing	you	cannot	“feel”	the	object	you	are	attempting
to	map	because	you	are	distant	from	it	and	have	only	an	image	to	look	at	or
analyze.	Instead,	you	must	rely	on	changes	in	the	image’s	appearance	across
space	to	assess	texture.	Texture	is	represented	on	an	image	by	the	repetition	(or
lack	of	repetition)	and	pattern	of	the	tone,	shadow,	and	color	on	the	image.	For
example,	figure	9.5	shows	the	textures	of	calm	versus	rough	water	in	radar
imagery.	Calm	water	has	little	texture	because	the	water	is	smooth,	while	rough
water	is	highly	textured	because	of	the	varying	pattern	caused	by	the	wave	crests
and	shadows.	The	variation	in	tone	across	space	is	used	to	determine	image
texture,	which	is	usually	measured	as	the	standard	deviation	of	the	tone	of	a
window	of	pixels,	as	shown	in	figure	9.6.

Texture	is	often	used	to	distinguish	urban	from	suburban	areas.	As	seen	in
figure	9.7,	suburban	areas	are	highly	textured	because	of	the	high	tone	variability
resulting	from	the	mix	of	houses,	lawns,	streets,	and	trees.	Urban	areas	are
uniformly	bright	or	very	dark	(low	variability	=	low	texture)	in	all	bands	because
they	are	made	of	stone,	concrete,	or	steel,	include	large	shadows,	and	usually
have	little	vegetation.	In	contrast,	vigorously	growing	agricultural	crops	tend	to
be	uniformly	bright	in	infrared	bands.



Figure	9.5.	The	texture	of	calm	versus	rough	water	in	radar	imagery

Figure	9.6.	Many	image	texture	algorithms	replace	the	center	cell	value	with	the	standard
deviation	of	a	window	of	adjacent	pixels.	This	example	uses	a	3	×	3	rectangular	pixel	window,	but
other	sizes	and	shapes	can	be	used.



Figure	9.7.	Comparison	of	the	image	textures	(i.e.,	variance	in	spectral	response	across	space)
of	parks	and	suburban	and	urban	areas	in	NAIP	1-meter	infrared	imagery,	Washington,	DC

Location
Location	is	derived	by	registering	the	imagery	to	the	ground	so	that	each	pixel
has	accurate	x,	y,	and	z	coordinates.	Historically,	the	location	of	an	object	of
interest	would	be	marked	on	a	photo	and	the	approximate	location	transferred	to
a	map.	However,	given	available	GPS	technology	and	photogrammetry	tools
available	today,	a	much	more	precise	location	of	any	object	on	an	image	is	now
readily	obtainable.

Location	is	useful	because	it	allows	the	determination	of	relationships
between	features	in	the	imagery	and	nonimagery	variables	(e.g.,	slope,	aspect,
distance	to	streams)	that	may	affect	the	distribution	of	the	feature	or	land
cover/use	classes	to	be	mapped.	Location	is	also	helpful	because	it	may
contribute	to	knowledge	specific	to	a	certain	area	or	region	because	certain
species	or	cultural	practices	occur	only	in	specific	locations.	For	example,
redwood	trees	grow	in	only	limited	areas	from	the	central	California	coast	to	the
southern	Oregon	coast,	in	the	central	Sierra	Nevada	Mountains,	and	in	the	Hubei
province	of	China.	So	mapping	redwoods	in	any	other	areas	would	be



inaccurate.	Various	cultural	practices	may	also	occur	in	only	certain	places.	For
example,	because	the	water	table	is	so	high	in	New	Orleans,	the	cemeteries	there
consist	of	mausoleums	to	inter	the	dead	above	the	ground.

Context
Context	refers	to	the	neighbors	of	an	object.	Context	provides	information	about
not	only	what	surrounds	the	object	of	interest,	but	also	the	interaction	between
neighboring	objects.	It	provides	a	clue	to	the	identification	of	the	object	because
a	certain	activity	or	phenomenon	is	typically	encountered	when	certain	objects
are	present	together.	For	example,	water	surrounded	by	trees	is	more	likely	to	be
a	lake	than	a	swimming	pool,	which	would	more	likely	be	surrounded	by
buildings.	Also,	if	the	lake	is	in	the	eastern	US,	those	conifer	trees	around	the
lake	are	likely	to	be	spruce	or	hemlocks	because	they	thrive	in	wetter	soils.	A
large	building	with	ample	parking	adjacent	to	a	golf	course	is	most	likely	a
country	club.	It	is	the	combination	of	the	golf	course	and	the	building	together
that	helps	identify	the	country	club.	Without	the	golf	course,	the	building	could
have	one	of	many	different	uses.	While	context	has	always	existed	in
interpretation,	more	emphasis	has	been	placed	on	it	recently	because	GIS	allows
rigorous	identification	of	what	is	surrounding	an	object.	This	spatial	thinking	has
increased	the	use	of	context	as	a	powerful	element	of	image	interpretation.

Height
Height	is	the	distance	between	the	highest	and	lowest	points	of	an	object.	Like
size,	it	can	be	absolute	or	relative.	Relative	height	can	be	discerned	using	stereo
imagery.	Height	can	also	be	measured	from	stereo	optical	imagery	or	from	lidar
or	radar	imagery.	Height	is	an	important	way	to	characterize	an	object	and
differentiate	it	from	other	types	of	objects.	For	example,	object	height	is
instrumental	in	distinguishing	different	vegetation	classes,	as	shown	in	figure
9.8.	While	height	has	been	an	important	element	in	image	classification	for
decades,	its	use	has	increased	greatly	with	the	increasing	availability	of	lidar
data.



Figure	9.8.	Vegetation	height	from	lidar	imagery	used	to	distinguish	different	forest	types

Date
The	date	when	an	image	is	taken	can	affect	the	tone	of	some	objects,	which	can
help	in	object	identification.	Historically,	most	maps	have	been	created	using	a
single	date	of	imagery	because	the	cost	of	imagery	collection	and	acquisition
was	too	high	to	allow	for	multiple	date	collects.	Only	very	low	spatial	resolution
imagery	such	as	Advanced	Very	High	Resolution	Radiometer	(AVHRR)	data,
which	is	free,	could	be	used,	but	its	poor	spatial	resolution	was	problematic.
However,	recently,	the	use	of	multitemporal	image	analysis	has	blossomed	with



NASA’s	launch	of	the	Moderate	Resolution	Imaging	Spectroradiometer
(MODIS)	imagery	collected	daily,	USDA’s	provision	of	National	Agricultural
Imagery	Program	(NAIP)	imagery	every	two	to	three	years,	the	rapid	adoption
of	drone	imagery,	the	increasing	constellation	of	high-resolution	satellite
imagery,	the	launch	of	the	European	Sentinel	2	A	and	B	systems	with	5	day
revisit,	and	especially	the	USGS	policy	change	in	2008	that	made	all	Landsat
imagery	accessible	on	the	web	and	free.	Multitemporal	imagery	is	useful	in
many	thematic	mapping	projects	and	especially	so	for	agricultural	applications
where	crop	changes	occur	frequently.

Figure	9.9	compares	images	of	the	same	hardwood	forest	in	California	taken
in	the	spring	and	the	fall.	In	the	spring	image,	all	the	trees	are	green	and	it	is
difficult	to	distinguish	different	oak	species.	But	the	fall	image,	taken	when	the
deciduous	leaves	have	turned	color,	allows	for	the	identification	of	evergreen
oaks	versus	deciduous	oaks,	and	deciduous	oak	species	from	one	another.

Figure	9.9.	Comparison	of	spring	versus	fall	imagery	of	forests	in	California.	White	oak,	black
oak,	and	live	oak	are	indistinguishable	in	the	spring	imagery	because	they	are	all	the	same	shade
of	green.	In	the	fall	imagery,	the	black	oak	is	yellow,	the	white	oak	is	brown,	and	the	live	oak	is
green.	Blue	oak	looks	similar	to	white	oak	in	the	fall	imagery,	but	it	is	blue	in	the	spring	imagery
compared	to	the	white	oak’s	green	color.

Image	dates	can	also	be	helpful	in	identifying	crop	types	because	some	crop
types	are	only	grown	at	certain	times	of	the	year.	For	example,	in	the	lower
Colorado	River	region	of	the	southwestern	United	States,	crops	can	be	grown	all
year	round.	However,	a	crop	calendar	for	the	region	would	tell	you	that	lettuces
are	grown	only	in	the	winter	when	it	is	cooler,	and	corn	is	grown	only	in	the	hot
summer	months.

With	the	advent	of	freely	available	multitemporal	imagery	(e.g.,	MODIS,
Sentinel,	and	Landsat),	multitemporal	analysis	has	become	a	useful	tool	in
mapping.	Looking	at	a	time	series	of	imagery	can	reveal	patterns	of	change,	as



shown	in	figure	9.10,	which	shows	Mount	St.	Helens	before	and	after	its	May
1980	eruption.	Multitemporal	analysis	is	also	commonly	used	to	monitor	crop
health	and	predict	crop	yield.	Many	of	the	small	satellite	companies	are	targeting
multitemporal	analysis	for	predicting	changing	market	conditions.

Figure	9.10.	Multitemporal	imagery	of	Mount	St.	Helens	before	(1975)	and	after	(1990)	the	May
1980	eruption	shown	in	Esri’s	Landsat	Explorer	dynamic	image	viewer.	The	image	on	the	right	is
an	image	of	the	difference	of	NDVI	values	of	the	1975	and	1990	images.	Shades	of	green	indicate
vegetation	regrowth	in	areas	outside	the	blast	zone.	Shades	of	magenta	indicate	vegetation	loss
within	the	blast	zone	as	well	as	forest	harvesting	outside	of	the	zone.	(esriurl.com/IG910)

Summary:	The	Confluence	of

http://esriurl.com/IG910


Evidence
Whether	it	is	manual	or	automated,	the	process	of	creating	a	map	from	imagery
relies	upon	the	confluence	of	evidence.	While	each	element	is	influential	in	its
own	right,	it	is	the	combination	of	all	the	elements	that	gives	remote	sensing	its
power	in	mapping	features,	elevations,	or	land	use/cover.	As	Spurr	stated	in
1948	(pg.	182),	“Important	though	each	incidental	pictorial	quality	may	be,	it	is
the	sum	total	of	these	qualities	which	gives	an	object	its	characteristic
appearance.”	Raben	also	elaborated	on	this	concept	in	1960	(pg.	109)	when
describing	photo	interpretation:	“Identifying	objects	in	aerial	photographs	by
direct	recognition	is	a	fairly	simple	process.	Either	the	interpreter	knows	what
the	objects	are	because	he	has	seen	them	before,	or	he	does	not	know.	…	In
order	to	identify	the	objects	he	has	not	seen	before	…	the	photo	interpreter
exploits	the	principle	of	convergence	of	evidence.”	Just	as	a	detective	compiles	a
series	of	clues	that	leads	to	a	conclusion,	the	interpreter	or	automated	algorithm
chooses	the	image	elements	that	are	most	predictive	of	the	objects	being
mapped.	The	more	elements	that	point	to	the	same	answer	(i.e.,	confluence),	the
more	confidence	that	the	label	is	correct.	For	example,	the	important	elements
used	to	interpret	a	Christmas	tree	farm	would	be

1. Shape.	The	trees	will	be	conical	and	may	be	viewed	directly	or	seen	from
shadows	cast	by	the	trees.

2. Pattern.	 Unlike	 a	 natural	 forest,	 the	 trees	will	 be	 in	 a	 regular	 pattern	 in
lines	and	approximately	equally	spaced	apart.

3. Color.	The	trees	will	be	dark	green	when	viewed	in	true	color.
4. Texture.	 Christmas	 trees	 have	 pointy	 tops	 and	 are	 arranged	 in	 rows,

usually	 with	 herbaceous	 vegetation	 between	 them	 which	 will	 cause	 the
texture	to	be	high.

5. Height.	The	trees	should	not	be	very	tall	(perhaps	3	to	12	feet).
From	these	five	elements,	you	have	sufficient	evidence	(i.e.,	confluence)	that

the	object	is	a	Christmas	tree	farm.	Some	other	elements	may	also	corroborate
your	conclusion.	Location	could	also	help	because	Christmas	trees	are	grown
only	in	certain	regions	of	the	world	and	only	in	specific	areas	within	those
regions.	Context	may	also	be	useful	because	stands	of	Christmas	trees	often
occur	near	farmhouses,	so	the	proximity	of	a	farmhouse	would	help	validate	that
Christmas	trees	are	present.



Derivative	Bands
In	addition	to	the	original	bands	of	imagery	that	are	recorded	by	a	sensor	(e.g.,
blue,	green,	red,	and	near-infrared	[NIR]	for	NAIP	imagery	or	blue,	green,	red,
NIR,	middle	infrared	[MIR]1,	MIR2,	and	thermal	infrared	[TIR]	for	Landsat
Thematic	Mapper),	it	is	possible	to	calculate	a	number	of	additional	bands	from
the	original	bands.	The	additional	bands	are	called	derivative	bands	because	they
are	derived	from	the	original	or	raw	data.	Derivative	bands	include	simple	ratios,
transformations,	or	indices	that	are	created	to	reveal	or	enhance	the	link	between
the	variation	in	the	image	and	the	variation	on	the	ground.	Some	of	these
derivative	bands	have	been	developed	from	theoretical	knowledge	of	the
physical	and	chemical	properties	of	the	objects	being	sensed.	Others	have	been
empirically	derived	from	observation.	In	either	situation,	the	goal	is	to	tease
more	information	from	the	imagery	as	it	relates	to	what	is	happening	on	the
ground	to	produce	a	more	accurate	map.

Ratios
One	type	of	derivative	band	is	a	simple	ratio.	In	this	case,	one	original	band	is
divided	by	another	to	create	a	new	derivative	band.	For	example,	a	common
simple	ratio	is	derived	by	dividing	the	infrared	band	by	the	red	band	(e.g.,	for
Landsat	TM	that	would	be	band	4/band	3).	The	reason	that	this	derivative	band
is	useful	is	that	it	provides	more	insight	about	vegetation.	Because	healthy
vegetation	absorbs	red	light	for	use	in	photosynthesis	and	reflects	NIR	light,	by
taking	the	ratio	a	single	band	can	combine	two	original	bands	and	provide
additional	information	about	vegetation	health.	This	ratio	is	an	example	of	using
knowledge	about	the	physical	properties	of	vegetation	to	create	a	derivative
band.	The	ratio	of	a	red	band	to	an	NIR	band	(e.g.,	for	Landsat	TM	that	would
be	band	3/band	4)	has	empirically	been	found	to	help	separate	water	from	dense
vegetation	on	steep	slopes.	In	ArcGIS,	ratio	bands	can	typically	be	created	using
the	math	raster	functions,	but	can	also	be	created	using	map	algebra	inside	the
raster	calculator	or	via	Python/ModelBuilder.

Transformations
Transformations	are	more	complex	than	simple	ratios	and	result	in	the	same



number	of	derivative	bands	as	there	were	original	bands.	However,	the	new
derivative	bands	have	been	changed	or	transformed	in	some	unique	and	valuable
way.	Two	very	common	transformations	are	performed	in	digital	image	analysis.
They	are	Principal	Components	Analysis	(PCA)	and	the	Tasseled-Cap
Transformation	(TCA).

Principal	Components	Analysis
PCA	is	performed	from	a	statistical	basis	of	data	reduction	by	transforming	the
imagery	into	independent	derivative	bands	in	which	the	variance	of	the	imagery
is	maximized	into	the	first	few	principal	components.	PCA	is	a	transformation
used	to	remove	the	redundancy	between	the	original	bands	and	create
independent	or	orthogonal	transformed	bands.	Because	the	original	image	bands
are	so	highly	correlated,	creating	PCA	bands	has	the	advantage	of	creating	new
independent	transformed	bands	and	potentially	reducing	the	number	of	bands
needed.	Band	reduction	occurs	because	when	creating	independent	transformed
bands,	the	majority	of	the	variance	in	all	the	original	bands	is	now	represented
by	the	first	principal	component.	For	Landsat	TM	imagery,	it	is	common	for	up
to	80	percent	of	the	variance	of	the	seven	original	bands	to	be	represented	in	the
first	principal	component	band.	Also,	90	percent	to	95	percent	of	the	original
seven-band	image	variance	is	represented	by	the	first	three	principal
components.	Historically,	reducing	the	number	of	bands	to	analyze	was
important	due	to	computer	processing	speed.	Today,	this	is	less	of	an	issue	but
there	is	still	power	in	using	some	of	the	principal	components	in	the	thematic
mapping	process.	Figure	9.11	shows	how	the	PCA	works	in	a	simple	two-	band
case	that	is	easy	to	visualize.	On	the	left	is	a	bispectral	plot	of	band	x	versus
band	y.	The	digital	number	(DN)	values	for	the	imagery	are	simply	plotted	here.
The	hatch	marks	show	the	variance	or	range	of	values	in	both	the	x	and	y
directions.	Now	look	at	the	plot	on	the	right,	which	shows	the	original	bispectral
plot,	but	also	a	plot	that	has	been	transformed.	The	direction	of	the	x	axis	has
been	mathematically	transformed	to	maximize	the	image	variance.	The	y	axis	is
orthogonal	(at	90	degrees)	to	the	x	axis.	These	are	the	principal	components.	The
first	principal	component	is	now	transformed	to	represent	the	most	variance
possible	in	the	imagery.	This	figure	is	only	a	graphic	representation	in	two
dimensions.	In	reality,	PCA	is	done	mathematically	and	in	as	many	dimensions
as	there	are	bands.	However,	this	figure	allows	one	to	easily	understand	the
process.



Figure	9.11.	An	example	of	principal	components	analysis	graphically	demonstrated	for	a	two-
band	image

Tasseled-Cap	Transformation
The	tasseled-cap	transformation	(TCT)	is	an	empirically	based	transformation	of
the	imagery	that	has	been	observed	to	provide	information	about	the	brightness,
greenness,	and	wetness	of	the	imagery.	It	is	not	a	data	reduction,	but	instead
provides	additional	information	about	the	imagery.	The	process	is	similar	to	PCA
in	that	the	transform	uses	linear	combinations	of	the	original	bands.	However,
the	transform	is	sensor	specific	with	the	transform	matrix	being	derived	from	the
specific	sensor	(e.g.,	Landsat	MSS,	Landsat	TM	5,	SPOT-4,	etc.)	and	the	data
from	each	image	being	processed	through	the	transform	matrix	to	provide	the
result.	TCT	is	also	called	the	Kauth–Thomas	transform	after	the	two	scientists
who	first	proposed	this	transform	for	Landsat	Multispectral	Scanner	(MSS)
imagery	(Kauth	and	Thomas,	1976).	Landsat	MSS	had	four	bands	(G,	R,	NIR1,
and	NIR2),	so	the	original	transform	had	four	derivative	bands	called	soil
brightness,	vegetation	greenness,	and	two	others.	Crist	and	Kauth	(1986)
expanded	this	transform	for	Landsat	TM	imagery	to	produce	seven	transformed
bands.	The	first	three	transforms	are	the	important	ones,	showing	brightness,
greenness,	and	wetness	(figure	9.12).	The	transform	is	called	tasseled-cap
because	a	plot	of	brightness	versus	greenness	reveals	the	shape	of	a	cap	with	a
tassel	on	the	top.	Many	current	projects	use	TCT	to	provide	extra	information
about	the	linkage	between	variation	on	the	imagery	and	the	ground;	they	include
the	USGS	National	Land	Cover	Data	project	and	the	NOAA	Coastal	Change
Analysis	Program	(C-CAP).	Both	of	these	programs	use	Landsat	imagery	to	map
large	portions	of	the	United	States.



Figure	9.12.	Example	of	a	tassel	cap	transformation

In	ArcGIS,	the	TCT	is	available	as	a	raster	function	for	Landsat	TM/ETM,
IKONOS,	and	QuickBird.	(Raster	functions	are	discussed	in	chapters	5	and	12).
The	TCT	can	be	applied	by	directly	using	the	raster	function.	Other	transforms
can	be	applied	by	using	the	spatial	matrix	raster	function	or	using	raster	algebra
in	the	raster	calculator	(Spatial	Analyst).	Raster	algebra	can	also	be	developed
and	performed	to	execute	transformations	in	ArcGIS	using	ModelBuilder	or
Python.

Indices
The	third	and	final	type	of	derivative	band	that	can	be	created	are	indices.
Perhaps	the	most	common	indices	are	vegetation	indices.	However,	other	indices
provide	information	about	other	physical	and	chemical	properties;	for	example,
geologic	applications.	Vegetation	indices	reveal	additional	information	about
vegetation	status,	condition,	and	health.	There	are	a	large	number	of	different
variations	of	vegetation	indices,	all	with	slightly	different	purposes.	All	of	these
indices	are	some	form	of	a	ratio	of	original	bands,	sometimes	with	other	factors
or	coefficients	included.	The	most	common	vegetation	index	is	the	Normalized
Difference	Vegetation	Index	(NDVI).	Figure	9.13	compares	a	Landsat	8	true
color	image	to	a	NDVI	image	created	using	Esri’s	dynamic	services.	The
equation	for	a	NDVI	is



Figure	9.13.	Comparison	of	a	Landsat	8	true	color	image	to	a	colorized	Normalized	Difference
Vegetation	Index	(NDVI)	image	of	southern	Indiana.	Dark	green	is	thick,	vigorous	vegetation;
yellow	represents	fallow	fields;	and	brown	represents	sparse	vegetation	or	clouds.

Consideration	of	this	equation	reveals	that	it	is	a	stronger	version	of	the
simple	ratio	of	the	NIR	band	divided	by	the	red	band	described	earlier.	The
benefit	of	normalizing	an	index	is	that	it	constrains	the	values	it	can	attain	from
−1	to	1	instead	of	the	0-to-infinity	values	attained	by	a	simple	ratio.	Again,	this
derivative	band	is	very	useful	in	determining	vegetation	health	because	healthy
vegetation	will	reflect	NIR	light	and	absorb	red	light.	By	subtracting	the	red
from	the	NIR	in	the	top	of	this	index	and	adding	them	together	in	the	bottom,	the
ratio	reveals	a	more	definitive	pattern	of	vegetation	health.	In	addition,	the	ratio
has	the	effect	of	normalizing	the	result	for	sun	angle,	topographic	effects,	and
some	atmospheric	effects	(Jensen,	2016).

Other	vegetation	indices	include	the	following:
The	normalized	difference	moisture	index,	which	uses	the	NIR	and	short-
wave	infrared	(SWIR)	bands	to	account	for	plant	canopy	moisture	content.
The	soil-adjusted	vegetation	index	(SAVI),	which	includes	an	additional
factor	to	the	NIR	and	red	band	ratio	that	accounts	for	the	amount	of	soil
visible	as	opposed	to	vegetation	in	the	image.
The	enhanced	vegetation	index	(EVI),	which	was	originally	developed	for
use	with	MODIS	imagery	and	includes	the	use	of	the	soil	adjustment
factor	as	in	SAVI,	with	other	coefficients	modifying	the	red	and	blue	bands
used	in	the	ratio	with	the	NIR	band.	EVI	is	especially	useful	in	areas	of
high	biomass	where	NDVI	gets	saturated	and	does	not	work	as	well.
The	normalized	burn	ratio,	which	is	used	to	map	the	severity	of	areas



where	the	vegetation	has	burned.	The	index	is	a	ratio	of	NIR	and	SWIR
bands	and	is	often	used	to	evaluate	pre-	and	postburn	areas.

There	are	many	other	indices	including	more	vegetation	indices	that	exist	and
new	ones	are	being	developed	every	day.

Most	image	analysis	software,	including	ArcGIS,	allows	users	to	program
into	the	software	whatever	ratio,	transform,	or	index	they	wish	to	use.	In	this
way,	the	analyst	can	experiment	with	the	latest	ideas	and	results	gained	from	a
review	of	the	current	literature.	In	ArcGIS,	NDVI	is	available	as	a	mosaic
dataset	raster	function	(raster	functions	are	discussed	in	chapters	5	and	12).
NDVI	can	also	be	applied	to	a	raster	on-the-fly	using	the	image	analysis	window
in	ArcGIS	Desktop.	All	the	indices	discussed	here,	including	custom	indices,	can
be	created	in	ArcGIS	Online	using	the	NDVI	raster	functions	or	raster	algebra
functions.	Raster	algebra	is	also	accessible	through	the	raster	calculator	in
ArcGIS	Desktop	and	ArcGIS	Pro	and	via	ModelBuilder	and	Python.	Finally,
NDVI	is	included	as	a	defined	function	in	many	image	services	including	the
NAIP	and	Landsat	8	services	available	in	ArcGIS	Online.

Tools	for	Linking	Variation	in	the
Imagery	to	Variation	on	the	Ground
(Data	Exploration)
The	previous	section	of	this	chapter	described	many	methods	for	creating
derivative	bands	from	the	original	imagery	to	potentially	enhance	the	link
between	variations	in	the	imagery	and	on	the	ground.	These	derivative	bands	can
prove	quite	useful	in	improving	the	accuracy	of	the	thematic	map	created	when
using	these	bands.	However,	the	question	remains,	which	of	these	original	or
derivative	bands	are	the	most	predictive	of	the	objects	on	the	ground	and	will,
therefore,	result	in	the	most	accurate	map?	The	following	section	discusses	some
tools	that	are	available	to	conduct	the	data	exploration	necessary	to	evaluate
these	bands	and	select	the	best	ones	for	the	analysis.	These	tools	include

spectral	pattern	analysis,
bispectral	plots,
feature	space	analysis,	and
divergence	analysis.

Together,	these	tools	provide	insight	to	the	analyst	about	selecting	the	bands



for	mapping	that	provide	the	best	linkages	between	the	variation	in	the	imagery
and	the	variation	on	the	ground.

Spectral	Pattern	Analysis
Spectral	pattern	analysis	(SPA)	is	a	simple,	yet	powerful	tool	for	evaluating
which	bands	provide	the	most	linkage	between	the	imagery	and	the	ground.	To
proceed,	the	objectives	of	the	mapping,	including	a	well-defined	classification
scheme,	must	be	determined.	Then,	sample	areas	for	each	of	the	map	classes
(often	called	training	sites	or	samples)	must	be	acquired.	SPA	is	an	x,y	plot	of
the	mean	value	for	each	map	class	for	each	band	in	the	imagery	(original	and
derivative	bands).	The	bands	are	on	the	x	axis	and	the	reflectance	values	(DNs)
are	on	the	y	axis.	Figure	3.1	(in	chapter	3)	shows	a	theoretical	spectral	pattern
for	some	different	land-cover	types.	Notice	that	the	lines	are	curved,	indicating
that	many	wavelengths	of	electromagnetic	energy	were	sampled.	This	type	of
result	resembles	that	of	chemical	spectroscopy	done	in	a	laboratory	or	if
hyperspectral	imagery	was	acquired.

More	commonly,	the	spectral	pattern	looks	like	figure	9.14.	Note	that	the
lines	connecting	the	bands	are	now	straight.	This	is	an	SPA	of	some	Landsat	TM
imagery	without	any	derivative	bands.	Because	there	are	only	six	bands	(the
thermal	band	was	excluded),	the	plot	is	not	smooth;	straight	lines	connect	the
samples.	Looking	at	the	SPA	shows	two	boxes	indicating	the	bands	(4	and	7)	that
seem	to	provide	the	most	separability	between	the	different	map	classes.
Therefore,	these	bands	should	definitely	be	used	in	the	thematic	mapping.
Analyzing	the	spectral	pattern	shows	the	relationship	between	the	map	classes
(the	ground)	and	how	they	differ	on	the	imagery.	Some	map	classes	will	be	easy
to	tell	apart.	Others	may	require	creating	derivative	bands	to	aid	in	their
discrimination.	The	SPA	aids	the	analyst	in	determining	the	usefulness	of	each
band	in	creating	a	thematic	map	of	the	area	of	interest.	If	additional	derivative
bands	are	created,	they	can	easily	be	added	to	the	SPA,	which	will	then	reveal
whether	those	bands	help	separate	the	map	classes	and	produce	an	accurate
thematic	map.	In	fact,	in	very	simple	classification	schemes,	SPA	could	be	used
to	actually	classify	the	land-cover	types.	For	example,	just	looking	at	the	NIR
band	could	allow	the	analyst	to	separate	water	(very	low	NIR	reflectance)	from
everything	else	in	the	imagery,	resulting	in	a	water	versus	nonwater	map.



Figure	9.14.	An	example	of	spectral	pattern	analysis	for	a	Landsat	TM	image

Incorporating	multiple	dates	of	imagery	into	the	SPA	can	also	help	identify
features.	Figure	9.15	shows	a	simple	example	of	using	a	year’s	worth	of	imagery
and	plotting	the	values	of	NDVI	for	each	of	three	vegetation	types:	crops,
pasture,	and	orchards.	Instead	of	different	bands	on	the	x	axis,	there	are	days	of
the	year.	All	three	types	have	high	NDVI	values,	but	the	pattern	of	these	values
differs	throughout	the	year,	allowing	the	analyst	to	be	able	to	tell	the	vegetation
types	apart	multitemporally.



Figure	9.15.	A	multitemporal	plot	(esriurl.com/IG915)

This	approach	has	become	quite	common	and	relies	on	a	multitemporal	stack
or	cube	of	imagery	to	produce	effective	results.	In	the	last	few	years,	this
technique	has	been	used	extensively	for	many	types	of	land-cover	maps	and	is
especially	useful	when	mapping	agricultural	crops	whose	appearance	heavily
depends	on	the	date	of	the	year	(phenology)	(Wu	et	al.	2014).	Applying	many
processors	simultaneously	to	analyze	this	multitemporal	image	cube	has	greatly
facilitated	its	use.

Bispectral	Plots
Bispectral	plots	(BSPs)	are	another	graphic	tool	for	evaluating	the	linkage
between	the	variation	in	the	image	and	the	ground.	As	the	name	suggests,	two
bands	are	plotted	simultaneously,	with	one	band	on	the	x	axis	and	the	other	on
the	y	axis.	Figure	9.16	is	an	example	of	a	BSP.	As	in	SPA,	the	reflectance	or	DN
values	are	plotted	for	each	map	class.	Careful	inspection	of	the	plot	reveals
interesting	information	about	the	map	classes.	This	BSP	is	for	Landsat	TM
imagery	and	plots	band	4	(NIR)	on	the	x	axis	and	band	7	(a	MIR	band)	on	the	y

http://esriurl.com/IG915


axis.	Note	that	the	water	samples	are	near	the	0,0	point	on	the	plot.	This	result
makes	sense,	because	water	absorbs	both	NIR	and	MIR	energy.	Also,	note	the
circled	map	classes	(mixed	forest	and	deciduous).	Their	close	proximity	on	the
plot	indicates	that	they	may	be	difficult	to	tell	apart	in	the	classification	process.
Note	that	the	conifers	have	lower	NIR	reflectance	than	the	deciduous	trees,	so
they	can	be	separated	in	the	classification	process.	It	will	be	difficult	to
distinguish	them	only	in	areas	where	they	form	a	mixed	stand.	The	BSP	allows
the	analyst	to	further	explore	the	relationships	in	the	data.

Figure	9.16.	An	example	of	a	bispectral	plot	(esriurl.com/IG916)

While	BSP	analysis	is	quite	useful,	this	type	of	analysis	is	not	limited	to	just
two	dimensions.	A	trispectral	plot	is	also	possible	and	easy	to	visualize.	Beyond
3D	is	also	possible.	Imagine	an	N-spectral	plot.	A	computer	can	easily	process
this	type	of	analysis	in	as	many	dimensions	as	needed.	However,	for	human
analysts,	the	BSP	is	the	most	common	approach	to	explore	the	relationships
between	bands	in	the	imagery.

Feature	Space	Analysis
Feature	space	analysis	is	a	continuation	of	bispectral	plots.	Instead	of	a	sample
of	data	being	plotted,	the	entire	image	dataset	is	used.	Figure	9.17	shows	a
typical	example	of	a	feature	space	plot.	Because	the	entire	image	is	plotted	here,
additional	insight	into	the	information	in	the	entire	image	can	be	obtained,	and
the	degree	of	between-band	correlation	is	revealed.	The	full	dynamic	range	of

http://esriurl.com/IG916


the	imagery	is	also	revealed,	showing	areas	where	the	image	values	are
concentrated,	but	also	showing	the	extremes.

Figure	9.17.	An	example	of	a	feature	space	plot	for	a	Landsat	TM	image

Divergence	Analysis
Divergence	analysis	(DA)	is	another	method	of	determining	which	bands	to	use
for	creating	the	best	thematic	map	for	a	given	mapping	project,	and	therefore
exploring	the	linkage	between	the	imagery	and	the	ground.	Unlike	the	three
methods	described	above,	DA	is	not	a	graphic	technique.	Rather,	it	is	a	statistical
technique	that	is	computed	from	the	statistics	(mean	and	covariance	matrices)
available	from	the	map	class	samples	(training	samples)	selected	as	part	of	the
analysis.	All	bands	used	in	selecting	the	map	class	samples,	including	any
derivative	bands,	are	included	in	the	analysis.	The	analyst	specifies	the	number
of	bands	(n)	to	be	used	in	the	classification	process,	and	the	DA	looks	at	every
possible	combination	of	those	n	bands	and	chooses	the	one	combination	that	will
provide	the	best	separability	of	the	map	classes.	Different	equations/measures
can	be	used	to	compute	divergence.	These	include	divergence,	transformed
divergence,	Bhattacharyya	distance,	and	Jeffreys–Matusita	distance.	Each	of
these	different	measures	has	advantages	and	disadvantages.	Regardless	of	which



divergence	measure	or	measures	are	selected,	the	results	of	this	analysis	provide
additional	input	into	which	bands	of	imagery	(raw	or	derivative	or	both)	will
provide	the	best	separability	of	map	classes,	and	therefore	the	most	accurate
thematic	map.

Introducing	Other	Sources	of
Geospatial	Data	to	Capture	Variation
on	the	Ground
Imagery	serves	as	a	key	data	source	for	feature	extraction	and	land	use	and	land
cover	mapping.	However,	sometimes	imagery	doesn’t	capture	all	of	the	variation
on	the	ground	or	there	isn’t	a	strong	correlation	between	the	ground	and	what	is
imaged	by	the	sensor.	In	these	cases,	other	sources	of	geospatial	data	may	help
characterize	the	landscape	and	improve	map	accuracy.	Before	GIS,	photo
interpreters	usually	had	a	topographic	map	on	hand	to	aid	in	image
classification.	By	looking	back	and	forth	between	the	imagery	and	the	map,	the
interpreter	could	glean	information	on	slope,	aspect,	elevation,	and	location.	GIS
now	allows	multiple	coregistered	datasets	to	be	simultaneously	available	on	a
digital	map	during	image	interpretation.	In	addition,	typical	modern
semiautomated	mapping	projects	use	machine	learning	(discussed	in	chapter	10)
to	predict	map	classes	based	on	imagery	and	many	other	geospatial	datasets
(known	collectively	as	independent	variables).	This	section	discusses	the	types
and	data	sources	of	commonly	used	predictor	variables	that	are	not	imagery	or
derived	from	imagery.

The	most	effective	independent	variables	for	mapping	are	empirical	datasets
that	represent	or	measure	some	physical	process	or	landscape	characteristic,	such
as	elevation,	rainfall,	or	spectral	reflectance	(the	remainder	of	this	chapter
discusses	many	more).

Data	Sources
Elevation	and	Landscape
Elevation	and	its	many	derivatives	(e.g.,	slope,	aspect)	are	among	the	most
critical	geospatial	data	layers	(second	to	imagery	in	their	importance)	for



thematic	mapping	of	land	use,	land	cover,	and	vegetation.	Elevation	and	its
derivatives	are	often	highly	correlated	with	vegetation	type	and	serve	as	an
indispensable	suite	of	predictor	variables	in	land-cover	mapping.	Elevation	data
is	publicly	available	for	all	areas	of	the	United	States	as	raster	digital	elevation
models	(DEMs)	from	the	National	Elevation	Dataset	at	a	pixel	resolution	of	10
meters.	The	creation	of	DEMs	from	imagery	is	discussed	in	chapter	8.

With	the	proliferation	of	lidar	data	during	the	past	decade,	many	areas	of	the
United	States	and	Europe	now	have	lidar-derived	elevation	data	of	much	higher
accuracy	and	resolution.	Figure	9.18	illustrates	the	increased	accuracy	and
resolution	of	lidar	versus	nonlidar	elevation	data.	See	chapter	4	for	a	discussion
on	publicly	available	portals	for	acquiring	lidar	data.

This	section	provides	an	overview	of	some	of	the	more	commonly	used
derivatives	of	elevation	data,	including	slope	and	aspect,	hillshades,	solar
insolation,	and	flow	accumulation.

Figure	9.18.	Comparison	of	elevation	data	created	from	a	lidar	versus	a	nonlidar	source

Elevation
DEMs,	in	and	of	themselves	and	without	any	further	processing,	are	very	useful
for	visualization	and	analysis	in	thematic	mapping	projects	and	as	predictor
variables	in	machine	learning,	because	elevation	is	often	highly	correlated	with
vegetation	species	occurrence.

Three	categories	of	DEMs	derive	from	lidar	data:	digital	terrain	models
(DTMs),	digital	surface	models	(DSMs),	and	digital	height	models	(DHMs).	To
recap	information	in	chapter	8,	DTMs	depict	the	ground,	DSMs	depict	the
highest	surface	(the	vegetation	canopy	and	the	tops	of	features	such	as
buildings),	and	DHMs	depict	the	heights	of	features	such	as	trees.	All	these
types	of	DEMs	serve	as	key	data	sources	for	thematic	mapping.



Figure	9.19	shows	an	example	of	a	bare-earth	DEM	used	to	help	find	the
extent	of	vernal	pools	in	the	Santa	Rosa	Plain	of	Sonoma	County,	California.
Vernal	pools	are	areas	of	wetland	grasses	that	grow	in	topographic	depressions
over	clayey	soils	where	water	pools	during	the	rainy	season.	Imagery	alone	is
helpful	for	mapping	vernal	pools,	but	the	bare-earth	DEM—by	revealing	subtle
sinks	in	the	landscape—improves	an	analyst’s	ability	to	identify	and	delineate
these	sensitive	wetland	habitats.	Figure	9.19	shows	the	topographic	depressions
in	the	darker	tones	(delineated	by	light	blue	lines);	the	lighter	tones	represent
areas	of	upland	grasses	between	the	vernal	pools.

Figure	9.19.	Vernal	pools	in	Sonoma	County,	CA,	revealed	using	lidar	derived	DEMs.	Vernal
pools	occur	in	areas	with	Mediterranean	climate	conditions.	The	pools	are	depressions	in	the
landscape	that	temporarily	fill	with	water	during	the	rainy	season,	creating	seasonal	wetlands.
During	the	dry	season,	the	water	in	the	pools	evaporates	as	shown	in	the	imagery	on	right	side	of
the	figure.	Source:	Sonoma	County	Agriculture	Preservation	and	Open	Space	District

Slope	and	Aspect
Land	cover	is	also	often	highly	correlated	with	slope	and	aspect.	Slope
represents	the	rate	of	change	of	elevation	(rise	over	run)	for	each	DEM	cell.
Slope	can	be	calculated	using	the	ArcGIS	Spatial	Analyst	Slope	tool,	which
returns	a	raster	with	pixel	values	that	represent	the	inclination	of	slope	in	either
degrees	or	percent	slope.	Aspect	identifies	the	downslope	direction	of	the
maximum	rate	of	change	in	value	from	each	cell	to	its	neighbors.	The	Arc-GIS
Aspect	tool	returns	a	raster	with	pixel	values	representing	the	direction	(typically
in	degrees)	that	the	pixel	faces.	Flat	pixels	have	pixel	values	of	−1.



Slope	and	aspect	rasters	can	be	reclassified	into	ranges	and	combined	into	a
single	layer	that	represents	both	slope	and	aspect.	For	example,	using	the
ArcGIS	Reclass	tool,	slope	could	be	reclassified	from	its	integer	values	of
percent	slope	into	four	classes:	gentle,	moderate,	steep,	and	very	steep.	Aspect
could	be	classified	from	its	range	of	0	to	360	degrees	into	eight	directions:	north,
south,	east,	west,	northeast,	southeast,	southwest,	and	northwest.	The	two
reclassified	rasters	could	be	combined	into	a	single	hybrid	of	slope	and	aspect
that	is	very	useful	for	visualization	and	as	a	data	source/predictor	variable	for
thematic	mapping.	Figure	9.20	shows	a	slope–aspect	raster.

Figure	9.20.	Combined	and	reclassified	slope	and	aspect

Hillshades
Hillshades	show	the	landscape	with	various	degrees	of	illumination	and
shadowing	based	on	a	user-defined	sun	location.	With	lidar’s	high	positional
accuracy	and	high	resolution,	lidar-derived	hillshades	are	an	excellent	reference
data	source	to	assist	in	mapping	features	such	as	roads,	archeological	areas,
earthquake	faults,	stream	channels,	and	deformations	caused	by	landslides	or
other	mass	wasting	events.	Hillshades	are	also	very	useful	in	manual	image



interpretation	of	vegetation	types	because	they	provide	an	instantaneous	and
easily	understandable	depiction	of	the	relative	slope,	aspect,	and	elevation	of	any
location.

Because	lidar	data	penetrates	the	tree	canopy,	features	under	the	canopy	are
revealed	by	the	lidar	hillshade,	even	though	those	features	may	be	completely
obscured	by	forest	canopy.	The	upper	image	of	figure	9.21	shows	a	high-
resolution	orthoimage	with	a	road	covered	by	the	tree	canopy,	whereas	in	the
lower	image	the	road	is	clearly	visible	in	the	lidar-derived	hillshade.	The	road	is
depicted	by	dashed	yellow	lines	in	both	the	imagery	and	the	hillshade.

Figure	9.21.	A	road	revealed	under	the	tree	canopy	in	a	bare-earth,	lidar-derived	hillshade	in
Sonoma	County,	CA

Solar	Insolation
Solar	insolation	represents	the	amount	of	solar	radiation	received	by	an	area	over
some	user-defined	period.	Solar	insolation	is	calculated	in	ArcGIS	using	the
Solar	Radiation	toolbox	in	Spatial	Analyst.	The	Area	Solar	Radiation	tool	takes



a	bare-earth	DEM	as	its	input	and	returns	a	raster	with	pixel	values	that	represent
solar	radiation	over	a	time	period.

Since	the	amount	of	available	sunlight	is	correlated	with	vegetation	type,
solar	radiation	is	a	useful	data	source	for	thematic	mapping	and	is	often
employed	as	a	predictor	variable	in	machine	learning	for	land-cover	and
vegetation	mapping.

Hydrology
Flow	Accumulation
Flow	accumulation	represents	the	upstream	catchment	area	for	given	pixel	on
the	landscape.	Flow	accumulation	is	derived	from	a	hydroenforced	DEM.
Hydroenforcement	of	a	DEM	imparts	the	true	elevations	of	culverts,	pipelines,
and	other	buried	passages	for	water	into	a	DEM,	creating	a	DEM	suitable	for
modeling	the	flow	of	surface	water.

In	a	flow	accumulation	raster,	pixel	values	represent	the	number	of	pixels
that	flow	into	a	given	pixel,	essentially	providing	a	value	for	an	upstream
catchment	area.	Pixels	with	high	flow	accumulation	represent	areas	of	flow
concentration	(such	as	streams).

Flow	accumulation	is	a	prerequisite	for	creating	many	other	layers	that	are
important	data	sources	for	thematic	mapping.	Layers	that	require	flow
accumulation	for	their	creation	include	stream	centerlines	(discussed	below),
vertical	height	above	a	river	(discussed	below),	and	other	hydrologic	terrain
derivatives	such	as	watershed	boundaries.	Flow	accumulation	rasters	are	created
in	ArcGIS	by	a	series	of	Spatial	Analyst	functions	that	include	Fill,	Flow
Direction,	and	Flow	Accumulation.

Stream	Centerlines
One	of	the	uses	of	flow	accumulation	is	to	generate	stream	centerlines	and	flow
networks.	Stream	centerlines	and	flow	networks	exist	for	the	entire	United	States
and	are	publicly	available	for	download	by	way	of	the	National	Hydrography
Dataset	(NHD).	NHD	flowlines	are	typically	derived	from	the	7.5-minute	series
of	US	Geological	Service	(USGS)	topographic	maps;	as	such,	NHD	features	are
used	appropriately	up	to	1:	24,000	scale.	One	of	the	most	useful	elements	of	the
NHD	is	that	it	is	a	geometric	network,	making	it	useful	for	all	manner	of
hydrologic	analysis	and	modeling.



Because	of	lidar’s	high	positional	accuracy,	high	spatial	resolution,	and
ability	to	depict	the	ground	surface	even	when	it’s	obscured	by	canopy,	lidar-
derived	stream	centerlines	are	typically	significantly	more	positionally	accurate
and	spatially	precise	than	traditional	NHD	centerlines.

Stream	centerlines	are	useful	as	reference	data	sources	for	thematic	mapping
as	well	as	for	modeling	the	flow	of	surface	water	(if	they	exist	as	part	of	a
geometric	network).	Figure	9.22	shows	an	example	of	lidar-derived	stream
centerlines	(the	blue	lines	in	the	figure)	for	an	area	of	Sonoma	County.

Figure	9.22.	Lidar-derived	stream	centerlines	in	Sonoma	County

Hydrologic	Data	Sources
Many	terrain-based	hydrologic	variables	and	indices	serve	as	useful	data	sources
for	thematic	mapping.	Such	variables	often	rely	on	accurate	flow	accumulation
models	(discussed	above),	which	are	derived	directly	from	preferably
hydroenforced,	lidar-derived,	bare-earth	DEMs.

Proximity	to	water,	in	both	horizontal	and	vertical	directions,	is	often	highly
correlated	with	vegetation	type.	Horizontal	and	vertical	distances	from	water	are
useful	data	sources	for	vegetation	mapping	and	are	especially	useful	for
accurately	discriminating	upland	vegetation	from	wetland	and	riparian



vegetation.	Horizontal	distance	to	water	can	be	derived	by	creating	a	raster	that
represents	the	distance	to	the	nearest	water	surface	and/or	a	stream	centerline.
Vertical	distance	from	water,	also	known	as	height	above	river	(HAR)	or	height
above	channel,	is	a	raster	surface	that	represents	the	vertical	distance	above	the
nearest	point	on	a	stream	(Dilts	et	al.,	2010).	A	pixel	in	the	channel	(at	the
thalweg	or	centerline)	would	have	a	HAR	of	0;	a	pixel	on	a	side	slope	that	was
15	meters	above	the	thalweg	vertically	would	have	a	HAR	of	15	meters.	Figure
9.23	shows	a	HAR	from	Sonoma	County.	Creating	a	HAR	raster	can	be	done
using	the	Riparian	Topography	toolbox	developed	by	Tom	Dilts	at	the	University
of	Nevada,	Reno.

In	addition	to	proximity	to	water,	many	other	terrain-based	hydrologic	data
sources	can	aid	in	thematic	mapping.	These	include	datasets	that	represent
modeled	floodplain	extents	and	indices	such	as	the	topographic	wetness	index.

Figure	9.23.	Height	above	river

Precipitation	and	Temperature



Precipitation	and	temperature	are	highly	correlated	with	vegetation,	very	useful
data	sources	in	vegetation	mapping,	and	often	effective	predictor	variables	in
machine	learning	for	vegetation	mapping.	In	the	United	States,	the	National
Center	for	Atmospheric	Research	(NCAR)	provides	publicly	available
nationwide	precipitation	data	for	many	climatic	metrics.	Datasets	include
average	annual	precipitation	and	min/max/mean	temperatures.	NCAR	distributes
both	long-term	and	short-term	climate	data	in	raster	format.	Note	that	the	spatial
resolution	of	many	climate,	precipitation,	and	temperature	datasets	is	low	and
may	not	be	applicable	for	thematic	mapping	projects.

A	Case	Study:	Fog	in	Sonoma	County
In	areas	of	the	country	where	marine	fog	influences	climate,	the	amount	of	fog	can
be	correlated	with	vegetation	type	and	may	serve	as	an	important	data	source	and
predictor	 variable	 for	 vegetation.	 Sonoma	 County	 in	 Northern	 California	 has	 a
Mediterranean	 climate	 with	 rain	 during	 the	 winter	 and	 rainless	 long	 summers.
However,	 fog	 spilling	 off	 the	 relatively	 cold	 waters	 of	 the	 Pacific	 Ocean	 provides
some	summer	moisture.	In	these	areas,	fog	condenses	on	vegetation	and	drips	onto
the	 ground,	 providing	 measurable	 summer	 precipitation.	 Some	 areas,	 especially
those	adjacent	to	the	coast,	experience	much	more	fog	than	the	drier,	more	inland
regions	of	 the	county.	These	 fog-prone	areas	host	vegetation	 that	doesn’t	 tolerate
the	 heat	 and	 dryness	 of	 the	 less	 fog-prone	 areas,	 which	 support	 more	 xeric
vegetation.	 The	occurrence	of	 fog	 is	 very	 localized;	 some	 very	 foggy	 areas	 occur
very	close	to	areas	that	are	relatively	fog	free.

The	authors	of	 this	book	used	 fog	as	one	of	hundreds	of	predictor	variables	 for	a
vegetation	mapping	project	that	resulted	in	a	fine-scale	vegetation	and	habitat	map
of	 Sonoma	 County.	 The	 fog	 data	 (Baldocchi	 and	 Waller,	 2014)	 represented	 the
average	frequency	of	fog	during	the	summer	months	of	a	ten-year	period.	The	fog
frequency	information	was	obtained	by	classifying	the	land	surface	reflectance	data
from	MODIS,	which	provides	twice-a-day	images	of	the	United	States.	The	resulting
summer	 fog	 frequency	 raster	 proved	 to	 be	 highly	 correlated	with	 vegetation	 type,
and	 it	 improved	vegetation	map	results,	especially	 for	 fog-adapted	species	 like	the
coast	redwood	(Sequoia	sempervirens).

Soils
Soils	data	is	available	for	the	United	States	from	the	USDA	Natural	Resources
Conservation	Service	(NRCS),	typically	at	1:12,000	scale.	Soil	type	can	be	a
useful	data	source	for	thematic	mapping	and	is	often	highly	correlated	with
vegetation	and	land	cover.	However,	because	soils	are	so	difficult	to	map	on	a
landscape	scale,	NRCS	data	often	has	limited	utility	for	land-cover	and
vegetation	mapping,	especially	at	scales	larger	than	1:12,000.	Because	of	the



inherent	difficulty	of	mapping	soil	types	accurately	(especially	when	the	ground
is	obscured	by	vegetation),	it	is	generally	not	advisable	to	rely	heavily	on	soils
data	as	a	data	source	for	thematic	mapping.	However,	exceptions	occur	where
specific	soil	types	are	accurately	mapped	and	very	highly	correlated	with
vegetation.	An	example	of	this	is	serpentine-derived	soils	in	California,	which,
because	of	their	very	low	nutrient	content	and	toxicity	for	some	plants,	host	a
unique	array	of	specially	adapted,	slow-growing	plant	species.

Forest	Canopy	Metrics	(Derived	from	Lidar)
As	was	discussed	in	chapter	4,	one	of	the	reasons	that	lidar	is	such	a	powerful
tool	for	vegetation	and	land-cover	mapping	is	that	its	multiple	returns	provide	a
3D	depiction	of	the	forest	canopy.	The	complex	and	data-heavy	forest	structure
information	of	the	raw	point	cloud	can	be	distilled	into	many	forest	structure
metrics,	which	are	often	highly	correlated	with	vegetation	type	and	are	useful	as
data	sources	for	thematic	mapping,	especially	as	independent	variables	in
vegetation	mapping	projects.

The	simplest	forest	structure	metrics—canopy	height	and	canopy	cover—are
the	most	common	and	simplest	to	derive	from	the	point	cloud.	Other	very	useful
lidar	metrics	include	canopy	volume	profiles,	which	provide	the	percentage	of
lidar	returns	for	a	given	area	of	land	(e.g.,	a	20	×	20-meter	raster	cell)	in	each
user-defined	vertical	stratum	above	the	ground	(e.g.,	0–5	meters,	5–20	meters,
20–40	meters,	40+	meters).

Percentile	height	metrics,	another	more	advanced	type	of	lidar-derived	forest
structure	metric,	produce	rasters	with	values	that	represent	height	at	a	user-
selected	percentile.	For	example,	the	75th	percentile	height	value	for	a	20	×	20-
meter	pixel	would	represent	the	height	that	75	percent	of	the	lidar	returns	in	the
vertical	area	above	the	pixel	fell	below.

Wildfire	History
The	presence	or	absence	of	wildfire	on	the	landscape	is	an	important	data	source
for	thematic	mapping,	especially	in	arid	regions	like	the	western	United	States.
Many	government	agencies	provide	fire	data.	For	example,	the	state	of
California’s	Fire	Resource	Assessment	Program	(FRAP)	maintains	an	inventory
of	fire	perimeters	going	back	to	the	early	twentieth	century.	Since	the	occurrence
of	fire	is	often	correlated	with	vegetation	type,	this	data	layer	is	very	useful	as	a
predictor	variable	for	vegetation	mapping,	as	well	as	a	reference	map	layer	for



thematic	mapping	in	general.	For	each	fire	perimeter,	FRAP’s	data	contains	an
attribute	for	the	year	of	the	fire,	which	is	very	useful	for	classifying	the
perimeters	into	periods	of	occurrence.	Figure	9.24	shows	an	area	of	the	statewide
fire	history	layer,	classified	into	20-year	periods,	for	Sonoma	County.

Figure	9.24.	Sonoma	County	fire	history	in	20-year	periods.
http://frap.fire.ca.gov/data/frapgisdata-sw-fireperimeters_download.
http://frap.fire.ca.gov/projects/fire_data/fire_perimeters_methods	(esriurl.com/IG924)

Summary	—	Practical
Considerations
This	chapter	first	introduced	the	concept	of	image	elements	and	how	the
confluence	of	evidence	derived	from	a	combination	of	elements	allows	you	to
convert	imagery	data	into	a	map.	Even	though	imagery	products	have	greatly
evolved	over	the	last	six	decades,	the	elements	have	remained	essentially	the
same	as	those	listed	by	Spurr	in	the	1940s	(Spurr,	1948).

http://frap.fire.ca.gov/data/frapgisdata-sw-fireperimeters_download
http://frap.fire.ca.gov/projects/fire_data/fire_perimeters_methods
http://esriurl.com/IG924


You	also	learned	the	different	methods	for	exploring	imagery	and
discovering	how	the	image	varies	(or	does	not	vary)	with	the	classification
scheme.	Many	of	these	methods	were	first	introduced	during	the	severely	disk-
and	memory-constrained	1970s	and	’80s	to	reduce	the	number	of	bands	to	be
classified	to	only	those	discovered	to	be	the	most	predictive	of	classes	in	the
classification	scheme.	However,	those	techniques	continue	to	be	useful	today
because	they	clearly	identify	how	the	imagery	varies	with	the	classification
scheme,	and	they	allow	for	the	detection	of	map	classes	that	may	be	confused
with	one	another.

Once	possible	map	class	confusion	is	detected,	the	analyst	can	bring	in	other
ancillary	datasets	such	as	DEMs	or	soil	maps,	which	may	predict	map	class
occurrence	more	effectively	than	the	imagery.	This	chapter	reviewed	many	of
the	most	used	ancillary	datasets.	Relying	on	them	requires	that	they	be
positionally	and	thematically	accurate,	and	of	a	scale	similar	to	the	map
information	being	produced.	It	is	critical	that	all	data	sources	being	considered
for	use	in	a	mapping	project	be	reviewed	for	their	positional	accuracy,	even	if	the
stated	positional	error	of	a	dataset	is	very	high.	This	is	done	most	effectively	in
ArcGIS	by	using	the	Swipe	tool	on	the	Effects	toolbar	to	visually	compare	the
data	source	against	positionally	very	accurate,	high-resolution	orthorectified
imagery.	Visual	spot	checks	of	the	data	source	should	occur	across	the	entire
geography	of	the	project	area,	because	the	data	source	may	have	isolated	or
regionally	specific	positional	accuracy	problems	that	don’t	manifest	in	a	check
of	just	a	single	area.

In	general,	using	existing	thematic	maps	(e.g.,	soils	or	a	historical	map	of
land	cover)	to	support	the	creation	of	a	new	thematic	map	should	be	done	very
cautiously.	If	a	thematic	dataset	is	to	be	relied	upon	to	inform	an	image
classification,	it	must	be	of	known	and	acceptable	thematic	accuracy,	because	if
a	class	is	incorrectly	labeled	in	the	dataset,	the	error	will	likely	be	perpetuated
into	the	new	map.	If	thematic	maps	are	to	be	used	as	source	material	or
independent	variables,	they	should	have	a	stated	minimum	mapping	unit	as	small
or	smaller	than	the	map	being	made	and	should	have	map	accuracies	that	exceed
the	target	accuracy	of	the	map	being	made.	Additionally,	the	classification
scheme	used	to	create	the	dataset	should	be	well	understood.

Scale	is	another	important	consideration	in	the	use	of	thematic	data	sources
as	independent	variables	or	source	material	to	compliment	imagery	in	thematic
mapping.	If	those	sources	are	used,	the	data	source	map	should	have	a	maximum
usable	scale	that	equals	or	exceeds	that	of	the	map	being	made.	If	the	data	source
thematic	map	has	a	maximum	usable	scale	that	is	less	than	the	map	being	made,



its	use	could	degrade	the	quality	of	the	resulting	map.



Chapter	10
Image	Classification

Introduction
At	this	point	in	the	workflow,	you	will	have	acquired	your	imagery	and	ancillary
data	layers	and	examined	them	to	ensure	that	they	are	accurately	registered	to
the	ground	and	relevant	for	your	project.	You	have	built	a	rigorous	classification
scheme	and	hopefully	been	able	to	test	it	in	the	field.	You	should	understand	and
have	controlled	to	the	maximal	extent	possible	any	variation	in	the	imagery	or
ancillary	data	that	is	not	related	to	variation	in	your	classification	scheme.	You
will	you	have	studied	the	variation	in	your	imagery	and	performed	data
exploration	to	better	understand	it	and	how	it	varies	with	the	objects	you	want	to
map	on	the	ground.	Now	you	are	ready	to	extract	information	from	the	imagery
—to	make	a	map.

In	chapter	9	you	learned	about	the	elements	of	imagery	and	how	the
confluence	of	those	elements	allows	you	to	classify	imagery;	i.e.,	to	extract
features	or	create	a	thematic	map.	This	chapter	reviews	the	methods	for	image
classification	that	constitute	the	processes	for	converting	the	imagery	and
associated	ancillary	data	into	map	information.	For	this	conversion,	you	will	use
either	manual	interpretation	or	combined	manual	interpretation	and	automated
computer	algorithms.

Both	manual	and	automated	image	classification	involve	data	exploration	to
establish	relationships	between	the	imagery,	ancillary	information,	and	features
on	the	ground.	In	manual	classification,	data	exploration	is	primarily	heuristic,
with	the	analyst	gaining	knowledge	about	the	area	to	be	mapped	through	visits,



discussions	with	experts,	and/or	literature	and	document	reviews.	This
knowledge	is	then	used	by	the	analyst	to	delineate	and	label	the	imagery	using
the	confluence	of	evidence	derived	from	the	10	image	elements	presented	in
chapter	9.	In	semiautomated	classification,	data	exploration	is	accomplished
both	heuristically	and	quantitatively	because	the	image	is	not	only	a	picture
examined	by	the	analyst,	but	also	a	numerical	dataset	that	can	be	rigorously
analyzed	along	with	coregistered	ancillary	datasets	such	as	digital	elevation
models,	soil	maps,	and	hydrologic	feature	locations.	Knowledge	of	what	causes
the	map	classes	to	vary	on	the	ground	is	key	regardless	of	the	method	used	for
turning	the	remotely	sensed	data	into	information,	whether	it	be	manual
interpretation	or	some	type	of	supervised	or	unsupervised	semiautomated
classification.

This	chapter	first	examines	the	methods	used	in	manual	interpretation,	and
next	focuses	on	semiautomated	classification	techniques	such	as	unsupervised
and	supervised	classification,	as	well	as	image	segmentation,	machine	learning
algorithms,	and	rulesets.	The	third	section	discusses	map	validation	and	editing
procedures.

Basics	of	Manual	Interpretation
Manual	image	interpretation	is	called	photo	interpretation	or	image
interpretation,	depending	on	whether	it	is	performed	on	analog	(film)	aerial
photographs	or	on	digital	imagery.	Sometimes	the	interpreter	has	just	a	single
photo	or	image	to	study,	while	at	other	times	a	stereo	pair	(i.e.,	a	pair	of	images
with	two	perspective	views	and	at	least	50	percent	overlap)	is	used.	Stereo
viewing	allows	the	interpreter	to	bring	object	height	and	a	3D	perspective	into
the	classification	process.

Manual	interpretation	is	an	art	and	skill	that	improves	with	practice	and
requires	a	systematic,	logical,	and	organized	approach.	It	involves	delineating
and	labeling	objects	of	interest	in	a	photo	or	image	and	deducing	their
significance.	Like	a	detective	or	a	doctor,	the	interpreter	follows	a	series	of	clues
provided	by	the	10	image	elements	(i.e.,	tone/color,	shape,	size,	pattern,	shadow,
texture,	location,	context,	height,	date)	that	lead	to	a	solution.

Generally,	the	interpretation	should	proceed	from	general	to	specific	classes
(i.e.,	using	a	hierarchical	approach).	For	example,	land-cover	land-use	maps
usually	are	first	interpreted	for	life-forms	(e.g.,	trees,	agriculture,	urban)	and	then
for	specific	classes	within	life-forms	(e.g.,	white	pine	tree	or	red	oak	tree).	In	this



way,	a	forest	would	first	be	delineated	as	separate	from	an	urban	area	or
croplands,	and	then	the	types	of	forests	would	be	delineated	and	labeled	within
the	forest	life-form	(e.g.,	deciduous	versus	evergreen,	or	oak	versus	redwood
versus	Douglas	fir	versus	Sargent	cypress	stands	of	trees).

Readily	identifiable	objects	are	usually	first	delineated	and	labeled	before
unknown	objects,	and	interpretation	flows	from	known	to	unknown	features.
Through	a	process	of	elimination,	easily	identifiable	objects	such	as	water
bodies,	airports,	or	building	footprints	can	be	quickly	mapped,	allowing	the
interpreter	to	focus	his	or	her	intellect	on	distinguishing	between	less	easily
identifiable	classes	in	the	classification	scheme	such	as	forest	tree	species
composition,	wetland	classes,	or	crop	types.

While	the	mapping	is	proceeding,	the	interpreter	must	always	keep	in	mind
the	quality	of	the	imagery	and	ancillary	data,	and	the	conditions	under	which	the
imagery	was	collected.	Time	of	day	and	season	of	year	greatly	affect	the	spectral
qualities	of	the	image	across	the	landscape.	Because	many	trees	and	shrubs	are
deciduous,	a	fall	image	looks	very	different	from	a	spring	image	in	the	temperate
regions	of	the	world.	For	example,	it	is	very	common	for	imagery	acquired	for
infrastructure	mapping	to	be	collected	when	deciduous	trees	have	lost	their
leaves.	As	a	result,	the	same	imagery	would	be	of	limited	use	for	differentiating
between	deciduous	tree	species.	Similarly,	an	image	collected	under	clouds	will
be	very	different	from	one	collected	on	a	cloud-free	day.	There	is	nothing	quite
as	frustrating	as	having	identified	a	strong	spectral	response	in	an	image	for	a
particular	map	class,	only	to	have	the	response	become	unreliable	when	the
mapping	moves	to	images	captured	on	a	different	day	or	time	of	day.

The	tasks	of	manual	interpretation	are	fairly	straightforward,	as	shown	in
figure	10.1.	First,	the	interpreter	reviews	the	imagery	and	gathers	ancillary
information	such	as	topographic	maps,	soil	maps,	field	samples,	and	field	notes.
Information	on	management	history,	agricultural	practices	(e.g.,	crop	calendars),
and	military	and	political	history	also	provide	important	clues	for	object
identification.



Figure	10.1.	Tasks	of	manual	interpretation	of	infrared	Landsat	imagery	in	Africa.	First,	the	image
is	examined	and	ancillary	data	is	compiled	(a).	Next,	objects	are	delineated	based	on	the
classification	scheme	(b).	Finally,	the	objects	are	labeled	using	the	rules	of	the	classification
scheme	(c).

Manual	interpretation	was	once	an	entirely	analog	process,	but	over	the	last
15	years	it	has	been	greatly	assisted	by	the	integration	and	display	of	multiple
coregistered	images	and	ancillary	data	layers	in	a	GIS.	Figure	10.2	shows	an
ArcGIS	MXD	created	for	manual	interpretation	of	vegetation	types	in	Sonoma
County,	California.	Layers	in	the	MXD	include:

A	variety	of	imagery	sources	from	multiple	dates	(National	Agricultural
Imagery	Program	[NAIP]	1-m	4-band	from	2009,	NAIP	1-m	4-band	from
2013,	1-foot	resolution	airborne	4-band	imagery	collected	in	2011,	and	6-
inch	resolution	airborne	4-band	imagery	collected	in	2013).	The	6-inch
true	color	imagery	is	the	uppermost	layer	in	figure	10.2.
The	data	and	labels	of	the	sample	vegetation	plots	collected	to	create	the
classification	scheme.
Vegetation	labels	and	photographs	for	locations	collected	during	multiple
field	trips	(green	and	magenta	dots	in	figure	10.2).
Roads.
Streams	and	height	above	streams	(shown	as	yellow	and	dark	blue	in
figure	10.2).
Wildfire	history.



Various	soils	layers	(shown	as	light	blue	and	beige	polygons	in	figure
10.2).
USGS	topographic	maps.
Previously	created	vegetation	maps.
Several	lidar	products	including	vegetation	height,	a	digital	elevation
model	(DEM),	and	bare-earth	hillshade.

Figure	10.2.	Using	ArcGIS	to	integrate	the	various	data	types	useful	in	manual	image
interpretation.	Source:	Sonoma	County	Agriculture	Preservation	and	Open	Space	District

Next,	the	interpreter	delineates	polygonal	outlines	around	features	(objects)
on	the	imagery	based	on	the	rules	of	the	classification	scheme	and	the	size	of	the
minimum	mapping	unit	(MMU).	Once	the	outlines	have	been	drawn,	each	object
is	labeled	by	relying	on	the	indications	developed	from	the	ten	image	elements
(i.e.	tone/color,	shape,	size,	pattern,	shadow,	texture,	location,	context,	height,
date)	and	the	rules	of	the	classification	scheme.	As	the	process	proceeds,	the
analyst	develops	heuristic	rules	relating	to	variations	in	the	10	image	elements	to
map	classes.	For	example:

Water	is	dark	in	all	bands,	relatively	flat	and	smooth.
Annual	crops	are	in	row	patterns,	bright	in	the	infrared	and	green	bands,
less	than	2	meters	high,	and	usually	occur	on	gentle	or	flat	slopes.



American	urban	areas	are	bright	in	most	bands	with	a	square	pattern	of	flat
streets	and	buildings	over	2	meters	high.
Forests	are	less	bright	than	crops	in	the	infrared	and	green	bands,	occur	on
all	aspects	and	slopes,	and	have	trees	more	than	3	meters	high.

Often	an	interpretation	key,	such	as	the	one	displayed	in	figure	10.3,	is
developed	to	aid	the	interpreter	in	labeling	objects	by	presenting	descriptions
and	pictures	of	how	different	classes	typically	appear	on	the	imagery.	Figure
10.4	exemplifies	how	the	confluence	of	the	ten	image	elements	can	be	used	to
distinguish	four	simple	life	form	classes.

Figure	10.3.	Manual	interpretation	key	for	shrub	types	in	Sonoma	County,	California



Figure	10.4.	Four	life-form	classes	identified	by	the	confluence	of	the	10	image	elements



Often,	the	interpreter	employs	stereo	viewing	equipment	to	enhance	the
interpretation.	The	ability	to	view	the	imagery	in	stereo	or	3D	provides	the
interpreter	with	not	only	the	ability	to	incorporate	height	into	the	process	but
also	a	more	realistic	view	that	further	aids	in	the	interpretation.	Stereo	viewing	is
based	on	the	concept	of	looking	at	two	different	perspectives	of	the	same	object
simultaneously.	One	eye	views	one	perspective	while	the	other	eye	views	the
second	perspective,	and	then	the	brain	fuses	the	images	together	to	create	the	3D
effect	(many	have	experienced	this	same	effect	wearing	special	glasses	to	view	a
3D	movie	at	a	theater).	While	it	is	possible	to	view	in	stereo	with	some	practice
without	any	special	device,	using	an	instrument	called	a	stereoscope	can	greatly
aid	the	process.	The	simplest	stereoscopes	simply	aid	the	eyes	in	looking	straight
down	(one	at	image	one	and	the	other	at	image	two)	instead	of	converging	on	a
single	focus	as	your	eyes	normally	do.	More	advanced	stereoscopes	use	mirrors
that	make	it	even	easier	for	one	eye	to	look	at	one	image	while	the	other	looks	at
the	second	image	(remember,	the	images	are	of	the	same	area,	just	taken	from
different	perspectives).	Finally,	the	most	sophisticated	and	expensive
stereoscopes	use	not	only	mirrors	but	also	optics	to	enlarge	the	images,
providing	the	most	effective	interpretation.

The	accuracy	of	the	interpretation	depends	on	the	quality	of	the	imagery	and
ancillary	data,	the	equipment	used	to	perform	the	interpretation,	the	detail	and
difficulty	of	the	classification	scheme,	and,	most	importantly,	the	skill	of	the
interpreter.	It	is	up	to	the	interpreter	to	simultaneously	consider	the	ten	elements
of	the	imagery	within	the	context	of	the	classification	scheme.	This	can	be	a
difficult	task	requiring	patience,	focus,	and	knowledge	of	the	phenomena	as	well
as	the	geography	being	mapped.	Spurr’s	(1960)	admonishments	regarding	the
qualities	of	the	interpreter	are	still	valid	today:	“Both	visual	and	mental	acuity
are	required.	Equally	essential	are	extensive	training	and	field	experience	in	the
specialty	involved.	Geological	photo	interpretation	must	be	done	by	the
geologist;	soils	interpretation	by	the	soil	scientist,	and	forest	photo	interpretation
by	the	forester”	(Stephen	Spurr,	Photogrammetry	and	Photo-Interpretation	[New
York:	The	Ronald	Press	Company,	1960],	234.

It	is	beyond	the	scope	of	this	book	to	investigate	the	specifics	of	manual
image	interpretation	techniques	for	each	of	the	different	specialties	such	as
infrastructure,	situational	analysis,	land	form,	wetlands,	archaeology,	agriculture,
pollution,	water	resources,	forestry,	geology,	snow	and	ice,	or	soils	mapping.
This	information	can	be	found	in	several	textbooks	including:

Lillesand,	T.;	R.	Keifer;	and	J.	Chipman.	2015.	Remote	Sensing	and	Image
Interpretation.	7th	ed.	New	York:	John	Wiley	&	Sons.



Paine,	D.,	and	J.	Kiser.	2012.	Aerial	Photography	and	Image
Interpretation.	3rd	ed.	New	York:	John	Wiley	&	Sons.
Phillipson,	W.	R.	ed.	1996.	Manual	of	Photographic	Interpretation.	2nd
ed.	Bethesda,	MD:	American	Society	of	Photogrammetry	and	Remote
Sensing.

Manual	interpretation	has	been	and	continues	to	be	the	most-used	method	for
land-use/cover	classification	and	feature	extraction.	However,	manual
interpretation	can	be	extremely	time	consuming,	costly,	and	inconsistent.	No
matter	how	rigorous	the	classification	scheme,	each	interpreter	may	delineate
and	label	the	same	area	differently	depending	on	their	expertise,	training,	and
mood.	Even	the	same	individual’s	interpretations	can	vary	from	day	to	day,	and
within	a	day.	As	a	result,	for	the	last	40	years,	efforts	have	been	made	to
automate	part	or	all	of	the	mapping	process.

Semiautomated	Image	Classification

Introduction
The	ultimate	goal	of	semiautomated	image	classification	is	to	make	the	mapping
process	faster,	less	expensive,	more	consistent,	and	more	accurate.	Like	manual
interpretation,	semiautomated	image	classification	relies	on	some	or	all	of	the
same	ten	image	elements	used	in	manual	interpretation.	What	differentiates
semiautomated	classification	from	manual	interpretation	is	that	computer
algorithms	rather	than	humans	determine	the	confluence	of	evidence.
Semiautomated	classification	involves	data	exploration	to	establish	relationships
between	the	imagery,	ancillary	data,	and	features	on	the	ground.	Computer
algorithms	are	then	used	to	classify	the	imagery	based	on	those	relationships.	If
the	classes	in	the	classification	scheme	are	strongly	correlated	with	the	imagery
and	ancillary	data	used,	much	of	the	work	can	be	successfully	automated,
producing	results	as	good	as	or	better	than	manual	interpretation	at	a	much	lower
cost,	especially	for	large	project	areas.	However,	manual	interpretation	is	always
still	needed	to	evaluate	the	output	of	the	computer	algorithms	and	to	edit	errors,
hence	the	term	semiautomated	instead	of	automated	image	classification.

Semiautomated	methods	classify	either	pixels	or	objects,	which	are	pixels
grouped	into	spatially	adjacent	clusters	of	similar	color/tone	and	texture	(figure
10.5).	Then,	the	pixels	or	objects	are	classified.	Per-pixel	classifiers	group



individual	pixels	into	classes	that	are	spectrally	similar.	They	rely	almost	entirely
on	each	pixel’s	color/tone,	date,	and	texture	to	label	each	pixel.	Object-based
mapping	first	groups	spectrally	similar	and	spatially	adjacent	pixels	into	objects,
and	then	classifies	the	objects	using	manual	rulesets,	unsupervised	or	supervised
algorithms,	or	a	combination	of	both.

Figure	10.5.	Pixels	versus	objects.	Objects	are	created	from	spatially	adjacent	pixels	of	similar
color/tone	and	texture.

This	section	begins	with	a	brief	discussion	of	how	semiautomated	image
classification	has	evolved	over	the	last	40	years.	The	next	subsection	discusses
the	concepts	of	image	object	creation,	also	called	image	segmentation.	The	third
subsection	details	the	multiple	approaches	to	the	semiautomated	labeling	of
either	pixels	or	segments.	The	section	concludes	with	a	discussion	of	practical
concepts	for	consideration	when	deciding	which	image	classification	method	to
use.

History
Semiautomated	image	classification	started	when	per-pixel	classifiers	developed
in	the	1970s	to	classify	digital	multispectral	satellite	imagery.	Initially,	there
were	only	two	major	per-pixel	approaches	to	traditional	semiautomated	image
classification:	supervised	and	unsupervised.	The	supervised	approach	mimics



manual	interpretation,	while	the	unsupervised	approach	uses	statistical
clustering.	There	are	advantages	and	disadvantages	to	each	approach,	which	led
to	many	analysts	finding	ways	to	combine	them	into	hybrid	approaches.	Because
of	the	per-pixel	classifier’s	reliance	on	at	most	three	of	the	ten	image	elements
(color/tone,	texture,	and	date),	the	accuracies	of	early	per-pixel	classification	of
thematic	maps	were	often	low.	Users	were	also	not	used	to	having	the	landscapes
or	features	depicted	in	pixels	rather	than	as	polygons	or	features.	The	result	was
that	many	map	users	rejected	semiautomated	image	classification	in	favor	of
long-accepted	manual	interpretation	techniques.

In	the	late	1980s	and	early	1990s,	the	incorporation	of	location	into
semiautomated	image	classification	became	possible	with	the	introduction	of
GIS	technology	and	the	implementation	of	GPS	technologies	and	algorithms	that
allowed	for	precise	image	registration.	Because	it	became	possible	to	accurately
coregister	the	imagery	and	the	ancillary	layers	to	the	ground	and	to	one	another,
it	also	became	possible	to	incorporate	the	element	of	location	into
semiautomated	classification.	In	this	way,	the	accuracy	of	per-pixel	classifiers
often	improved	through	the	use	of	location-based	rulesets,	which	relate	a	pixel’s
location	characteristics	to	its	probable	label.	For	example,	both	water	bodies	and
forests	on	northeast	facing	mountain	slopes	can	have	very	low	spectral	responses
in	all	bands.	As	a	result,	it	is	not	uncommon	to	have	forest	pixels	misclassified
as	water.	But	still-water	bodies	are	flat	and	do	not	occur	on	slopes.	If	the
imagery	is	accurately	registered	to	the	ground	and	to	a	DEM,	a	ruleset	can	be
developed	that	checks	to	make	sure	that	only	pixels	with	zero	slope	are	classified
as	still-water,	which	distinguishes	the	water	pixels	from	the	forested	slopes.

As	computers	improved	in	processing	speed,	and	software	gained
sophistication,	machine	learning	algorithms	such	as	Random	Forests	and
Support	Vector	Machines	have	been	applied	to	image	classification.	While
traditional	supervised	and	unsupervised	classifiers	are	restricted	to	classifying
only	continuous	data,	machine	learning	algorithms	mine	the	imagery	and
ancillary	datasets	to	establish	relationships	between	the	map	classes	and	both
continuous	and	categorical	independent	variables,	resulting	in	the	development
of	more	complex	and	robust	classification	rules.

Almost	simultaneously	with	the	advent	of	digital	high-spatial-resolution
imagery	in	the	late	1990s,	new	technologies	were	developed	to	segment	imagery
into	spectrally	and	textually	homogeneous	areas	(objects)	and	classify	these
segments	rather	than	each	pixel.	Pixels	represent	arbitrary	delineations	of
rectangles	on	the	ground.	Segments	delineate	meaningful	variation	across	the
landscape,	which	can	then	be	tied	to	the	classification	scheme.	While	powerful



in	the	classification	of	moderate-resolution	imagery	(e.g.,	Landsat,	Sentinel),
object-oriented	classification	is	pivotal	for	semiautomated	classification	of	high-
resolution	airborne	or	satellite	imagery	because	of	the	mixture	of	shadow	and
illuminated	pixels	within	objects,	and	the	common	need	to	group	pixels	together
to	map	vegetation	classes	(e.g.,	forests)	instead	of	individual	features	(e.g.,
trees).	Object-oriented	classification	also	allows	for	the	inclusion	of	the	image
elements	of	area,	shape,	pattern,	and	context	into	semiautomated	classification.
At	the	turn	of	the	last	century,	lidar	technologies	became	operational	for
topographic	mapping.	Suddenly,	high-density	DEMs	and	digital	surface	models
(DSMs)	and	their	products	became	readily	available,	allowing	semiautomated
approaches	to	incorporate	height	and	to	finally	be	able	to	use	all	10	of	the	image
elements	available	for	manual	interpretation.

Image	Segmentation
Image	segmentation	is	the	general	term	for	the	automated	delineation	of	image
objects	from	groups	of	spatially	adjacent	pixels	(as	shown	in	figure	10.6).	The
goal	of	segmentation	is	to	create	objects	with	more	between-object	spectral	and
textural	variability	than	within-object	variability.	Like	manual	delineation,	image
segmentation	divides	an	image	into	relatively	homogeneous,	characteristically
significant,	and	spatially	unique	segments	or	objects.	Measures	of	the	10	image
elements	can	then	be	calculated	for	each	object	and	used	in	object-based	image
classification.

Figure	10.6.	Example	of	image	segmentation	of	six-inch	high-resolution	aerial	imagery	into
objects	that	are	outlined	in	yellow.	Source:	Sonoma	County	Agriculture	Preservation	and	Open
Space	District

Some	segmentation	software	focuses	on	mapping	the	entire	landscape,	while



others	concentrate	on	extracting	features	such	as	buildings,	tanks,	or	airplanes.	In
any	of	these	algorithms,	the	analyst	specifies	a	series	of	parameters	that
determine	how	the	objects	are	generated.	It	is	possible	to	create	large	objects	that
incorporate	very	general	vegetation/land-cover	types	or	very	small	objects	that
may	divide	a	specific	cover	type	into	multiple	segments	created	from	manual
interpretation.	Usually,	more	objects	are	produced	than	required	by	the
classification	scheme.	After	the	objects	have	been	classified,	boundaries	between
adjacent	objects	with	the	same	map	label	are	dissolved,	resulting	in	map
polygons	or	features	that	represent	different	map	classes	as	defined	by	the
classification	scheme.

Most	segmentation	for	remote	sensing	is	based	on	either	edge	detection	or
growing	regions	of	spectral	homogeneity	from	some	starting	point	called	a	seed.
Usually,	optical	images,	infrared	bands,	or	a	normalized	difference	vegetation
index	(NDVI)	are	used	as	the	input	images	along	with	a	measure	of	image
texture	derived	from	the	imagery.	Texture	is	important	to	include	so	that
segments	can	be	created	that	delineate	highly	heterogeneous	areas,	such	as	a
sparse	stand	of	trees	or	a	suburban	area,	from	homogeneous	areas	(e.g.,	crops,
water	bodies).	The	amount	of	heterogeneity	tolerated	within	an	image	segment	is
an	adjustable	parameter	in	the	segmentation	software.	Some	algorithms	also
include	parameters	that	control	how	complex	the	boundary	of	the	image	segment
can	be.

The	power	of	the	segmentation	process	is	twofold.	First,	because	polygons
have	been	the	standard	map	unit	for	decades,	map	users	tend	to	be	more
comfortable	with	polygon-based	maps	than	pixel-based	maps.	Second,	object
attributes	can	include	measures	of	image	elements	that	do	not	exist	for	arbitrary
rectangular	pixels.	For	example,	an	object’s	area	is	easily	calculated,	as	is	the
complexity	of	its	border	(i.e.,	its	shape),	and	its	neighboring	objects	can	be
evaluated	to	create	a	measure	of	context.

It	is	critically	important	that	segments	be	carefully	created	to	ensure	that	the
variation	delineated	between	the	segments	is	correlated	with	the	variation	in	the
classification	scheme.	It	is	very	easy	to	create	segments	in	remote	sensing
software	packages,	but	it	is	very	difficult	to	create	good	segments.	Often,	the
objects	are	too	small	with	many	adjacent	objects	representing	the	same	map
class.	As	a	result,	some	of	the	small	objects	will	be	misclassified,	the	map	will
be	noisy,	and	postclassification	editing	to	correct	the	errors	will	be	tedious.
Conversely,	overlarge	objects	will	not	capture	the	variation	of	the	classification
scheme,	and	the	large	segments	will	need	to	be	cut	in	postclassification	editing,
also	a	tedious	task.	An	important	overriding	consideration	will	always	be	the



size	of	the	classification	scheme’s	MMU.	Multiple	iterations	of	segmentation
should	be	run	on	the	imagery	to	determine	the	best	segmentation	parameters,	and
large-area	projects	should	be	separated	into	regions,	each	run	with	separate
segmentation	parameters	that	best	delineate	that	region’s	variation.

Furthermore,	segmentation	is	most	effective	when	it	is	combined	in	a
stepwise	manner	with	classification	(i.e.,	a	hierarchical	approach).	For	example,
a	ruleset	might	segment	an	image,	classify	the	objects	into	life-form	classes	(e.g.,
shrub,	grass,	hardwood	forest,	conifer	forest,	and	mixed	forest),	merge	adjacent
objects	with	the	same	life-form	class,	and	resegment	within	the	merged	broad
classes	using	segmentation	parameters	tailored	specifically	to	the	life-form	class.

Classification	Algorithms
The	process	of	classification	groups	data	into	classes	with	similar	characteristics.
Classification	algorithms	that	are	used	to	automatically	classify	pixels	or	objects
are	highly	varied	and	range	from	simple,	heuristically	developed	rulesets,	to
sophisticated	statistical	techniques,	to	relatively	new	and	complex	machine
learning	methods.	Figure	10.7	diagrams	the	semiautomated	classification
algorithms	most	commonly	used	today.	They	fall	into	three	broad	categories:
clustering	or	unsupervised	classification,	supervised	classification,	and
combined	approaches.



Figure	10.7.	Diagram	of	image	classification	algorithms

Unsupervised	Classification
Unsupervised	classification	algorithms	currently	exist	primarily	as	per-pixel
classifiers.	However,	ArcGIS	does	have	an	unsupervised	object	classifier.
Unsupervised	classification	uses	statistical	clustering	algorithms	to	sample	the
values	of	the	pixels	of	an	image,	and	then	group	similar	sample	pixels	into
clusters,	as	shown	in	figure	10.8.	All	cluster	calculations	are	performed	on	the
cell	values	in	multivariate	attribute	space	and	are	not	based	on	any	spatial
characteristics.	The	clustered	pixels	do	not	need	to	be,	and	rarely	are,	spatially
adjacent.	Each	cluster	is	statistically	separate	from	the	other	clusters.	How	the
imagery	is	sampled	and	how	the	samples	are	clustered	depends	on	the
unsupervised	classification	algorithms	and	parameters	chosen	by	the	analyst.

Once	the	clusters	have	been	developed,	the	values	of	the	remaining	pixels	in
the	image	are	then	statistically	compared	to	the	summary	statistics	of	the
clusters,	and	each	pixel	is	placed	into	the	cluster	that	it	most	resembles,	as	shown
in	figure	10.9.	The	multivariate	statistics	calculated	from	the	sample’s	input
bands	will	determine	into	which	cluster	each	pixel	is	placed.



Figure	10.8.	Unsupervised	classification	of	southern	Marin	County,	California.	First,	the	image	is
sampled	and	then	the	sample	pixels	are	iteratively	grouped	into	clusters	that	are	statistically
similar.



Figure	10.9.	The	rest	of	the	image’s	pixels	are	classified	into	the	clusters	that	they	most	resemble
based	on	the	multivariate	statistics	of	each	cluster.

There	are	many	unsupervised	algorithms,	but	all	of	them	require	continuous
digital	data	as	an	input.	Different	unsupervised	classification	algorithms	will
probably	produce	a	different	set	of	clusters,	but	the	clusters	would	still	be
spectrally	unique	as	defined	by	the	unsupervised	algorithm.	The	most	commonly
used	algorithms	are	K-means	and	the	iterative	self-organizing	data	analysis
technique	(ISODATA).	In	K-means,	the	analyst	specifies	the	number	of	clusters
desired.	The	image	is	sampled,	and	each	pixel	is	placed	into	the	cluster	closest
(in	Euclidian	distance)	to	the	multivariate	mean	vector,	which	is	established	as
an	arbitrary	starting	place	of	the	clustering	process.	Once	all	of	the	sample	pixels
have	been	placed	in	clusters,	new	cluster	means	are	calculated	and	the	sample
pixels	are	reclassified	into	clusters	again	based	on	the	shortest	distance	to	the



new	means.	The	means	of	the	new	clusters	are	recalculated	again,	and	the
previous	step	is	repeated.	The	iteration	process	reiterates,	updating	the	mean
values	until	the	user-defined	number	of	iterations	is	reached	or	until	less	than	2
percent	of	the	pixels	change	from	one	cluster	to	another.

The	ISODATA	clustering	algorithm	is	similar	to	K-means,	except	that	the
number	of	clusters	is	allowed	to	vary	from	iteration	to	iteration	based	on	analyst-
determined	measures.	If	the	distance	between	two	clusters	falls	below	a	specified
minimum,	then	the	clusters	are	merged.	Conversely,	if	a	cluster’s	variance
exceeds	a	specified	maximum,	then	the	cluster	is	divided	in	two.	As	with	K-
means,	this	process	is	iterated	until	there	is	no	significant	change	in	cluster
statistics	or	when	a	specified	maximum	number	of	clusters	is	reached.

The	outputs	of	an	unsupervised	classification	are	the	spectral	statistics	for
each	cluster	and	a	map	with	each	pixel	labeled	as	the	cluster	to	which	it	is
statistically	most	closely	associated.	It	is	then	the	job	of	the	analyst	to	determine
the	map	class	label	for	each	cluster	(as	shown	in	figure	10.10)	to	create	a	map	as
defined	by	the	classification	scheme	(figure	10.11).	Labeling	each	cluster	can	be
an	arduous,	time-consuming,	and	subjective	process.	Some	clusters	will	clearly
represent	a	single	map	class	and	can	be	easily	labeled.	Other	clusters	will	include
a	combination	of	multiple	map	classes	and	can	be	very	difficult	to	label.	Notice
that	cluster	7	occurs	in	urban	areas	and	along	the	coastline	in	the	southwest
portion	of	figure	10.11,	where	beaches	but	no	urban	structures	exist.	This	result
points	to	two	problems.	First,	our	classification	scheme	is	missing	a	bare	land
class.	Second,	cluster	7	is	informationally	confused	and	will	need	further
analysis	to	remove	the	confusion.	An	approach	known	as	“cluster	busting,”	in
which	clusters	that	represent	multiple	map	classes	are	separated	and	iteratively
run	through	additional	clustering	algorithms	to	separate	them	into	additional
spectrally	unique	clusters	can	be	very	effective	in	teasing	more	informational
classes	out	of	the	imagery	(Jensen	2016).



Figure	10.10.	Collapsing	15	clusters	into	six	map	classes



Figure	10.11.	Converting	the	cluster	map	into	a	land-cover/use	map

The	analyst	decides	how	many	clusters	the	unsupervised	classification
should	produce,	and	knowledge	of	the	study	area	is	essential	to	produce	an
accurate	map.	The	number	of	clusters	must	be	greater	than	or	equal	to	the
number	of	map	classes,	and	most	often	the	number	of	clusters	exceed	the
number	of	map	classes.	The	number	of	clusters	varies	with	the	complexity	of	a
project’s	classification	scheme;	in	general,	the	more	classes	to	be	mapped,	the
more	clusters	that	should	be	generated.	The	analyst	must	work	iteratively	with
the	number	of	clusters	in	the	unsupervised	classification	to	achieve	the	best
separation	of	the	map	classes	of	interest.

The	power	of	unsupervised	classification	is	that	it	clearly	separates	out	the
spectral	information	present	in	the	image.	Every	cluster	is	statistically	different
from	all	the	other	clusters	and	is	unique.	Additionally,	unique	clusters	unknown
to	the	analyst	can	be	discovered	and	mapped	into	a	map	class.	For	example,	in
figure	10.10	cluster	15	was	found	to	represent	clouds	over	water,	which	are
spectrally	unique	but	not	a	map	class.	Because	the	clouds	only	occur	over	water
in	this	example,	cluster	15	can	be	relabeled	as	water.

The	challenge	in	unsupervised	classification	is	to	determine	the



informational	class	of	each	cluster.	While	you	know	that	the	clusters	are
spectrally	unique,	you	do	not	know	which	map	class	each	cluster	represents.	If
each	cluster	represents	one	and	only	one	map	class,	an	accurate	map	can	be
produced.	However,	there	is	no	guarantee	that	a	spectrally	unique	cluster	will
represent	only	one	informational	class,	and	therefore	the	clusters	may	be
informationally	confused,	which	will	cause	errors	on	the	map.

Supervised	Classification
Supervised	classification	relies	on	rules	to	decide	into	which	map	class	a	pixel	or
an	object	will	be	placed.	The	rules	relate	the	dependent	variable—the	map
classes—to	the	independent	variables—the	imagery	and	the	ancillary	data.	As	in
manual	interpretation,	the	rules	can	be	developed	heuristically	by	the	analyst
based	on	her	knowledge	of	the	project’s	classification	scheme,	imagery,	and
landscape.	The	rules	can	also	be	automatically	and	more	rigorously	generated
from	sets	of	samples,	called	training	sites,	which	are	collected	across	the	project
area	for	each	map	class.

The	process	of	supervised	classification	mimics	that	of	photo	interpretation.
Just	as	the	photo	interpreter	must	be	“trained”	to	recognize	characteristics	of
objects	in	an	image,	so	too	must	the	computer	be	“trained.”	The	image
interpreter	uses	the	elements	of	image	interpretation	and	a	confluence	of
evidence	to	recognize	features,	cover,	and	land-use	types.	Similarly,	in
semiautomated	classification,	the	analyst	either	builds	a	model	of	heuristic
rulesets	or	uses	statistics	and	data	exploration	or	mining	techniques	to	generate
the	rules.	Supervised	classification	relies	on	the	analyst’s	knowledge	of	the	area
to	be	mapped,	which	allows	him	to	“supervise”	or	“train”	the	image
classification.

As	shown	in	figure	10.7,	there	are	three	types	of	supervised	classification
algorithms:	manually	derived	rulesets,	traditional	techniques,	and	machine
learning.	All	of	the	three	types	of	techniques	can	be	used	to	classify	either	pixels
or	segments.	Image	classification	with	rulesets	is	the	simplest	form	of	supervised
classification,	and	it	most	closely	mimics	manual	interpretation.	Traditional
techniques	were	the	first	classifiers	developed	to	classify	multispectral	imagery
and	are	still	used	extensively	today.	Machine	learning	classifiers	are	relatively
new,	but	very	powerful	for	the	classification	of	complex	classification	schemes
and	distinguishing	subtle	differences	between	map	classes.	This	section	first
discusses	the	requirements	of	good	training	samples	for	supervised
classification,	and	then	reviews	the	basics	of	each	of	the	supervised	classification



techniques.

Training	Sites
All	supervised	classification	methods	require	examining	sample	areas	of	the
imagery	where	the	map	class	(according	to	the	classification	scheme)	is	known.
The	samples	are	referred	to	as	training	sites,	and	the	rigor	of	their	examination
can	range	from	informal	viewing	of	the	imagery	to	meticulous	mathematical
analysis	of	the	values	of	the	independent	variables	of	all	the	samples.	Training
data	is	absolutely	required	for	supervised	classification,	while	strong	knowledge
of	the	ground,	even	if	not	specific	sample	sites,	is	required	to	label	the	results	of
the	unsupervised	classification.	The	rigor	required	depends	upon	the	complexity
of	the	classification	scheme	and	how	closely	correlated	the	variation	in	the
scheme	is	with	the	variation	in	the	imagery	and	ancillary	data.	Simple
classification	schemes	with	high	correlations	between	the	imagery,	ancillary
data,	and	the	map	classes	require	little	analysis.	Complex	schemes	seeking	to
tease	apart	map	classes	that	appear	to	be	indistinguishable	on	the	ground	or
imagery	require	in-depth	analysis.

Great	care	must	be	taken	to	efficiently	and	effectively	generate	appropriate
training	sites	for	each	map	class.	Poor	selection	of	training	sites	can	result	in
producing	an	inaccurate	map	because	the	classifier	will	be	“poorly	trained,”
resulting	in	the	inability	to	properly	identify	each	map	class.	The	more	spectrally
different	the	map	classes	are,	the	easier	it	is	to	select	good	training	sites.	For
example,	it	is	relatively	easy	to	conduct	a	supervised	classification	for	a	project
containing	only	four	distinct	land-cover	types:	water,	forest,	developed,	and
other	vegetation.	These	land-cover	types	are	very	easy	to	tell	apart	on	the
imagery.	It	would	not	take	much	training	for	an	image	interpreter	to	distinguish
them,	nor	would	it	be	difficult	to	select	good	training	sites	for	a	supervised
classification.

However,	as	the	classes	to	be	mapped	become	more	spectrally	similar,	it	is
increasingly	important	that	subtle	differences	between	the	map	classes	are
represented	in	the	training	sites.	The	number	of	pixels	in	a	training	site,	the
number	of	training	sites	needed	per	map	class,	and	the	method	of	delineating	the
exact	training	site	are	all	important	issues	that	the	analyst	must	consider.
Because	statistics	are	generated	from	each	training	site,	a	sufficient	number	of
pixels	must	be	selected	to	obtain	a	viable	training	site.	A	good	guideline	is	to
have	approximately	10	×	n,	where	n	is	the	number	of	image	bands.	In	other
words,	if	7	bands	of	imagery	are	being	used	in	the	classification	analysis



process,	then	there	should	be	approximately	10	times	7	or	70	pixels	in	each
training	area.	A	very	small	number	of	pixels	is	usually	insufficient	to	produce
representative	statistics,	and	too	many	pixels	can	result	in	a	training	site	with
large	variances	that	can	potentially	result	in	its	class	being	erroneously
overmapped.

The	number	of	training	sites	per	map	class	greatly	depends	on	the
complexity	of	the	classification	scheme.	Simple	classification	schemes	require
relatively	few	training	sites.	Complex	schemes	with	many	classes	require	a	very
large	number	of	training	sites	to	effectively	represent	each	map	class’s	range	of
spectral	and	independent-variable	conditions,	especially	in	large	project	areas.
Some	map	classes	are	inherently	less	variable	than	others,	quite	homogeneous,
and	easy	to	map.	Some	are	more	heterogeneous	and	require	more	effort	to
properly	“train”	the	classifier.	Some	map	classes	turn	out	to	be	homogeneous	in
their	spectral	heterogeneity	(e.g.,	suburban	areas,	sparse	stands	of	trees),	which
means	that	some	measure	of	texture	will	be	an	important	independent	variable.

For	example,	water	is	a	rather	homogeneous	class,	and	typically	only	a	few
(5	to	10)	good	training	sites	are	needed	to	separate	water	from	the	other	map
classes.	Of	course,	if	mapping	water	conditions	(turbidity	or	salinity,	etc.)	is	the
objective,	then	training	sites	for	each	of	these	conditions	are	necessary.
Conversely,	urban	or	developed	areas	are	inherently	quite	variable.	A	suburban
environment	is	really	a	mosaic	of	buildings,	trees,	grass,	roads,	sidewalks,	etc.	in
a	unique	pattern	depending	on	population	density.	Therefore,	to	accurately
represent	this	mosaic,	many	more	training	sites	are	required	to	adequately
capture	the	spectral	variation	in	this	map	class.

The	class-by-class	distribution	of	training	sites	usually	mirrors	the
distribution	of	the	classes	on	the	landscape.	Classes	that	occur	commonly	across
the	landscape	have	a	large	number	of	training	sites,	and	classes	that	don’t	occur
often	have	a	smaller	number	of	training	sites.

There	are	many	methods	for	delineating	training	sites.	If	pixels	are	to	be
classified,	the	simplest	method	is	simply	to	use	a	box	or	rectangle	to	select	a
group	of	pixels.	While	simple,	a	rectangle	leaves	the	analyst	very	little	flexibility
about	including	or	excluding	certain	pixels,	because	everything	in	the
box/rectangle	is	included	and	everything	else	is	excluded.	The	next	method	is
also	user	based,	but	allows	the	analyst	to	draw	a	polygon	rather	than	just	a
rectangle,	as	shown	in	figure	10.12.	The	power	of	this	method	is	that	it	is	still
quite	simple,	yet	provides	more	discretion	to	the	analyst	to	select	pixels	that
should	be	part	of	the	training	site	while	excluding	others.	Both	the	rectangle	and
polygon	methods	rely	exclusively	on	the	analyst	to	select	appropriate	training



sites.	A	final	method,	based	on	a	region-growing	algorithm,	can	also	be	used	to
select	training	sites.	In	this	technique,	the	analyst	selects	a	starting	point	or
“seed”	for	the	training	site	to	begin	and	sets	some	parameters	to	define	how	the
site	will	grow.	Then	the	algorithm	“grows”	the	training	site	by	adding	pixels	to	it
based	on	the	defined	criteria.	If	the	adjoining	pixels	are	similar	enough	to	the	site
as	defined	by	the	selection	criteria,	they	are	added	to	the	training	site.	When	all
adjoining	pixels	have	been	found	to	be	effectively	different	from	the	training
site,	the	site	is	complete	and	no	further	pixels	are	added.	This	method	has	the
advantage	of	using	statistical	similarity	to	determine	whether	a	pixel	is	part	of
the	training	site.	However,	the	criteria	for	this	selection	must	still	be	set	by	the
analyst,	so	the	method	is	not	purely	objective.

Figure	10.12.	Collection	of	training	sites	from	Landsat	imagery	of	southern	Marin	County,
California

If	objects	rather	than	pixels	are	to	be	classified,	then	objects	can	be	used	as
training	sites	as	long	as	the	image	segmentation	detail	matches	the	detail	of	the
classification	scheme.	Too-small	objects	do	not	adequately	capture	the	variation
of	the	map	class.	Overlarge	objects	containing	more	than	one	map	class	result	in
too	much	variation	within	the	training	site,	which	causes	map	errors.	Figure
10.13	shows	a	portion	of	Sonoma	County,	California,	that	has	been	segmented.
The	field-verified	training	objects	are	outlined	in	yellow	with	the	remaining



objects	outlined	in	white.

Figure	10.13.	A	segmented,	high-resolution	image	with	training	sites	shown	as	selected	field-
verified	training	sample	objects	outlined	in	yellow.	Non-training	site	segments	are	outlined	in
white.

Training-site	quality	is	the	most	critical	consideration	for	producing	high-
quality	and	accurate	maps	using	supervised	classification.	Selecting	good
training	sites	requires	strict	adherence	to	the	project	classification	scheme,	which
must	be	composed	of	labels	and	rules,	mutually	exclusive,	and	totally	exhaustive
(see	chapter	7	for	a	more	thorough	discussion	of	the	requirements	of	a	robust
classification	scheme).	The	scheme	also	needs	to	be	easy	to	apply	in	the	field	so
that	sample	collection	is	accurate	and	cost	effective,	and	map	classes	must	also
be	easily	and	accurately	identifiable	in	the	field	and	on	the	imagery.

The	whole	process	of	training-site	sample	collection	provides	the	analyst
with	an	understanding	of	both	the	causes	of	map	class	variability	and	the
relationship	between	map	class	variability	and	variability	of	the	imagery	and
ancillary	data	layers.	While	training-site	samples	can	be	collected	solely	from
remotely	sensed	imagery,	they	are	best	collected	by	visiting	and	labeling	sites	on
the	ground	with	the	imagery	and	ancillary	datasets	in	hand.



Guidelines	for	Training-Site	Sample	Selection
Collecting	training	samples	that	fully	capture	the	variation	within	and	between	map
classes	 is	 a	 key	 factor	 in	 supervised	 classification,	 and	 the	 following	 guidelines
should	be	followed:

Informational	homogeneity—Each	sample	must	represent	one	and	only	one	map
class.
Completeness—An	adequate	number	of	samples	must	be	collected	for	all	map
classes,	 and	 the	 samples	 should	 capture	 the	 range	 of	 independent-variable
conditions	for	a	given	map	class.	Samples	must	also	capture	all	 the	significant
spectral	variance	in	the	imagery	across	the	project	area.	One	of	the	best	ways	to
ensure	 the	 complete	 capture	 of	 spectral	 variance	 is	 to	 run	 an	 unsupervised
classification	 of	 the	 project	 area	 and	 check	 that	 all	 unsupervised	 clusters	 are
represented	by	training	samples.	Spectrally	unique	clusters	that	do	not	relate	to
map	classes	may	indicate	a	condition	on	the	ground	or	in	the	imagery	that	is	not
captured	in	the	classification	scheme.
Spectral	 homogeneity—The	 samples	 should	 have	 more	 spectral	 variability
between	 classes	 than	 within	 classes.	 In	 other	 words,	 the	 spectral	 per-band
statistics	 of	 one	 map	 class’s	 training	 samples	 should	 be	 more	 similar	 to	 one
another	than	they	are	to	those	of	other	map	classes.	If	the	spectral	statistics	of
different	 map	 classes	 overlap,	 then	 there	 probably	 will	 be	 confusion	 between
those	map	classes	on	the	map.
Minimum	 size—Samples	 should	 be	 larger	 than	 the	 MMU	 established	 for	 the
project.
Project-wide	distribution—For	each	map	class,	sampling	should	be	performed	so
as	 to	 collect	 samples	 that	 represent	 the	 class’s	 distribution	 throughout	 the
project	area.
Accurate—Each	 training	 sample	 must	 be	 accurately	 and	 correctly	 labeled.	 If
there	is	ambiguity	about	a	sample’s	label,	then	the	ambiguity	must	be	noted	and
captured	as	part	of	the	training	sample’s	data.
Cost	 effective—Training	 sample	 collection	 can	 be	 time	 consuming	 and
expensive,	and	therefore	must	be	well	planned	and	implemented.	If	samples	are
to	 be	 collected	 in	 the	 field,	 then	 special	 care	 must	 be	 taken	 to	 ensure	 cost-
effective	and	safe	access	to	sample	locations.
Consistent—Personnel	 collecting	 training	 sites	 must	 be	 well	 trained	 in	 the
classification	 scheme,	 and	 data	 entry	 forms	 should	 be	 used	 to	 impose
consistency	 in	data	collection.	Minimum	data	collected	should	 include	 the	map
class	 label	 for	 the	 sample	 site,	 the	 name	 of	 the	 collector,	 date,	 location,	 and
comments.	 Additional	 information	 depends	 on	 the	 detail	 of	 the	 classification
scheme.	Today,	this	data	 is	captured	most	effectively	and	efficiently	 in	 the	field
through	 the	use	of	an	application	designed	 for	a	smartphone,	 tablet,	or	 laptop
computer,	which	allows	the	data	collector	to	take	advantage	of	viewing	imagery
and	ancillary	data	of	 the	site	as	well	as	error	checking,	pull-down	menus,	and
other	time-saving	measures	(figure	10.A).



Figure	10.A.	Example	of	using	Collector	for	ArcGIS	app	for	iPad	field	data	collection	in	Sonoma
County,	California.	The	data	collector	is	used	to	quickly	label	points	in	the	field	with	a	field-verified
thematic	map	class.	This	configuration	of	Collector	also	includes	many	datasets	for	navigation
and	reference,	including	high-resolution	imagery,	parcels,	USGS	7.5-minute	topographic	maps,
and	other	data	layers.	Point	data	collection	is	facilitated	with	pull-down	menus,	and	videos	and
photos	are	easily	captured.	(esriurl.com/IG10A)

The	importance	of	thoroughly	reviewing	training-site	data	cannot	be
overstated.	Manual	review	of	training	sites	using	reference	data	such	as	high-
resolution	orthophotography	always	reveals	mislabeled	training	sites	and	data
entry	errors.	Removing	those	training	sites	from	the	classification	greatly
increases	classification	accuracy.

Manually	Derived	Rulesets
The	first	type	of	supervised	mapping	technique	we	will	discuss	is	manually
derived	rule-sets	(see	figure	10.7).	Manually	derived	rulesets	can	be	used	to

http://esriurl.com/IG10A


classify	either	pixels	or	objects.	The	analyst	builds	the	rules	after	studying	the
imagery,	ancillary	data,	and	landscape.	The	analyst	may	or	may	not	collect
training	samples	and	perform	data	exploration	on	the	samples	to	understand	how
map	classes	vary	with	the	imagery	and	ancillary	data.	Instead	of	keeping	the
rules	in	the	back	of	their	head	as	done	in	most	manual	interpretation,	or
developing	an	interpretation	key	such	as	the	one	shown	in	figure	10.3,	the
analyst	codes	the	rules	and	builds	a	model	that	relates	the	different	map	classes
to	the	independent	variables	(imagery	and	ancillary	data)	available	to	the	project.
The	resulting	model	provides	consistency	in	the	image	classification,	but	can
also	oversimplify	the	landscape.	Heuristically	built	rulesets	are	best	used	with
simple	classification	schemes	in	areas	where	the	map	classes	are	highly
correlated	with	the	imagery	and	ancillary	data.	For	example,	you	can	create	a
rule	that	defines	persistent	smooth	water	as	follows:

Color/tone:	low	in	all	bands
Shape:	not	indicative,	because	water	exists	in	a	variety	of	shapes
Size:	not	indicative,	because	water	exists	in	a	variety	of	sizes
Pattern:	none
Texture:	low	in	all	bands
Location:	zero	slope,	flat	aspect,	elevation	variable
Context:	not	indicative,	because	water	can	occur	in	many	contexts
Surface	Height:	zero
Date:	multiple	dates	needed	to	map	persistent	water	to	account	for	tidal
changes	and	the	impact	of	rainy	versus	wet	seasons

Case	Study—Rulesets	for	Chesapeake	Bay	Regional
Watershed	Mapping

In	2015,	the	Chesapeake	Bay	Program	(CBP),	a	regional	partnership	that	leads	and
directs	 the	 restoration	 and	 protection	 of	 the	 Chesapeake	 Bay	 and	 its	 watershed,
commissioned	an	upgrade	to	their	watershed	landscape	data	from	the	Chesapeake
Conservancy,	working	with	 the	University	of	Vermont	and	WorldView	Solutions,	 to
create	 a	 one-meter	 resolution	 dataset	 that	 covers	 all	 counties	 that	 intersect	 the
Chesapeake	Bay	watershed	boundary.

The	Conservancy’s	methodology	 for	 the	 project	 relied	 on	 rule-based	workflows	 to
produce	 a	 map	 and	 dataset	 with	 12	 categories:	 water,	 emergent	 wetlands,	 tree
canopy,	 shrub	 land,	 low	 vegetation,	 barren,	 structures,	 impervious	 surfaces,
impervious	 roads,	 tree	 canopy	 over	 structures,	 tree	 canopy	 over	 impervious
surfaces,	and	tree	canopy	over	impervious	roads.	Figure	10.B	shows	three	example
rulesets	developed	for	the	project.

Data	used	in	the	project	included	leaf-on	2013	one-meter	resolution;	four-band	NAIP



imagery;	height	 information	derived	from	the	most	recently	available	lidar	datasets;
and	 most	 recently	 available,	 high-resolution,	 leaf-off	 imagery	 (sized	 between	 15
centimeters	to	1	meter	per	pixel).	If	available,	county,	state,	and	federal	planimetric
datasets	 were	 also	 used	 to	 enhance	 the	 classifications	 of	 features	 such	 as
structures	and	roads.

Because	 it	 was	 adaptable	 to	 diverse	 landscapes,	 a	 rule-based	 classification
methodology	 was	 selected	 by	 the	 Conservancy	 to	 classify	 Maryland,	 New	 York,
West	 Virginia,	 and	Washington,	 DC.	 The	multistate	 area	was	 broken	 into	 regions
composed	 of	 8	 to	 12	 mosaicked	 NAIP	 images,	 each	 the	 size	 of	 USGS	 quarter
quadrangles.	 NDVI	 and	 DSMs	 were	 calculated	 and	 the	 mosaicked	 images	 were
segmented.	Analysts	evaluated	the	segment	characteristics	and	formulated	between
one	 and	 eight	 rules	 for	 each	 land-cover	 type	 to	 create	 a	 mutually	 exclusive
classification.	Rulesets	for	each	region	were	edited	from	previous	efforts	or	written
from	scratch,	depending	on	the	location	and	how	well	previous	rulesets	transferred.
Some	classes	had	qualities	 that	persisted	 throughout	 the	watershed;	 for	example,
generally	 tree	canopy	segments	were	designated	as	 trees	 if	 they	were	above	 two
meters	 in	 height	 and	 had	 a	 comparatively	 high	mean	NDVI	 value.	Once	 the	 data
was	categorized	to	the	satisfaction	of	the	analyst,	the	results	were	manually	edited
and	 local	 planimetric	 data	 was	 incorporated.	 The	 datasets	 were	 reviewed	 for
consistency	 with	 local	 experts	 in	 each	 watershed	 county.	 Accuracy	 assessments
were	 conducted,	 followed	 by	 additional	 editing,	 before	 the	 land	 cover	 was
incorporated	 into	 CBP’s	 Chesapeake	 Bay	 water-quality	 assessments.	 Overall
accuracies	averaged	90	percent.



Figure	10.B.	Example	manually	derived	ruleset	for	one	of	the	Chesapeake	watershed	regions.
Source:	Chesapeake	Conservancy

Traditional	Techniques
The	next	type	of	supervised	mapping	technique	we	will	discuss	is	traditional
image-based	supervised	classification	(see	figure	10.7).	Traditional	techniques
use	statistics	to	develop	rules	for	classifying	continuous	data	such	as	imagery
bands	or	indices,	but	sometimes	also	DEMs,	DSMs,	and	products	derived	from
them	(e.g.,	slope,	aspect).	First,	training	sites	are	digitized.	Statistics	derived



from	the	values	of	the	pixels	composing	the	training	sites	are	calculated
including	minimum,	maximum,	mean,	and	standard	deviation	for	each
continuous	dataset	as	well	as	covariances	and	correlations	between	bands	(figure
10.14).	In	traditional	supervised	classification,	each	pixel	in	the	imagery	is
compared	to	each	training	sample’s	spectral	statistics	for	each	map	class.	Each
pixel	is	then	assigned	a	map	class	based	on	the	pixel’s	spectral	similarity	to	each
training	site	as	determined	by	the	supervised	classification	algorithm	employed
by	the	analyst.

Figure	10.14.	Multivariate	statistics	for	one	training	site

A	variety	of	rules/algorithms	can	be	used	to	label	all	the	unknown	pixels	in
the	image	based	on	the	training	statistics.	The	most	common	of	these	rules	in
increasing	order	of	complexity	are	1)	minimum	distance,	2)	parallelepiped,	and



3)	maximum	likelihood.
Figure	10.15	shows	a	graphic	representation	of	the	common	rules/algorithms

that	are	used	for	labeling	the	unknown	pixels	in	the	image	based	on	the
knowledge	gained	from	the	training	statistics.	Part	a	of	this	figure	simply	shows
a	bispectral	plot	in	which	the	pixels	from	the	training	sites	are	plotted.	This
example	shows	only	two	dimensions	(a	bispectral	plot),	but	the	computer	can
process	this	same	type	of	analysis	in	as	many	dimensions	as	there	are	bands	in
the	imagery.	A	quick	look	at	Part	a	of	the	figure	shows	thematic	mapper	(TM)
band	4	(NIR)	on	the	x	axis	and	TM	band	3	(red)	on	the	y	axis.	The	locations	of
the	pixels	by	vegetation/land-cover	type	confirms	that	the	training	data	is	valid.
For	example,	the	water	pixels	all	show	low-NIR	and	red	reflectance,	as
expected.	The	coniferous	trees	are	lower	in	NIR	reflectance	than	the	deciduous
trees,	as	also	expected.	If	some	pixels	were	in	the	wrong	place	in	this	graph,	this
would	be	reason	to	investigate	whether	the	training	site	was	properly	collected	or
labeled.

Figure	10.15.	A	graphic	example	of:	a.	A	bispectral	plot,	b.	The	minimum	distance	algorithm,	c.



The	parallelepiped	algorithm,	and	d.	The	maximum	likelihood	algorithm.

Figure	10.15b	shows	how	the	minimum	distance	rule	works.	The	distance
from	an	unknown	pixel	to	the	center	of	each	training	site	is	measured,	and
whichever	distance	is	closest	determines	the	label	for	that	pixel.	For	example,
unknown	pixel	#1	in	the	figure	would	be	labeled	as	A	(Agriculture)	because	it	is
the	closest	to	the	center	of	the	A	training	site.	Calculation	of	this	minimum
distance	is	simple	and	fast.	However,	there	can	be	some	labeling	issues	as
demonstrated	in	classifying	unknown	pixel	#2.	Its	minimum	distance	is	to	the
center	of	B,	and	so	pixel	#2	would	be	labeled	as	B	(Barren).	However,	careful
examination	of	the	graph	indicates	that	it	might	be	more	accurate	to	label	#2	as
U	(Urban).	Note	that	Urban	is	a	much	more	variable	map	class	than	is	Barren,
and	therefore	the	pixels	in	the	Urban	training	site	are	much	more	spread	out	than
those	in	the	Barren	training	site.	Upon	visual	inspection,	the	analyst	would	be
much	more	likely	to	label	#2	as	Urban.	However,	using	the	minimum	distance
algorithm,	the	pixel	must	be	labeled	barren.	The	minimum	distance	algorithm
does	not	account	for	variance	in	any	way.	Therefore,	while	this	rule	is	simple
and	quick	to	compute,	it	may	result	in	inaccurate	labeling	of	unknown	pixels	by
ignoring	the	variation	in	the	map	classes.

The	parallelepiped	(or	box)	rule/algorithm	attempts	to	solve	some	of	this
problem.	Computing	variances	is	computationally	intensive,	so	the
parallelepiped	algorithm	uses	a	surrogate	for	variance:	minimum	and	maximum.
A	parallelepiped	is	drawn	around	each	training-site	plot	using	the	minimum	and
maximum	values	for	each	band	(figure	10.15c).	Only	unknown	pixels	that	fall
within	the	parallelepipeds	are	labeled.	For	example,	unknown	pixel	#1	falls
inside	the	A	box	and	is	labeled	Agriculture.	Now,	unknown	pixel	#2	is	labeled
Urban	because	it	falls	within	that	box.	However,	the	issue	with	this	algorithm	is
that	pixels	falling	outside	of	the	boxes	(see	pixels	#4	and	#5)	are	left
unclassified.	This	algorithm	is	still	quite	efficient	and	indirectly	incorporates	a
measure	of	variation.	The	obvious	shortcoming	is	that	depending	on	the	quality
of	the	training	data,	some	or	many	unknown	pixels	can	be	left	unclassified.

The	third	common	rule/algorithm	to	label	unknown	pixels	in	a	supervised
classification	using	the	training	sites	collected	is	the	maximum	likelihood
algorithm.	This	method	is	demonstrated	in	figure	10.15d.	In	this	algorithm,	the
mean	and	variance	are	computed	for	each	training	area,	resulting	in	a	probability
that	any	unknown	pixel	is	part	of	each	map	class.	The	unknown	pixel	is	then
labeled	with	the	map	class	that	has	the	highest	probability.	This	method	can
result	in	very	accurate	labeling	when	using	effective	training	data.	However,	the
method	does	require	computations	of	the	variance	statistic	and	the	assumption



that	the	data	is	normally	distributed	to	determine	the	probabilities	for	each
unknown	pixel.	Figure	10.16	shows	the	Marin	County	area	classified	using	a
maximum	likelihood	classifier.

Figure	10.16.	Map	results	from	using	a	maximum	likelihood	classifier

Overall,	the	power	of	supervised	classification	is	that	the	analyst	“trains”	the
computer	using	well-chosen	training	sites	that	represent	the	information	required
in	that	mapping	project.	Supervised	training	samples	are	informationally	unique.
Each	is	delineated	by	the	analyst	to	represent	only	one	known	and	defined	map
class,	making	each	training	sample	informationally	unique.	However,	there	is	no
guarantee	that	training	samples	will	be	spectrally	unique.	Map	classes	may	be
spectrally	similar	even	though	they	are	informationally	distinct.	If	the	training
sites	represent	distinguishable	spectral	information,	then	the	analyst	can	produce
an	accurate	map.	If	some	of	the	map	classes	are	not	spectrally	separable,	then	the
thematic	map	will	not	distinguish	them	and	the	map	will	have	errors.	This	is	the
opposite	situation	that	is	faced	in	unsupervised	classification,	where	the	clusters
are	spectrally	unique	but	possibly	informationally	confused.

Analysis	can	determine	the	potential	spectral	confusion	between	training
samples	of	different	map	class	types	by	using	the	data	exploration	techniques
described	in	chapter	9.	While	you	cannot	ensure	spectral	uniqueness,	you	can	do
your	best	to	reduce	spectral	confusion	by	choosing	your	imagery	wisely	(to
maximize	spectral	variation	between	classes)	and	delineating	your	training	sites
with	a	minimum	of	within-site	spectral	variation.

Machine	Learning	Techniques
The	final	type	of	supervised	mapping	technique	we	will	discuss	is	machine



learning	(see	figure	10.7).	Machine	learning	is	an	integral	and	growing
component	of	data	science.	It	is	used	across	many	disciplines	including
medicine,	engineering,	ecology,	and	information	technology.	Over	the	past	two
decades,	machine	learning	has	provided	the	tools	behind	many	technological
breakthroughs	including	speech	recognition,	image	pattern	recognition,	and	self-
driving	cars.

For	the	purposes	of	deriving	information	from	imagery	and	geospatial	data,
machine	learning	mines	the	spectral	information	in	the	imagery	and	ancillary
independent	variables	(such	as	slope	and	aspect)	to	find	linkages	between	the
independent	variables	and	the	map	classes.	These	linkages	are	exploited	by	the
machine	learning	algorithms	and	used	to	develop	rules	or	decision	trees	that
predict	vegetation	type	across	nonsampled	areas.

There	are	many	desktop	applications	for	machine	learning.	The	most
powerful	and	widely	used	is	the	statistical	package	R,	which	is	freely	available.
Beyond	its	core	functionalities,	R’s	huge	ecosystem	of	users	has	developed
packages	(more	than	6,000	as	of	this	writing)	that	implement	all	commonly	used
machine	learning	algorithms.	R	is	well	integrated	with	Esri	products,	so	that
machine	learning	algorithms	in	R	can	directly	read	from	and	write	to	spatial	and
tabular	datasets	developed	in	ArcGIS.	In	ArcGIS	Desktop,	several	common
machine	learning	algorithms	are	available	with	the	Spatial	Analyst	extension,
making	it	easy	to	perform	machine	learning	directly	from	within	ArcMap	and
ArcGIS	Professional.

During	the	past	several	years,	there	has	been	a	growing	adoption	of	web
services	for	data	science	and	machine	learning.	Web-services-based	machine
learning	provides	access	to	vast	computing	power,	which	can	speed	up	machine
learning	tasks	for	large	datasets	by	orders	of	magnitude.	Web-services-based
machine	learning	also	enables	publishing	machine	learning	models	via	APIs,
allowing	them	to	be	used	repeatedly	across	the	Internet.	At	this	time,	there	are	a
growing	number	of	options	for	performing	machine	learning	using	web	services.
These	machine-learning-as-a-service	platforms	include	Microsoft	Azure
Machine	Learning	Studio,	Amazon	Machine	Learning,	IBM’s	Watson	Analytics,
Google	Prediction	API,	BigML,	and	DataRobot.

There	are	hundreds	of	machine	learning	algorithms.	This	chapter	discusses	a
few	of	the	commonly	implemented	algorithms	for	land-cover,	land-use	and
vegetation	mapping:	Classification	and	Regression	Tree	(CART),	Random
Forests,	Support	Vector	Machines	(SVMs),	and	Artificial	Neural	Networks
(ANNs).

CART,	Random	Forests,	and	SVMs	are	very	effective	for	thematic	mapping



because	they	can	accommodate	a	wide	range	of	independent	variables,	including
both	categorical	variables	(such	as	geology	or	soils)	and	continuous	variables
(such	as	spectral	reflectance	or	elevation).	In	addition,	unlike	other	classifiers
such	as	the	maximum	likelihood	classifier,	these	machine	learning	algorithms
don’t	require	any	assumptions	concerning	the	distribution	of	the	independent
variables.	These	three	algorithms	are	excellent	tools	for	identifying	both	simple
and	complex	relationships	between	variables	that	traditional	techniques	might
not	uncover.

CART
CART	analysis	(Breiman	et	al.,	1984)	is	a	nonparametric	algorithm	that	uses	a
set	of	field-verified	training	data	to	develop	a	hierarchical	decision	tree.	This
decision	tree	is	created	using	a	binary	partitioning	algorithm	to	successively	split
a	multidimensional	cloud	of	explanatory	data	into	increasingly	homogeneous
subsets.	Once	the	final	tree	is	generated,	it	can	then	be	used	to	label	all	the
unknown	areas	on	the	map.	CART	analysis	has	been	widely	used	in	the	last	two
decades	both	for	pixel-based	and	object-based	image	classification.	The	largest
federal	pixel-based	land-cover	mapping	programs—the	Gap	Analysis	Program
and	the	National	Land	Cover	Database—have	relied	heavily	on	CART	as	a	core
technology	(https://gapanalysis.usgs.gov/).

Inputs	for	CART	are	independent	variables	for	each	training	site	(such	as
spectral	information	from	high-resolution	imagery	and	Landsat	imagery,	image
texture,	slope,	aspect,	geologic	parent	material,	and	other	ancillary	data).	CART
“mines”	the	sample	data	and	builds	rules	that	are	if-then	statements	in
hierarchical	“trees”	that	condition	the	prediction	of	vegetation	classes.

Case	Study—a	CART	Decision	Tree	for	Classifying	a
Forested	Stand	as	Deciduous	or	Evergreen

This	example	 is	a	simple	 illustration	of	CART.	For	 this	example,	 the	authors	used
2,551	training	sites	from	field	work	in	Sonoma	County	labeled	simply	as	deciduous
and	evergreen	forest.	CART	was	run	on	these	sites	in	R	with	over	150	independent
variables	using	 “rpart.”	For	presenting	a	simple	 tree	 for	 the	purpose	of	 illustration,
CART	was	 run	with	 a	 very-high-complexity	 parameter,	 producing	 a	 simple,	 highly
pruned	 tree	 that	 used	 only	 the	 most	 powerful	 independent	 variables	 for
discriminating	 deciduous	 from	 evergreen	 forest.	 The	 independent	 variables	 that
were	used	are	as	follows:

B5_DIFF—The	difference	in	Landsat	8	TM	reflectance	in	band	5	(NIR)	(spring	minus
winter	reflectance)

https://gapanalysis.usgs.gov/


NDVI—Normalized	Difference	Vegetation	 Index	 from	 late	 fall	 2013	 high-resolution
orthophotography.	 In	 this	 image,	deciduous	vegetation—except	 in	 riparian	areas—
had	mostly	lost	its	leaves.

HAR—Lidar-derived	Vertical	Height	Above	River	(vertical	distance	from	the	nearest
stream	channel)—see	chapter	8	for	details	on	this	lidar	derivative.	Units	in	feet.

DIST_STR—Horizontal	distance	from	the	nearest	stream	channel.	Units	in	feet.

In	figure	10.C,	 the	 figures	under	 the	green	and	 red	 “leaves”	of	 the	CART	decision
tree	show	the	probability	of	being	evergreen	(left	number)	and	the	percentage	of	the
total	number	of	observations	in	the	leaf.	The	top-level	split	used	the	Land-sat	8	band
5	 difference	 between	 winter	 and	 spring—this	 value	 is	much	 higher	 for	 deciduous
vegetation	 than	 for	 evergreen	 vegetation—hence	 the	preponderance	of	 evergreen
observations	on	the	right	branch	of	the	tree	and	deciduous	observations	on	the	left
branch	of	the	tree.

Figure	10.C.	An	example	of	a	simple	CART	decision	tree	for	predicting	evergreen	versus
deciduous	vegetation	in	Sonoma	County,	California

Random	Forests
Random	Forests	represents	an	evolution	of	CART	and	was	developed	by	Leo
Breiman	and	Adele	Cutler	in	the	mid-2000s	(Breiman,	2001).	Breiman	and
Cutler’s	algorithm	for	Random	Forests	is	implemented	in	R	in	the
“randomForest”	package.

Random	Forests	is	likely	the	most	widely	used	machine	learning	algorithm
in	thematic	mapping	at	present.	AmericaView,	a	nationwide	partnership	of
remote-sensing	scientists,	performed	a	rigorous	and	extensive	review	of	machine



learning	algorithms	for	land-cover	mapping.	They	used	data	from	various
sources	and	across	many	geographies	and	found	that	Random	Forests	is	the	most
effective	machine	learning	algorithm	when	compared	to	other	popular
algorithms	for	land-cover	mapping	(Lawrence	and	Moran,	2015).

Whereas	CART	creates	a	single	decision	tree,	Random	Forests	creates	many
trees	(a	“forest”	of	trees).	To	apply	the	model,	an	observation	is	run	down	all	of
the	trees,	and	the	most	common	prediction	(the	modal	prediction	from	all	the
trees)	is	used	as	the	final	prediction.	As	such,	Random	Forests	is	in	and	of	itself
an	ensemble	classifier.	Breiman’s	concept	was	that	a	bunch	of	“weak	learners”—
the	individual	trees—could	be	combined	into	a	“strong	learner”—the	ensemble
prediction.

Randomness	is	an	important	component	of	the	Random	Forest	algorithm.
For	each	tree	in	the	“forest,”	only	a	random	selection	of	the	training	data	is	run
down	the	tree	(two-thirds	of	the	samples,	sampled	with	replacement).	The
remaining	one-third	of	training	observations	are	“out	of	bag”	and	used	for
assessing	classifier	accuracy	and	for	assessing	independent-variable	importance.
Note	that	out-of-bag	accuracy	estimates	generally	overrepresent	classification
accuracy.	For	a	valid	evaluation	of	accuracy,	test	sites	should	be	set	aside	and
used	as	an	independent	source	for	validation	(see	Chapter	12).

In	addition	to	the	randomness	in	selecting	the	training	data	run	down	each
tree	in	the	forest,	Random	Forests	imparts	randomness	in	the	way	it	deals	with
independent	variables.	Instead	of	using	all	independent	variables	at	each	node
(decision	point)	in	the	tree,	a	random	subset	of	variables	is	used—the	number
used	is	defined	in	the	“mtry”	parameter,	discussed	below.	From	this	subset	of
randomly	selected	variables	at	each	node,	the	one	that	optimizes	the	split	is	used.

There	are	several	configurable	parameters	in	Random	Forests.	One	is	the
number	of	trees	in	the	forest—the	“ntree”	parameter.	Larger	numbers	of	trees
produce	more	stable	models	and	are	preferable,	but	computation	time	will
increase	as	the	number	of	trees	increases.	A	safe	starting	point	that	should	in
most	cases	provide	very	stable	models	is	999	trees	and—with	today’s	computing
power—should	execute	reasonably	fast	for	all	but	the	largest	datasets.	Another
configurable	attribute	of	Random	Forests	is	the	“mtry”	parameter.	This
parameter	determines	the	number	of	randomly	selected	independent	variables
that	Random	Forests	will	use	at	each	tree	node.	The	recommended	value	for	this
parameter	is	the	square	root	of	the	number	of	independent	variables.	There	is
conflicting	evidence	in	the	literature	as	to	the	degree	of	influence	that	the	“mtry”
parameter	has	on	classification	results	(Cutler	et	al.,	2007;	Strobl	et	al.,	2007).

In	addition	to	the	classification	itself,	Random	Forests	produces	a	number	of



other	outputs.	The	importance	matrix	provides	useful	information	about	the
importance	of	each	of	the	independent	variables	that	are	used	to	train	the
classification.	This	matrix	shows	each	independent	variable	as	rows	and	each
map	class	as	columns.	By	sorting	this	importance	matrix	in	descending	order	for
a	given	map	class,	one	can	see	the	list	of	independent-variable	importance	in
descending	order.	Figure	10.17	shows	a	small	subset	of	a	Random	Forest
importance	matrix	for	a	vegetation	classification	in	Sonoma	County,	California.
The	most	important	independent	variables	for	Quercus	garryana	(Oregon	white
oak)—a	deciduous	oak—are	shown	and	include	a	green	index	(i.e.,	[(mean
green)	–	(mean	red)]/[(mean	green)	+	(mean	red)]),	various	measures	of	NDVI,
and	three	Landsat	TM	8	band	5	(NIR)	spectral	difference	images	that	represent
the	difference	in	NIR	reflectance	between	spring	months	(March,	April,	and
May)	and	winter	(February).	Because	Quercus	garryana	is	deciduous,	Random
Forests	found	these	band-difference	images	between	leaf-on	periods	and	leaf-off
periods	key	to	classifying	these	stands.	In	figure	10.17,	the	values	in	the	right-
hand	column	represent	independent-variable	“importance”	(they	are	listed	in
descending	order).	Specifically,	importance	is	the	mean	decrease	in	prediction
accuracy	(i.e.,	the	mean	decrease	in	the	percentage	of	out-of-bag	observations
classified	correctly)	that	would	result	from	excluding	the	independent	variable.
The	mean	decrease	in	prediction	accuracy	is	reported	on	a	0	to	1	scale	(with	1
representing	100	percent).



Figure	10.17.	A	sample	of	a	Random	Forest	importance	matrix	from	Sonoma	County,	California

In	addition	to	the	importance	matrix,	Random	Forests	outputs	a	proximity
matrix.	The	proximity	matrix	shows	the	number	of	times	that	a	training
observation	is	found	in	the	same	terminal	node	as	another	training	observation.
Lastly,	Random	Forests	provides	a	list	of	the	overall	most	important	independent
variables,	as	well	as	overall	out-of-bag	accuracies	for	each	map	class.	In
ArcGIS,	Random	Forests	is	available	as	part	of	the	Spatial	Analyst	extension
and	part	of	the	Segmentation	and	Classification	toolset.	Esri	uses	the	OpenCV
implementation	of	Random	Forests.

Support	Vector	Machines



SVMs	are	widely	used	in	machine	learning,	and	in	the	past	decade	have	become
popular	for	thematic	mapping	using	remotely	sensed	data	and	imagery	(e.g.,
Mountrakis	et.	al,	2011).	Like	Random	Forests,	SVMs	are	nonparametric
supervised	classifiers.	SVMs	project	the	training	data	in	a	nonlinear	manner	into
a	feature	space	with	a	higher	dimension	than	the	input	data’s	feature	space.	This
projection	is	done	using	a	kernel	function	and	results	in	a	linearly	separable
dataset	(Congalton,	2010).

SVMs	perform	very	well	as	a	machine	learning	algorithm	for	thematic
mapping	and	have	been	widely	adopted.	Recent	literature	shows	that	thematic
map	accuracy	for	maps	produced	using	SVMs	is	close	to	that,	and	often	exceeds,
the	accuracy	of	maps	produced	using	Random	Forests	(Zhang	et	al.,	2015;
Waske	et	al.,	2009;	Ballanti	et	al.,	2016).

Most	implementations	of	SVMs	provide	a	parameter	for	adjusting	class
weights.	Setting	this	parameter	to	true	(allowing	the	algorithm	to	adjust	weights)
often	improves	classifier	performance.	If	the	number	of	training	samples	per
class	is	unbalanced	(some	classes	have	many	training	samples	and	others	have
few,	for	example),	then	SVMs	can	produce	suboptimal	results	that	are	biased
toward	the	common	classes	and	underrepresent	the	prediction	of	the	uncommon
classes	(He	and	Ma,	2012).	Adjusting	for	class	weights	obviates	this	problem.

Another	SVM	parameter	is	the	kernel,	which	is	the	function	used	to	create
decision	spaces.	For	thematic	mapping,	the	radial	basis	function	(RBF)	kernel	is
recommended.	When	using	the	RBF	as	the	kernel,	C	(cost)	and	gamma
parameters	are	also	required.	Cost	defines	the	cost	of	misclassification	of	the
training	data—a	small	value	for	C	sets	a	low	cost	of	misclassification	and	allows
a	wider	cushion	between	classes;	a	high	value	for	C	sets	a	high	cost	for
misclassification,	creating	tighter	margins	between	classes.	Gamma	controls	how
far	the	influence	of	a	single	training	site	reaches	when	the	decision	boundary	is
determined	by	the	algorithm.	Several	tools,	such	as	the	“tune.svm”	R	package,
can	be	used	to	select	optimal	C	and	Gamma	values	for	a	particular	classification.
In	ArcGIS,	SVM	is	available	as	part	of	the	Spatial	Analyst	extension	and	part	of
the	segmentation	and	Classification	toolset.	Esri	uses	the	LibSVM
implementation	of	Random	Forests.

Artificial	Neural	Networks
ANNs	were	developed	to	mimic	central	nervous	system	and	brain	function.
Though	ANNs	have	recently	been	widely	used	in	image	and	voice	recognition,
they	have	not	seen	broad	adoption	for	thematic	mapping	using	remotely	sensed
datasets.



Like	other	supervised	approaches,	ANNs	are	developed	from	a	set	of	training
data	(samples	with	known	dependent	and	independent	variables),	and	the
resulting	model	is	used	to	make	predictions	for	cases	where	no	training	data
exists.	Nodes	are	the	most	atomic	unit	of	ANNs,	analogous	to	neurons	in	a	living
organism.	ANNs	organize	nodes	into	a	connected	system	that	is	organized	into
three	layers—the	input	layer,	the	hidden	layers,	and	the	output	layer.	The	input
layer	is	essentially	the	input	data	(akin	to	the	independent	variables	in	Random
Forests	or	SVMs),	the	hidden	layers	are	the	network	of	interconnected	nodes	that
embody	the	weighted	rules	of	the	model,	and	the	output	layer	is	the	model’s
answer.	An	input	to	a	neural	network	traverses	the	interconnected	nodes	guided
by	decision	rules	“learned”	from	the	training	data,	eventually	passing	through
the	hidden	layers	to	the	output	layer,	which	produces	a	prediction.

Because	they	are	prone	to	overfitting	and	can	be	very	complex	(Congalton,
2010),	ANNs	aren’t	widely	used	for	thematic	mapping	at	this	time.	However—
as	evidenced	in	their	broad	adoption	in	pattern	recognition	and	“deep
learning”—ANNs	are	a	powerful	and	promising	technique.

Machine	Learning	Best	Practices
Independent-variable	selection	is	an	important	consideration	for	producing
maps.	Independent	variables	depicting	elements	that	are	correlated	with	the
variation	of	the	features	being	mapped	should	be	used	in	machine	learning.
These	include	all	types	of	imagery	(aerial,	satellite,	hyperspectral)	and	especially
NIR	imagery,	data	layers	that	depict	elevation	and	topography,	and	data	layers
that	represent	all	manner	of	biogeochemical	processes	(climate,	hydrology,
geology,	etc.)	that	play	into	the	distribution	of	the	thematic	features	being
mapped.	The	final	section	of	chapter	9	discusses	many	of	the	image	and
nonimage	datasets	that	serve	as	useful	independent	variables.

The	following	are	some	of	the	independent	variables	that	are	effective	for
fine-scale	land-cover	and	vegetation	mapping:

Spectral	bands	and	indices	(e.g.,	NDVI)	from	high-resolution
orthophotography
Spectral	bands	and	indices	derived	from	multitemporal	Landsat	imagery
Landsat	band-different	images	(spring	minus	winter,	and	summer	minus
winter)
Landsat	tasseled-cap	transformations	(brightness,	greenness,	and	wetness)
Hyperspectral	band	indices
Canopy	volume	profiles	derived	from	the	lidar	point	cloud
Canopy	height	strata	metrics	derived	from	the	lidar	point	cloud



Lidar-derived	slope	and	aspect
Lidar-derived	elevation
Lidar-derived	canopy	height
Lidar-derived	landscape	metrics
Fire	history
Shape	indices	that	characterize	stand	shape	(for	object-oriented	machine
learning	approaches)
MODIS-derived	fog/cloud	frequency
Average	annual	precipitation	and	other	climate	data
Annualized	solar	radiation
Height	above	river	and	horizontal	distance	from	stream	centerlines

CART,	SVMs,	and	Random	Forests	perform	well	with	a	large	number	of
independent	variables	and	effectively	winnow	out	the	variables	that	aren’t
important.	When	selecting	independent	variables,	it	is	important	to	consider	their
scale,	positional	accuracy,	and	thematic	accuracy.	These	considerations	are
discussed	in	the	final	section	of	chapter	9.

Combined	Approaches
With	multiple	algorithms	available	to	classify	imagery	and	ancillary	data	and
with	increasing	computer	power	and	capacity,	it	was	inevitable	that	analysts
would	start	to	combine	algorithms	to	improve	classification	accuracy.	One	of	the
first	innovations	was	developed	by	Chuvieco	and	Congalton	(1988)	to	combine
the	power	and	minimize	the	challenges	of	traditional	per-pixel	supervised	and
unsupervised	classifications	by	developing	a	hybrid	approach.

Figure	10.18	presents	a	comparison	between	the	per-pixel	supervised	and
unsupervised	six-map-class	classification	of	a	study	area	in	Marin	County,
California.	Even	a	quick	comparison	of	these	two	thematic	maps	reveals	some
differences	that	occur	between	classification	approaches.	The	supervised
approach,	based	on	training	sites,	tends	to	produce	a	thematic	map	that	is	blocky,
in	which	the	map	areas	are	more	contiguous	and	larger.	The	unsupervised
approach,	based	on	spectral	clustering,	tends	to	produce	a	thematic	map	that	is
much	more	speckled,	in	which	the	map	areas	are	more	broken	up	and	smaller.
This	is	because	the	supervised	approach	begins	with	thematic	information	(the
map	classes)	and	derives	statistics	(from	the	training	sites)	that	represent	those
map	classes.	On	the	other	hand,	the	unsupervised	approach	begins	with	spectral
uniqueness,	resulting	in	finer	discrimination	of	the	pixels,	which	then	must	be
labeled	into	map	classes	by	the	analyst.



Figure	10.18.	Comparison	of	map	results	from	a	supervised	versus	an	unsupervised	per-pixel
classification	of	southern	Marin	County,	California

The	hybrid	classification	approach	combines	the	spectral	signatures	or
supervised	training	samples	and	unsupervised	clusters	to	create	an	optimal	set	of
spectral	signatures.	In	this	approach,	informationally	unique	training	samples	are
collected,	and	an	unsupervised	clustering	algorithm	is	run	on	the	imagery	to
produce	spectrally	unique	clusters.	The	spectral	statistics	for	both	the	training
samples	and	clusters	are	then	run	through	a	Euclidian	distance-clustering
algorithm	that	creates	a	dendrogram,	which	shows	how	close	the	means	of
clusters	and	training	samples	are	to	one	another	in	Euclidian	multidimensional
space,	as	shown	in	figure	10.19.

Because	the	results	of	a	statistical	clustering	are	to	group	all	the	clusters
together	into	one	final	cluster,	the	analyst	must	determine	the	cut-off	point	for
the	clustering	to	stop.	As	can	be	seen	in	figure	10.19,	a	measure	of	Euclidean
distance	is	used	to	determine	whether	a	cluster	should	be	merged.	Clusters	that
group	first	(toward	the	left	in	the	graph)	are	the	most	similar.	Therefore,	the
power	of	this	method	is	threefold:

1. Unsupervised	 clusters	 are	merged	with	 supervised	 training	 sites,	 thereby
labeling	 the	 unsupervised	 cluster	 to	 the	 appropriate	map	 class	 in	 a	 very
objective	manner	while	 still	 ensuring	 excellent	 spectral	 separability.	 For
example,	 figure	 10.19	 shows	 that	 unsupervised	 cluster	 9	 and	 supervised



training	site	Water	are	spectrally	very	close	to	each	other,	and	that	cluster	9
represents	water.	The	same	can	be	said	of	clusters	1,	6,	and	13,	and	Shrub.

2. Unsupervised	 clusters	 that	 do	 not	 merge	 readily	 with	 any	 supervised
training	sites	 indicate	 that	 there	may	be	more	spectral	 information	 in	 the
imagery	than	is	currently	being	represented	by	the	map	classes.	Cluster	15
is	 such	 an	 example,	 as	 it	 merges	 very	 late	 in	 the	 statistical	 clustering
process.	 This	 cluster	 should	 be	 examined	 closely	 to	 see	 what	 potential
information	 it	 contains.	 As	 you	 already	 know,	 this	 cluster	 represents
clouds	over	water—an	area	where	no	training	sites	were	collected.

3. Supervised	training	sites	of	one	map	class	merge	with	supervised	training
sites	 of	 another	 map	 class.	 This	 situation	 reveals	 that	 these	 two	 map
classes	 are	 spectrally	 similar,	 and	more	work	must	 be	 performed	 by	 the
analyst	 to	 make	 sure	 that	 they	 can	 and	 should	 be	 distinguished.	 Figure
10.20	shows	that	Forest	and	Low-density	urban	are	merged.	In	 this	case,
this	clustering	makes	sense,	because	low-density	urban	areas	tend	to	have
lots	 of	 trees,	 and	 the	 remote	 sensing	 device	 is	 above,	 sensing	 the	 tree
canopies	 that	 are	 hiding	 the	houses.	 It	may	be	 that	 other	 geospatial	 data
layers	 beyond	 just	 spectral	 information	 are	 needed	 to	 separate	 out	 these
two	 map	 classes.	 In	 other	 cases,	 the	 supervised	 training	 sites	 that	 are
merged	 together	 do	 not	 make	 sense.	 In	 this	 case,	 the	 analyst	 has	 just
learned	 that	 there	 is	 spectral	confusion	between	 the	 two	map	classes	and
that	 further	 data	 exploration	 is	 required	 before	 these	 classes	 can	 be
accurately	mapped.



Figure	10.19.	A	dendrogram	showing	the	results	of	a	hybrid	classification	that	clusters	supervised
training	sites	and	unsupervised	clusters	together

The	result	is	spectrally	and	informationally	unique	training	statistics	as	well
as	the	identification	of	informationally	unknown	but	spectrally	unique
unsupervised	clusters.	Hybrid	classification	approaches	are	meant	to	take	the
best	of	traditional	supervised	and	unsupervised	classification	and	put	them
together	to	create	the	most	accurate	thematic	map	possible.	Before	the	advent	of
faster	computer	power	and	advanced	machine	learning	approaches,	combining
the	benefits	of	traditional	supervised	and	unsupervised	classification	was	the	best
way	to	generate	an	accurate	thematic	map.	However,	the	approach	still	has	merit,
especially	because	ArcGIS	uniquely	includes	an	unsupervised	classifier	for
objects,	making	it	possible	to	use	this	approach	in	object-oriented	classification.

Recently,	analysts	have	also	combined	machine	learning	techniques.	As
discussed	above,	Random	Forests,	SVMs,	and	CART	can	be	powerful	tools	for
creating	maps.	There	are	scores	of	other	algorithms	not	discussed	here	that	can
also	produce	very	good	results	for	thematic	mapping.	In	a	given	project,	one
algorithm	may	accurately	map	a	map	class	in	a	given	environmental	setting,	and
another	algorithm	may	map	the	same	area	poorly.	But	for	another	map	class,	the
second	algorithm	may	do	a	much	better	job	than	the	first.

Because	most	machine	learning	algorithms	run	quickly	(most	of	the	work	is
in	collecting	and	performing	quality	control	on	the	training	data),	there	is



potential	benefit	in	running	more	than	one	algorithm	and	combining	the	results
in	such	a	way	that	the	final	classification	draws	the	best	results	from	each
algorithm—for	example,	by	using	the	result	from	the	algorithm	that	has	the
highest	confidence	in	its	prediction.	This	ensemble	approach	of	running	two	or
more	machine	learning	algorithms	and	combining	their	results	provides	the
opportunity	for	further	increasing	map	accuracy	beyond	what	can	be	obtained	by
using	a	single	machine	learning	algorithm.	For	example,	in	the	Sonoma	County
vegetation	mapping	project,	both	SVM	and	Random	Forests	were	run	against	the
training	data	and	assessed	for	accuracy,	allowing	the	analysts	to	choose	the
algorithm	that	best	mapped	each	class.

Map	Validation	and	Editing
Once	the	imagery	and	ancillary	data	have	been	classified,	the	map	must	be
validated	to	discover	and	correct	errors	before	it	is	formally	assessed	for
accuracy.	(See	chapter	12	for	an	in-depth	discussion	of	accuracy	assessment).
Errors	can	be	corrected	through	reclassification	or	editing,	depending	on	the
level	and	type	of	errors	perceived.	Systematic	errors	are	often	corrected	using
rulesets,	but	also	by	the	reclassification	of	confused	classes.	Random	appearing
errors	require	manual	editing.	This	section	discusses	some	of	the	commonly	used
methods	of	map	validation.

If	there	are	enough	training	sites,	a	very	effective	approach	to	validation	is	to
split	the	training	data	into	a	pool	that	is	used	for	developing	the	classification
and	a	pool	that	is	used	for	testing.	The	testing	pool	that	is	withheld	from	the
classification	process	remains	independent	and	can	be	used	to	independently
assess	classification	accuracy	during	the	process	of	classification.	Figure	10.20
illustrates	this	workflow—in	this	example,	80	percent	of	the	training	samples	(by
class)	are	randomly	selected	to	be	used	for	model	training;	the	remaining	20
percent	of	training	samples	are	set	aside	as	testing	sites	to	be	used	to	assess	the
accuracy	of	the	classifiers.	Once	the	classification	is	complete	(using	the	training
samples),	the	classification	rules	produced	by	the	classification	algorithms	are
run	on	the	withheld	testing	sites.	By	reporting	resulting	accuracy	using	error
matrices	(see	chapter	12),	an	independent	assessment	of	classification	for	each
choice	of	parameters	or	classification	technique	is	produced.	The	process	of
running	machine	learning	to	create	a	classification	on	training	data,	testing	the
classification	on	the	withheld	testing	data,	and	then	changing	parameters	and
repeating	the	process	is	the	key	to	refining	a	machine	learning	based	map.	By
iterating	through	this	process	many	times,	one	can	optimize	the	combination	of



classification	parameters	and	algorithms,	choosing	the	combination	that
produces	the	most	accurate	results.	Of	course,	once	the	withheld	sites	have	been
used	to	refine	the	classification	parameters	and	algorithms,	they	are	no	longer
independent	and	cannot	be	used	in	formal	accuracy	assessment.

Figure	10.20.	The	workflow	for	withholding	observations	from	modeling	for	refining	classification
algorithms	and	parameters

Even	with	fine-tuning	the	classification	and	algorithms	using	the	techniques
above,	there	will	still	be	errors	on	the	map	that	need	to	be	manually	edited	before
formal	accuracy	assessment.	Editing	needs	can	be	slight	for	a	simple	map	or
require	months	of	effort	for	a	complex	map	with	small	MMUs.

Discovery	of	errors	requires	field	trips	if	possible	and	a	careful	examination
of	the	entire	map.	Comparison	to	historical	maps	is	often	useful,	taking	into
account	that	the	historical	maps’	scale,	classification	scheme,	and	registration
may	be	substantially	different	from	the	newly	created	map.	Consultation	and
draft	map	review	with	local	experts	are	also	recommended,	not	only	for	their
knowledge	of	the	project	area	but	also	to	build	local	ownership	of	the	map.
Fortunately,	at	the	end	of	the	project	the	analyst	will	know	considerably	more
about	the	project	area	than	when	the	project	was	initiated,	and	the	editing	will	be



well	informed.

Summary	—	Practical
Considerations
This	chapter	reviews	the	various	methods	and	techniques	for	converting	image
and	ancillary	data	into	map	information.	You	have	learned	that	even	the	most
effective	computer	classifiers	will	require	manual	interpretation	for	the
identification	of	training	sites	or	clusters,	and	for	map	validation.	Therefore,	it	is
critical	that	the	analyst	is	well-trained	and	fully	understands	the	causes	of	map
class	variation	across	the	landscape	being	mapped.

Both	manual	and	semiautomated	techniques	require	large	fixed	costs	to
initiate.	In	general,	small	project	areas	of	less	than	10,000	acres	are	mapped
more	cost	effectively	with	manual	techniques.	Semiautomated	techniques
become	cost	effective	with	larger	projects,	where	the	marginal	cost	of	mapping
each	additional	acre	decreases.

The	more	the	map	classes	highly	correlate	with	the	imagery	and	ancillary
data,	the	less	expensive	the	creation	of	the	map.	Projects	with	many	map	classes
are	usually	more	expensive	than	projects	with	fewer	classes.	It	is	always
tempting,	but	rarely	cost	effective,	to	add	additional	map	classes	during	the	map-
making	process.	The	more	classes,	the	more	likely	for	confusion	between
classes,	which	decreases	the	accuracy	of	the	map.

While	per-pixel	classifiers	have	been	the	mainstay	of	semiautomated
classification	for	decades,	they	are	giving	way	to	image	segmentation	and
object-oriented	classifiers	as	highand	very-high-spatial-resolution	imagery
becomes	increasingly	available	and	accessible.



Chapter	11
Change	Analysis

Introduction
Imagery	and	GIS	can	be	used	to	identify	and	map	objects	and	resources	at	one
point	in	time,	as	detailed	in	chapter	10,	or	to	monitor	how	objects	and	resources
change	over	time.	As	technology	advances	and	populations	increase,	our	planet
is	changing	more	rapidly	than	ever	before.	Changes	in	land	cover	and	vegetation
occur	naturally	through	time	and	as	a	result	of	disastrous	events	such	as	fires,
hurricanes,	tornadoes,	earthquakes,	and	tsunamis.	They	also	occur	as	a	result	of
human	activities	such	as	farming,	logging,	fishing,	building,	and	wars.
Resources	are	becoming	scarcer,	evidenced	by	rising	land	values	and	increasing
conflicts	over	land	use	and	ownership.	To	efficiently	mitigate	and	respond	to
disasters	and	effectively	manage	and	sustain	our	scarce	resources,	you	need
timely	and	accurate	information	about	where	resources	occur	and	how	they	are
changing	over	time.	One	of	the	most	valuable	uses	of	imagery	is	for	change
detection,	because	imagery	provides	an	unbiased	view	of	the	landscape	that	is
clearly	understandable	and	interpretable	by	humans.	As	more	and	more	imagery
becomes	available,	your	ability	to	analyze	changes	all	over	the	world	will
continue	to	improve.	This	chapter	focuses	on	the	requirements	for	using	GIS	and
imagery	to	monitor	change.

Change	detection	is	the	analysis	of	information	about	a	location	over	two	or
more	points	in	time.	The	goals	of	change	detection	are	many	and	include

1. detecting	change,
2. measuring	the	extent	and	magnitude	of	change,



3. updating	existing	maps	or	GIS	layers	to	incorporate	change,
4. identifying	the	causes	of	change,	and
5. assessing	the	impacts	of	change	on	environmental,	economic,	and	political

conditions.
Imagery	and	GIS	support	all	these	goals	and	are	the	primary	sources	of

information	for	the	first	three	worldwide.
Like	any	image	classification,	change	detection	requires
1. development	of	 a	 classification	 scheme	 that	 clearly	defines	what	 type	of

change	will	be	detected	and	mapped,
2. capturing	 the	 variation	 between	 the	 dates	 of	 imagery	 or	 maps	 that	 is

related	to	the	change	of	interest,	and
3. controlling	all	nonchange	variation	between	the	various	dates	of	 imagery

or	maps	to	be	compared	in	the	change	detection	analysis.
This	chapter	reviews	GIS	and	remote	sensing	methods	for	monitoring	change

and	presents	the	pros	and	cons	of	each	method.	First,	the	different	ways	change
is	characterized	are	introduced.	How	you	decide	to	characterize	change	affects
the	development	of	your	classification	scheme.	The	second	section	reviews	the
common	methods	used	to	perform	change	analysis.	The	chapter	ends	with	a
discussion	of	the	practical	considerations	in	performing	a	change	analysis	so	that
all	nonchange	variation	is	controlled.

Characterization	of	Change
Mapping	and	monitoring	change	can	be	very	simple	or	very	complex.
Sometimes,	it	is	only	necessary	to	quickly	identify	areas	that	have	changed.	For
example,	you	might	want	to	see	the	areas	in	a	rural–urban	interface	zone	that
were	burned	in	a	recent	fire,	or	the	location	of	houses	destroyed	by	a	recent
tornado.	In	other	cases,	it	is	important	to	know	more	specific	change	information
by	map	category.	For	example,	it	may	be	important	for	the	commodities	market
to	know	that	25	percent	of	the	area	in	Kansas	that	was	corn	last	year	is	planted	in
wheat	this	year	or	for	a	city	zoning	board	to	understand	the	amount	of	forest	land
in	the	unincorporated	area	adjacent	to	the	city	that	has	been	converted	to
development	in	the	last	five	years.

In	all	cases,	it	is	important	that	the	change	mapped	be	carefully	characterized
so	that	all	map	users	clearly	understand	how	change	has	been	defined.	Consider
the	example	of	mapping	the	change	caused	by	a	wildfire.	The	insurance	adjuster



may	be	interested	only	in	damage	to	the	structures	within	the	fire	boundary,
while	the	ecologist	may	be	interested	in	the	intensity	of	the	fire	throughout	the
burned	area,	which	will	affect	the	soil	and	in	turn	the	ability	of	the	area	to
regenerate	vegetation.	Both	are	interested	in	change	caused	by	the	wildfire,	but
the	type	of	change	they	want	to	identify	is	different.	As	with	any	mapping
project,	the	type	of	change	to	be	mapped	needs	to	be	defined	by	classification
rules	that	result	in	totally	exhaustive	and	mutually	exclusive	map	classes	(see
chapter	7	for	a	discussion	of	the	characteristics	of	a	robust	classification
scheme).

There	are	four	different	types	of	change	classification	schemes:	change/no
change,	magnitude	of	change,	to/from	map	classes,	and	causes	of	change.

Change/no	change.	This	simplest	change	analysis	provides	a	map	of	areas
that	have	changed.	Figure	11.1	shows	Esri’s	swipe	tool,	which	allows	the
user	to	quickly	identify	areas	flooded	during	the	2016	floods	in	Louisiana.
Images	captured	before	and	after	the	flood	are	registered	to	one	another
and	displayed	simultaneously	on	top	of	each	other.	By	moving	the	slider
back	and	forth	and	comparing	the	images	you	can	see	the	extent	of	the
flood	at	the	time	of	the	second	image.	A	good	example	of	an	operational
program	that	maps	change	continually	can	be	found	on	the	US	Forest
Service	Active	Fire	Mapping	Program	website
(https://fsapps.nwcg.gov/afm/),	which	uses	low-spatial,	high-temporal
resolution	MODIS	and	Visible	Infrared	Imaging	Radiometer	Suite	imagery
to	detect	and	monitor	wildfires	daily	in	the	United	States	and	Canada.

Figure	11.1.	Using	the	ArcGIS	swipe	tool	to	compare	images	before	and	after	flooding	in

https://fsapps.nwcg.gov/afm/


Louisiana	in	2016	(esriurl.com/IF111)

Magnitude	of	change.	Often	understanding	that	a	change	has	occurred	is
not	enough.	Instead,	you	want	to	map	the	magnitude	of	change.	An
investor	in	crop	futures	might	want	to	understand	the	magnitude	of
difference	in	crops	in	a	region	as	they	sprout,	mature,	and	are	harvested.	A
forester	might	want	to	measure	how	the	percentage	of	tree	cover/hectares
has	been	decreased	by	clear-cuts,	selective	harvests,	or	insect	defoliation.
Mapping	the	magnitude	of	change	requires	more	sophisticated	methods
than	those	used	to	map	change.
Before	and	after	map	classes.	With	additional	analysis,	a	change	map	can
be	created	that	maps	the	areas	of	no	change,	and	the	before	and	after	map
classes	of	areas	that	have	changed.	Analysis	of	change	for	to/from	map
categories	is	significantly	more	work	and	more	difficult	that	producing	just
change/no	change	or	magnitude	of	change	analysis,	because	each	map
class	before	and	after	the	change	must	be	identified.	NOAA’s	Coastal
Change	Analysis	Program	(C-CAP)	is	a	good	example	of	an	operational
program	that	provides	to/from	map	class	change	analysis	from	Landsat
imagery	throughout	the	coastal	areas	of	the	United	States.	The	program
produces	an	online	Land	Cover	Atlas
(https://coast.noaa.gov/digitalcoast/tools/lca),	which	can	be	used	to
identify	where	and	what	type	of	change	has	occurred	(figure	11.2).

Figure	11.2.	NOAA’s	C-CAP	Land	Cover	Atlas	illustrating	in	bright	green	the	areas	near	Myrtle
Beach,	South	Carolina,	that	have	changed	from	the	map	classes	agriculture,	barren,	wetland,

http://esriurl.com/IF111
https://coast.noaa.gov/digitalcoast/tools/lca


forest,	grass,	and	scrub	to	the	developed	map	classes	between	1996	and	2010.	The	charts	at	the
left	show	the	acreages	of	changed	areas	by	map	class.	https://coast.noaa.gov/ccapatlas/	Source:
NOAA

Causes	of	change.	The	most	difficult	change	mapping	involves	the
identification	of	the	causes	of	change.	This	can	be	easy	when	the	change	is
easily	identifiable	and	spectrally	significant	(e.g.,	deforestation	from	clear-
cuts	or	the	impacts	of	many	natural	disasters	such	as	floods,	wildfires,	and
tornadoes)	and	difficult	when	the	change	is	subtle,	or	there	is	very	little
information	about	the	change	(e.g.,	illegal	selective	logging	in	the	tropics,
or	marijuana	cultivation	under	a	closed	canopy	of	trees).

Methods	of	Change	Detection
Three	types	of	methods	can	be	used	for	change	detection:	1)	map-to-map
comparisons,	2)	image-to-image	comparisons,	and	3)	image-to-map
comparisons.

Multitemporal	Map-to-Map	Comparisons
Multitemporal	map-to-map	comparisons	evaluate	changes	in	map	categories
over	time.	Map-to-map	comparisons	are	made	possible	through	GIS	technology,
which	allows	for	geospatial	analysis	of	two	or	more	digital	maps	that	have	been
registered	to	one	another.	Because	satellite	and	digital	airborne	imagery	are
relatively	new,	map-to-map	comparison	is	often	the	only	method	available	when
attempting	to	complete	retrospective	change	detection	for	the	years	before	digital
imagery	became	commonplace.

In	multitemporal	map	analysis,	two	or	more	maps	are	compared	to	one
another	in	a	GIS.	Three	types	of	multitemporal	map	comparisons	are	possible:
comparing	two	historical	maps	to	one	another,	comparing	a	historical	map	to	a
newly	created	map,	and	comparing	newly	created	maps	from	different	dates	of
imagery.	Table	11.1	summarizes	the	pros	and	cons	of	several	types	of
multitemporal	map	analysis.

The	success	of	map-to-map	analysis	centers	on	the	ability	to	control
differences	between	the	maps	that	are	not	caused	by	change.	Many	maps	are
derived	from	remotely	sensed	imagery	and	are,	therefore,	one	step	removed	from
the	change	that	appears	on	the	imagery.	As	a	result,	multitemporal	map

https://coast.noaa.gov/ccapatlas/


comparison	is	easily	confounded	by	differing	classification	schemes	and
registration	issues,	varying	scales,	and	the	methods	used	to	create	the	maps	being
compared.	Knowledge	of	these	factors	and	taking	every	step	to	control	them	is
necessary	for	effective	map-to-map	comparison.	Historical	maps	are	often	of
questionable	registration,	and	are	rarely	accompanied	by	a	robust	classification
scheme	or	any	documentation	concerning	how	the	maps	were	made.	Therefore,
the	probability	that	non-change	issues	will	confound	the	analysis	is	high.	On	the
other	hand,	new	maps	created	from	historical	imagery	require	judgments	about
what	existed	on	the	landscape	before	a	change	occurred.	Because	you	cannot
travel	back	in	time	to	see	the	landscape	as	it	existed,	you	must	make	an	educated
guess.	And	if	that	guess	is	incorrect,	you	will	introduce	map	error	into	the
change	analysis.

Table	11.1.	Comparison	of	methods	for	multitemporal	map	comparisons



Multitemporal	Image	Analysis
Multitemporal	image	analysis	compares	differences	in	spectral	responses	of
multitemporal	imagery	captured	over	the	same	area.	The	underlying	assumption
is	that	areas	where	map	classes	have	remained	constant	will	be	represented	by
little	or	no	spectral	change,	and	that	change	will	cause	spectral	differences.	The
change	between	crops	and	buildings	or	trees	and	no	trees	is	evident	when	you
are	on	the	ground,	looking	at	the	landscape.	These	types	of	changes	are	also
apparent	in	satellite	or	airborne	imagery.	When	an	agricultural	field	changes
from	corn	to	broccoli,	or	is	converted	to	a	housing	development,	or	when	a
wetland	is	drained,	the	resulting	spectral	response	captured	by	the	remote
sensing	instrument	also	changes.	Image	analysts	exploit	the	changes	in	image
spectral	response	to	detect	and	monitor	change.

Multitemporal	image	analysis	for	change	has	become	increasingly	popular
with	the	advent	of	accurately	registered,	inexpensive,	and	accessible
multitemporal	and	multispectral	imagery	worldwide.	Registration	is	key,	because
if	the	images	are	not	accurately	coregistered,	the	multitemporal	image	analysis
will	result	in	identifying	image	misregistration	as	change.	Multispectral	is	also
key,	because	the	amount	of	information	in	a	multispectral	image	makes	it
possible	to	use	classification	algorithms	to	identify	and	label	multiple	classes	of
change	and	no	change.	While	it	is	possible	to	do	change	analysis	using	the	near-
infrared	band	from	different	sensors	(e.g.,	Sentinel	versus	Landsat),	considerable
attention	needs	to	be	paid	to	minimizing	any	spectral	differences	caused	by	the
different	sensor	systems.	The	bands	used	must	also	be	inspected	carefully	for
any	atmospheric	variances	between	the	dates	of	the	imagery.	Slight	atmospheric
differences	can	be	removed	through	a	variety	of	techniques.	However,	clouds
and	cloud	shadows	in	either	date	will	seriously	confuse	the	analysis.

Several	methods	are	commonly	used	in	multitemporal	image	analysis	to
detect	change:	manual	interpretation	of	multitemporal	imagery,	image
differencing,	unsupervised	classification,	supervised	classification,	and
continuous	change	analysis.

Manual	Interpretation	of	Change	from	Imagery
Manually	inspecting	multitemporal	images	is	the	most	prevalent	type	of	change
analysis.	Change	is	identified	through	manual	image	interpretation	and	captured
using	on-screen	digitizing.	Often,	the	change	is	so	dramatic	that	it	can	be
identified	using	only	one	date	of	imagery,	such	as	the	one	in	figure	11.3,	which



shows	an	analysis	of	the	impact	of	the	2004	tidal	wave	on	Banda	Aceh,
Indonesia.

Figure	11.3.	Single	date	change	detection	of	the	impacts	of	the	2004	tidal	wave	on	Banda	Aceh,
Indonesia,	as	seen	by	DigitalGlobe’s	QuickBird	satellite.	Source:	DigitalGlobe

Typically,	images	of	two	different	dates	are	examined	side	by	side	or	using	a
slider,	as	shown	in	figure	11.1.	Figure	11.4	shows	another	tool	for	manual
change	analysis	that	combines	two	bands	of	different	dates	of	Landsat	into	a
change	image	that	shows	urban	development	in	western	Las	Vegas,	Nevada.
Rather	than	the	analyst	swiping	across	the	screen	to	identify	change,	the
multitemporal	change	image	helps	to	focus	the	analyst’s	attention	on	the	areas
that	have	changed.	The	change	image	is	created	by	placing	a	band	from	one	date
(1993)	in	the	red	and	blue	channel	of	the	computer	display,	and	the	band	from
another	date	(1998)	in	the	green	channel.	Areas	in	shades	of	gray	have	similar
band	reflectance	in	both	years.	They	are	in	shades	of	gray	because	all	three
channels	of	the	display	are	reading	the	same	spectral	reflectance	for	the
unchanged	pixels.	In	the	1998	image,	magenta	(blue	+	red	=	magenta)	areas	are
darker	and	green	areas	are	brighter.	It	is	up	to	the	analyst	to	identify	how	those
changes	in	reflectance	relate	to	changes	on	the	ground.	Figure	11.5	shows	how	a
change	image	works	mathematically.

Figure	11.4	uses	the	near-infrared	bands	of	two	Landsat	images.	If	you
understand	the	vegetation	of	Las	Vegas	and	how	vegetation	reflects	near-infrared
energy,	you	can	turn	the	change	image	into	a	map	of	change.	Las	Vegas



vegetation	is	mostly	either	sparse	desert	vegetation	or	irrigated	landscapes.	The
soil	in	desert	areas	is	light	colored	and	bright.	When	land	is	cleared	for	new
developments,	it	changes	from	desert	vegetation	to	bright	soil,	thus	the
reflectance	is	higher	in	the	near	infrared	and	green	on	the	change	image.	After
the	development	is	complete,	the	bright	cleared	soil	becomes	revegetated	with
irrigation	or	paved	with	black	asphalt.	Near-infrared	reflectance	then	decreases,
and	the	areas	show	up	as	magenta	on	the	change	image.	In	some	areas,	the
change	is	from	desert	vegetation	to	irrigated	vegetation.

Figure	11.4.	A	Landsat	near-infrared	change	image	highlighting	urban	development	between
1993	and	1998	in	the	west	Las	Vegas	area	(esriurl.com/IG114)

http://esriurl.com/IG114


Figure	11.5.	Example	pixels	from	a	change	image.	Most	areas	in	the	image	will	be	gray,	indicating
no	change,	because	each	pixel	has	relatively	the	same	value	in	each	band.	Areas	that	show	up
green	were	brighter	in	Time	1	than	in	Time	2.	Areas	that	show	up	in	magenta	were	brighter	in
Time	2	than	in	Time	1.

It	is	also	possible	to	use	an	index	(e.g.,	a	normalized	difference	vegetation
index	[NDVI],	tassel-cap	greenness)	instead	of	a	specific	band	to	create	the
change	image.	Indices	have	the	advantage	of	normalizing	many	of	the
atmospheric	effects.	Also,	the	values	are	easier	to	deal	with,	because	the	range	of
the	input	bands	will	be	from	−1	to	1,	rather	than	a	huge	range	that	would	result
from	band	values	from	images	with	dynamic	ranges	greater	than	eight	bits.

Image	Differencing
Image	differencing	involves	subtracting	the	spectral	values	or	index	values	of	the
image	dates	from	each	other	for	each	pixel	(figure	11.6).	In	areas	of	no	change,
the	resulting	values	of	the	subtraction	should	be	close	to	zero.	Difference	values
in	changed	areas	will	show	either	an	increase	or	a	decrease	in	spectral
reflectance.	The	differences	in	spectral	reflectance	can	then	be	related	to	change
on	the	ground.	Esri’s	Landsat	Explorer	(figure	11.7)	is	an	online	tool	that	allows
users	to	compare	images	and	perform	image	differencing	on	Landsat	8	and
Global	Land	Survey	archive	imagery	anywhere	in	the	world.



Figure	11.6.	The	pixel	values	from	the	Time	1	band	are	subtracted	from	the	pixel	values	of	the
Time	2	band	to	result	in	a	new	image.

Figure	11.7.	Esri’s	Landsat	Explorer	app	showing	land-use	changes	in	Paraguay	between	1973
and	2000	as	forests	are	converted	to	farms	and	a	reservoir	on	the	Lago	del	Rio	Yguazú	is	filled
(esriurl.com/IG117)

Returning	to	our	Las	Vegas	example,	figure	11.8	displays	the	resulting
panchromatic	band	from	differencing	the	near-infrared	bands	of	1993	and	1998
Landsat	imagery.	Once	the	difference	image	is	created,	it	must	be	separated	into
map	classes	correlated	with	no	change	in	spectral	response,	increases	in	spectral
response,	and	decreases	in	spectral	response.	Usually,	this	is	done	by	examining
the	difference	image	and	deciding	how	landscape	change	is	related	to	spectral
change.	Examining	the	histogram	of	the	difference-image	pixels	can	be	helpful
in	determining	which	pixel	values	represent	change.	Figure	11.9	shows	the
histogram	of	the	eight-bit	difference	image	of	figure	11.6,	which	has	been
rescaled	from	its	original	values	(−127	to	+127)	to	have	a	range	from	0	to	255.
Most	of	the	change-image	pixels	fall	in	the	no-change	range	around	the	mean	of
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127,	with	the	change	pixels	composing	the	tails	of	the	histogram.	Creating	a	map
from	the	difference	image	requires	“slicing”	the	histogram	into	classes	of	change
and	no	change.	The	image	analyst	must	determine	which	difference	values
represent	change	and	which	don’t,	as	shown	in	figure	11.10.

Figure	11.8.	Example	of	a	difference	image	over	west	Las	Vegas	(esriurl.com/IG118)

Figure	11.9.	Histogram	of	the	difference-image	pixels

http://esriurl.com/IG118


Figure	11.10.	A	change	map	created	by	slicing	the	difference-image	histogram.	Pixels	to	the	left
of	the	blue	slice	in	figure	11.9	are	labeled	“new	development.”	Pixels	to	the	right	of	the	red	slice	in
figure	11.9	are	labeled	“new	clearing	of	vegetation.”	Pixels	between	the	red	and	blue	slices	are
labeled	“no	change.”	(esriurl.com/IG1110)

Image	differencing	is	easy	to	do.	However,	it	is	somewhat	of	a
“sledgehammer”	approach	to	change	detection,	allowing	for	the	identification	of
several	classes	of	change	(e.g.,	increase	in	vegetation,	decrease	in	vegetation,
etc.),	but	only	one	class	of	nonchange.	Therefore,	in	the	nonchanged	areas,	you
know	only	that	the	areas	have	not	changed,	but	you	do	not	know	what	they	are.
You	also	know	little	about	the	change	areas.	They	can	be	denoted	as	positive
change	and	negative	change,	but	little	information	about	changes	in	specific	map
classes	is	available.

Multitemporal	Unsupervised	and	Supervised	Classification
As	you	learned	in	chapter	10,	unsupervised	classification	algorithms	statistically
group	or	cluster	the	spectral	variation	in	the	imagery.	Unlike	image	differencing,
which	is	restricted	to	one	band	from	each	date,	unsupervised	classification	can
use	more	bands,	which	can	support	mapping	the	entire	landscape	and	may	allow
for	distinguishing	more	subtle	classes	of	change.	In	figures	11.11	and	11.12,
three	bands	from	each	Landsat	scene	have	been	combined	into	a	six-band
multitemporal	image	of	our	west	Las	Vegas	area.	The	six	bands	were	then
classified	using	an	ISODATA	classifier	and	the	clusters	labeled	based	on	the
analyst’s	knowledge	of	the	area.	Unsupervised	classification	of	multitemporal,
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multi-spectral	imagery	is	more	difficult	to	do	than	image	subtraction,	because
the	clusters	must	be	analyzed	and	labeled	across	the	entire	landscape	(not	just
the	changed	areas).	However,	because	of	the	amount	of	information	contained	in
a	multitemporal,	multispectral	image,	subtle	changes	can	often	be	discerned,	and
sometimes	to—from	classes	can	be	identified.

Figure	11.11.	Unsupervised	classification	of	multispectral,	multitemporal	imagery	of	west	Las
Vegas



Figure	11.12.	Unsupervised	clusters	labeled	into	a	map	of	the	entire	landscape

Similarly,	supervised	classification	of	multitemporal	imagery	can	also	be
used	to	produce	a	detailed	map	of	both	changed	and	unchanged	areas.	Any	of	the
supervised	methods	discussed	in	chapter	10	can	also	be	employed	in	change
detection.	However,	training	sites	must	be	carefully	chosen	to	capture	all	the
change	and	nonchange	variation	in	the	multiple	dates	of	imagery.	Table	11.2
presents	a	comparison	between	image	differencing,	supervised	classification,
and	unsupervised	classification	showing	the	pros	and	cons	of	each.

Table	11.2.	Pros	and	cons	of	image	differencing,	unsupervised	classification,	and	supervised
classification	for	change	detection	analysis.

Continuous	Change	Analysis
Given	the	historically	large	expense	of	high-to-moderate-spatial-resolution
imagery,	until	recently,	most	change	detection	analysis	was	limited	to	a	few
selected	dates	in	time.	Some	large-area	(continental)	change/trend	analysis	was
performed	using	low-spatial-resolution	imagery	such	as	AVHRR	or	MODIS
(Tucker	et	al.	1985).	However,	with	the	advent	of	free	Landsat	imagery	in	2008
and	the	launches	of	Sentinel	2	A	and	B,	it	is	now	possible	to	conduct	moderate
resolution	continuous	change	analysis	(Zhu	et	al.,	2016).

Similar	to	multitemporal	pattern	analysis	using	many	dates	of	imagery



(image	cube)	described	in	chapter	9,	continuous	change	analysis	also	uses	large
volumes	of	imagery	to	look	at	trends	and	detect	changes.	Using	many	dates	of
imagery	with	as	many	images	per	year	as	possible	allows	the	analyst	to	look	at
trends	in	the	area	of	study.	For	example,	measures	of	NDVI,	other	indices	such
as	greenness,	or	even	just	simple	ratios	of	NIR/red	can	show	patterns	of
vegetation	growth	over	many	years.	Other	measures/indices	may	show	patterns
of	water	loss	or	gain,	or	shrinkage	or	expansion	of	deserts.	Many	of	these
analyses	use	machine	learning	to	identify	change.

An	issue	when	looking	at	trends	over	long	periods	is	what	to	do	if	the	area
experiences	a	large	change	that	disrupts	the	trend.	For	example,	looking	at	a
coniferous	forest	over	a	30-year	period	beginning	when	the	trees	were	just
planted	until	they	have	grown	into	a	closed	canopy	forest	would	show	a	positive
upward	trend	in	NDVI.	However,	if	some	partial	harvesting	or	thinning	of	the
trees	occurred	during	the	10th	year,	this	abrupt	change	would	cause	a	disruption
in	the	trend.

Therefore,	many	studies	using	an	image	cube	with	many	image	dates	to
conduct	trend	analyses	are	done	in	areas	that	have	not	experienced	abrupt
change.	However,	because	change	is	inevitable,	it	would	be	far	better	to	perform
a	continuous	change	analysis	that	can	incorporate	abrupt	change.	Several
scientists	have	explored	ways	to	incorporate	abrupt	change.	One	method	is	the
Continuous	Change	Detection	and	Classification	method	proposed	by	Zhu	and
Woodcock	(2014).	This	method	uses	an	image	cube	of	all	available	cloud-free
imagery	to	determine	trends,	but	it	can	also	detect	abrupt	changes.	When	a
change	occurs,	the	trend	is	interrupted	and	a	new	trend	is	begun	starting	from	the
abrupt	change	and	using	the	imagery	available	by	moving	forward	from	that
point.	In	this	way,	this	method	incorporates	both	continuous	change	and	abrupt
change	into	the	same	analysis.

As	with	all	classification	algorithms,	many	algorithms	are	available	for
continuous	change	analysis,	and	they	often	do	not	agree.	For	example,	Healy	et
al.	(in	review)	discovered	significant	differences	between	change	detection
algorithms	for	monitoring	forest	disturbance.	They	suggest	using	an	ensemble
approach	that	uses	quantitative	measures	of	success	and	failure	to	weigh	and
merge	algorithm	results.

Multitemporal	Image-to-Map	Comparisons
A	final	method	of	multitemporal	change	analysis	compares	an	older	map	to	new



imagery	and/or	old	imagery.	An	operational	example	of	manual	map-to-image
change	detection	is	the	Humanitarian	Open	Street	Map	Team
(https://hotosm.org/about),	which	relies	on	its	vast	network	of	volunteers
worldwide	to	map	the	impacts	of	disasters	online	by	comparing	Open	Street	Map
layers	to	new	imagery	captured	after	the	disasters.	In	automated	change
detection,	two	commonly	used	methods	for	image-to-map	comparisons	are
masking	and	cross	correlation.

Masking	or	Postclassification	Change	Detection
Masking	or	postclassification	change	detection,	also	often	referred	to	as	the	C-
CAP	(NOAA	Coastal	Change	Analysis	Program	Protocol),	relies	on	the	use	of
multitemporal	imagery	to	create	a	binary	mask	of	change	versus	no	change.	The
Time	1	imagery	is	the	same	date	as	an	existing	map,	and,	in	the	best	case,	is
actually	the	imagery	used	to	create	the	existing	map.	The	Time	2	imagery	is
from	the	date	to	which	the	existing	map	is	to	be	updated.	Multitemporal	image
comparison	(either	image	differencing	or	unsupervised	classification)	is	used	to
identify	the	areas	of	change.	Only	the	changed	areas	are	mapped,	and	the	newly
mapped	areas	are	superimposed	on	the	existing	map,	updating	that	map	in	areas
that	changed.	Tasks	to	complete	masking	change	detection	are	as	follows:

1. A	 map	 of	 changed	 and	 nonchanged	 areas	 is	 created	 using	 one	 of	 the
several	 methods	 mentioned	 in	 the	 earlier	 concepts	 (e.g.,	 image
differencing,	unsupervised).

2. The	map	of	changed	and	unchanged	areas	is	converted	into	a	mask.
3. The	 mask	 of	 change/no	 change	 is	 combined	 with	 the	 existing	 map	 to

separate	the	existing	map	into	areas	of	change	and	no	change.
4. The	areas	of	no	change	are	left	as	is	in	the	existing	map.
5. The	 areas	 of	 change	 are	 classified	 with	 the	 Time	 2	 imagery,	 most

preferably	 using	 the	 same	 techniques	 as	were	 used	 to	 create	 the	Time	 1
map.

6. The	Time	2	map	of	 the	 changed	 areas	 is	 then	overlaid	with	 the	 existing
map	to	create	an	updated	map.

Some	of	the	advantages	of	this	type	of	change	analysis	are	that	the	new	map
created	carries	with	it	the	to–from	classes	for	the	areas	that	have	changed.	Not
only	do	you	know	what	map	class	an	area	is	today,	you	also	know	whether	it	has
changed	during	the	period	of	analysis,	and,	if	it	has	changed,	what	it	was	before
the	change.	Additionally,	because	only	the	changed	areas	are	mapped	in	Time	2,
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the	level	of	effort	is	less	than	that	required	to	create	complete	landscape	maps
from	Time	1	and	Time	2	and	then	comparing	them	to	detect	change	using
multitemporal	map	analysis.	Finally,	because	the	changed	areas	are	identified
spectrally	in	the	multitemporal	imagery,	the	potential	for	map	error	(from	either
the	Time	1	or	Time	2	maps)	being	confused	with	change	is	reduced.

Cross-Correlation	Analysis
Cross	correlation	is	a	standard	method	of	estimating	the	degree	to	which	two
datasets	are	correlated.	Cross	correlation	in	change	detection	allows	using	only
one	date	of	imagery	to	update	an	existing	map	(Civco	et	al.,	2002).	First,	new
imagery	is	registered	to	the	map	to	be	updated,	and	then	the	expected	average
spectral	value	of	each	landscape	class	on	the	map	is	determined	using	cross-
correlation	analysis	between	the	existing	map	classes	and	the	new	imagery.
Using	the	results	of	the	cross-correlation	analysis,	a	Z	statistic	is	derived	for	each
pixel	or	segment	in	the	new	image,	which	indicates	how	close	the	pixel’s
spectral	response	is	to	the	expected	spectral	response	for	its	corresponding
landscape	class	on	the	map.	If	the	change	is	spectrally	significant,	the	spectral
response	of	changed	pixels	will	be	significantly	different	than	the	expected	value
for	that	land-cover/use	class.	A	map	of	probability	of	change	can	then	be	created
for	each	pixel	and	used	to	identify	areas	of	probable	change	in	the	existing	map.
The	new	imagery	can	then	be	used	to	update	the	existing	map	in	only	the	areas
that	have	changed.	Table	11.3	presents	a	comparison	between	masking	and
cross-correlation	change	analysis	showing	the	pros	and	cons	of	each.

Table	11.3.	Pros	and	cons	of	masking	versus	cross	correlation	for	change	detection	analysis



Managing	the	Nonchange
Differences
Multitemporal	analysis	of	GIS	layers	or	digital	airborne	or	satellite	imagery	is
effective	for	change	detection	only	because	a	high	correlation	exists	between
variation	between	multitemporal	maps	and/or	images	and	land	and	land-use
cover	change.	Hopefully,	when	the	ground	changes,	the	GIS	coverages	or
imagery	also	change	as	specified	by	the	classification	scheme.	Change	detection
necessitates	understanding	what	caused	the	changes	on	the	ground	and
understanding	how	the	imagery	or	maps	respond	to	those	changes.	As	with
image	classification,	a	critical	step	in	any	type	of	change	detection	analysis	is	to
remove	or	neutralize	any	nonchange	image	or	map	differences	that	may	be
misinterpreted	as	changes	in	land	cover	or	vegetation	(see	chapter	6	for	an	in-
depth	discussion	of	techniques	for	removing	unwanted	variation	in	the	imagery).
For	example,	misregistration	of	multitemporal	images	or	maps	will	result	in	a
map	of	misregistration	rather	than	a	map	of	change.	Seasonal	differences	in	sun
angle	can	create	shadows	in	one	image	that	are	not	present	in	the	second	and
may	be	mistaken	as	land-cover	differences	(figure	11.13).	Variations	in
atmospheric	conditions	can	produce	radiometric	differences	between	two	images
that	were	acquired	on	separate	dates.	The	requirement	of	change	analysis	is	to
isolate	the	change	of	interest	from	random,	uninteresting,	or	spurious	variation,
and	from	areas	of	no	change.	Accurate	change	detection	requires	that	all	such
variation	be	removed	or	controlled.

Figure	11.13.	A	change	image	of	the	Olympic	Mountains	in	Washington	showing	how	differences
in	sun	angle	can	result	in	changes	in	spectral	response	that	are	unrelated	to	land-cover	change.
The	figures	show	a	comparison	of	imagery	captured	in	2010	(left)	and	2013	(middle).	The	change
image	(right)	shows	a	spectral	difference	(in	green)	on	the	north-facing	aspects	of	the	mountains
that	is	caused	by	sun	angle	differences	resulting	from	the	2010	image	being	captured	in	the	fall,



and	the	2013	image	being	captured	in	the	summer.

Four	major	types	of	nonchange	variation	need	to	be	controlled:
1. Registration	differences
2. Classification-scheme	differences
3. Map	errors
4. Image	variance
Multitemporal	map	change	analysis	is	potentially	affected	by	several	types	of

non-change	variation	including	misregistration,	classification-scheme
differences,	map	error,	and	image	variation.	Multitemporal	image	change
analysis	is	affected	only	by	misregistration	and	image	variation.	As	a	result,
control	of	nonchange	variation	is	often	easier	in	image-to-image	change
analysis.

Registration	Differences
Registration	differences	are	caused	by	misregistration	of	the	multitemporal	maps
or	imagery	to	one	another.	The	result	is	areas	of	misregistration	between	the	two
maps	or	two	images	being	mapped	as	changes.	Misregistration	is	a	significant
problem	when	using	old	maps	in	map-to-map	change	detection.	The	accuracy	of
map	registration	decreases	with	the	age	of	maps	created	before	the	use	of
calibrated	aerial	photography,	precise	survey	equipment,	and	especially	GPS
(i.e.,	the	older	the	map,	the	more	likely	there	are	significant	problems	with
registration).	Registration	differences	can	be	controlled	through	careful
registration	of	the	datasets	to	one	another,	as	discussed	in	chapter	6.

Classification-Scheme	Differences
Classification-scheme	differences	occur	only	in	multitemporal	map	comparisons
when	the	maps	being	compared	were	developed	using	different	classification
schemes.	The	differences	can	be	caused	by	using	different	labeling	rules	for	the
map	classes,	by	using	different	minimum	mapping	units,	or	by	both.	The	impact
of	classification-scheme	differences	is	that	areas	can	be	mapped	as	change,	when
in	reality	the	differences	are	actually	caused	by	differences	in	the	classification
schemes	used	to	create	each	map.	For	example,	some	classification	schemes
define	forests	as	areas	with	more	than	10	percent	crown	cover	in	trees,	while



other	classification	schemes	describe	them	as	areas	with	more	than	30	percent
crown	cover	in	trees.	If	one	attempted	to	conduct	change	detection	using	two
maps	with	these	two	different	classification	schemes,	one	would	end	up	with	a
map	that	showed	differences	in	forest,	but	also	a	map	that	showed	differences	in
the	definition	of	forest.	All	of	the	unchanged	areas	with	crown	closure	between
10	percent	and	29	percent	would	show	up	as	changed	areas,	and	thus	greatly
overestimate	change.	Similarly,	a	map	with	a	minimum	mapping	unit	of	100
acres	cannot	be	directly	compared	to	a	map	with	a	minimum	mapping	unit	of	1
acre.

The	only	way	to	control	classification-scheme	differences	is	to	fully
understand	both	the	labels	and	the	rules	used	to	create	both	maps	being
compared.	If	the	rules	are	well	known,	then	in	many	cases	a	translation	(often
called	a	crosswalk)	can	be	created	between	different	classification	schemes	to
minimize	the	differences.

Map	Error	Differences
Map	error	differences	occur	only	in	multitemporal	map	comparisons	when	one
or	both	of	the	maps	being	compared	contain	mapping	errors.	The	impact	of	map
errors	is	that	areas	can	be	mapped	as	change	that	really	are	different	only
because	one	or	both	maps	contain	map	errors.	For	example,	if	the	earlier	map
correctly	identifies	an	area	as	a	wetland,	and	the	later	map	incorrectly	identifies
the	same	area	as	an	agricultural	field	(when	it	is	really	a	wetland),	then	the
change	analysis	will	indicate	that	a	change	has	occurred	(wetland	to	agriculture),
when	in	fact	no	change	has	occurred.	Because	few	(if	any)	land-cover	or
vegetation	maps	are	100	percent	correct,	the	probability	of	introducing	this	type
of	confusion	into	map-to-map	change	detection	is	relatively	high.	The	only	way
to	control	map	error	differences	is	to	know	the	accuracy	of	all	the	maps	used	in
the	change	analysis.	This	requires	that	an	error	matrix	exists	for	all	the	maps	(see
chapter	12),	so	that	the	analyst	understands	the	class	accuracies	of	each	map,
and,	therefore	can	understand	in	what	classes	map	error	confusion	might	occur.

Image	Variance
Image	variance	occurs	in	multitemporal	change	analyses	when	some	of	the
changes	between	the	images	are	caused	by	factors	other	than	the	land-cover	or
vegetation	change	of	interest.	Differing	atmospheric	conditions,	sun	angles,



seasons,	or	tides	between	the	two	or	more	images	being	compared	are	common
causes	of	image	variance.	The	impact	of	image	variance	in	change	analysis	is
that	areas	can	be	mapped	as	change,	when	in	reality	the	differences	exist	in	the
images	and	are	not	related	to	change.	For	example,	clouds	in	one	image	can
confuse	the	change	analysis,	often	resulting	in	the	clouded	areas	being	mapped
as	change	when	the	only	reason	a	difference	exists	is	because	of	the	clouds.
Differences	in	sun	angle	can	also	appear	to	be	a	change.	Image	variance	is
controlled	through	careful	selection	of	the	multitemporal	imagery	to	be	used	in
change	analysis.	Image	variance	is	especially	important	in	coastal	studies,	where
tide	levels	can	make	a	huge	impact.	Because	satellites	are	restricted	by	their
orbits,	it	is	extremely	difficult	to	acquire	cloud-free	multitemporal	imagery	of	a
coastal	area	of	the	same	season	and	tide	level.	Image	variance	can	be	a	huge
source	of	confusion	in	per-pixel,	high-spatial-resolution	change	detection.

Summary—Practical	Considerations
Change	detection	is	a	type	of	image	classification	that	focuses	less	on	an
inventory	of	map	classes	and	more	on	identifying	processes	occurring	over	time
within	and	between	map	classes.	This	chapter	discusses	the	various	methods	for
using	imagery	to	detect,	measure,	and	identify	landscape	change.	You	have
learned	that	change	detection	requires	special	attention	to	controlling	differences
between	different	dates	of	imagery	that	are	not	related	to	map	class	change.



Section	4
Managing	Imagery

and	GIS	Data



Chapter	12
Accuracy	Assessment

Introduction
Any	new	technology,	in	its	infancy,	experiences	an	explosion	in	use	coupled
with	tremendous	excitement	about	the	potential	of	the	technology.	Little	thought
is	initially	given	to	the	quality	of	the	results	produced,	because	all	efforts	are
devoted	to	experimentation	and	exploration	of	the	new	technology.	As	the
technology	begins	to	mature,	more	thought	and	effort	are	dedicated	to	assessing
the	value	and	accuracy	of	the	results.	This	process	is	a	natural	progression	in	any
new	field,	and	remote	sensing	and	geospatial	analysis	are	no	exceptions.

Remotely	sensed	imagery	(i.e.,	aerial	photography)	came	into	being	as	a
result	of	World	War	I	and	especially	World	War	II.	Nonmilitary	applications	of
aerial	photography	such	as	crop	mapping,	vegetation	health,	forest	type
mapping,	and	many	others	benefited	from	the	large,	trained,	workforce	after	the
wars.	However,	given	that	photo	interpretation	is	such	a	time-honored	skill,	little
effort	was	devoted	to	evaluating	the	thematic	accuracy	of	maps	derived	from
aerial	photographs	for	these	nonmilitary	applications.	All	this	changed	with	the
1972	launch	of	Landsat,	the	first	civilian	digital	image	satellite	for	earth
observing.	During	the	next	10	years	or	so,	much	excitement	and	effort
surrounded	this	digital	imagery’s	plethora	of	uses	including	land-use	and	land-
cover	maps	that	were	impractical	to	produce	at	a	landscape	level	before	Landsat
and	before	the	maturing	of	the	computer	era	that	we	now	enjoy.	However,
beginning	in	the	early	1980s,	some	researchers	began	to	think	about	evaluating
the	accuracy	of	the	maps	produced	from	this	digital	imagery	(e.g.,	Congalton	et



al.,	1983).	Techniques	for	assessing	the	accuracy	of	maps	derived	from	remotely
sensed	imagery	have	steadily	increased	in	complexity	and	usefulness	since	that
time	(Congalton,	1991;	Congalton	and	Green,	2009).

The	same	process	can	be	demonstrated	for	other	geospatial	data.	While	the
concept	of	analyzing	spatial	data	has	been	around	for	a	very	long	time,	the
science	and	application	of	GIS	has	only	been	popular	since	the	mid-1980s.
Again,	early	in	the	development	of	GIS,	little	was	done	to	consider	the	accuracy
of	the	spatial	data.	Instead,	the	excitement	and	enthusiasm	surrounding	this
amazing	technology	ruled	the	day.	Once	the	technology	matured	a	little,	it	was
natural	for	some	to	begin	to	ask	about	the	quality	of	the	data	and	the	accuracy	of
the	decisions	that	could	be	made	using	GIS.	Today,	the	quality	of	much
geospatial	data	is	recorded	in	the	metadata	and	can	readily	be	viewed	by	the	data
user.	In	addition,	qualitative	measures	of	completeness	and	logical	consistency
have	been	used	to	evaluate	geospatial	data	layers.

This	chapter	presents	an	overview	of	the	concepts,	considerations,	and
techniques	behind	quantitatively	assessing	the	accuracy	of	maps	created	from
remotely	sensed	imagery.	The	goal	is	to	provide	an	overview	for	the	GIS	analyst
to	be	aware	of	the	need	for	and	general	methods	to	assess	the	accuracy	of
imagery	and	maps	generated	from	remotely	sensed	data.	The	chapter	begins	with
a	section	on	map	accuracy	followed	by	positional	and	then	thematic	assessment
considerations	and	techniques.	The	chapter	concludes	with	a	discussion	of	the
practical	considerations	necessary	to	conduct	an	assessment.	Much	more	detail
about	everything	presented	in	this	chapter	can	be	found	in	Congalton	and	Green
(2009).

Assessing	Map	Accuracy
Before	beginning	to	think	about	assessing	map	accuracy,	it	is	important	to
understand	the	concepts	of	accuracy	and	precision.	These	terms	are	often
incorrectly	used	interchangeably	and	it	is	important	to	understand	the	difference.
Accuracy	is	how	close	one	is	to	the	correct	value/answer	while	precision	is	a
measure	of	repeatability.	In	most	cases,	high	accuracy	and	high	precision	are
desirable.	Shooting	at	a	target	provides	the	best	analogy	to	easily	understand
these	concepts.	Figure	12.1	demonstrates	both	accuracy	and	precision.	Accuracy
is	shown	on	the	target	as	those	shots	that	hit	near	the	bull’s-eye,	because	that	was
where	the	shooter	was	aiming.	Precision	is	demonstrated	when	shots	are	closely
grouped.	A	shooter	may	be	very	precise,	but	not	very	accurate.	This	condition



might	indicate	that	the	scope	of	their	rifle	is	not	properly	aligned,	forcing	him	or
her	to	miss	the	bull’s-eye.	The	shooter	may	also	be	accurate,	but	not	very
precise.	In	this	case,	the	shots	would	all	be	near	the	bull’s-eye,	but	not	in	a	nice,
tight	grouping.	Finally,	if	the	shooter	is	both	very	accurate	and	very	precise,	the
target	would	show	a	very	close	grouping	of	shots	at	the	bull’s-eye.

Figure	12.1.	Demonstration	of	the	concepts	of	accuracy	and	precision	using	targets	and	a	bull’s-
eye.	The	upper-left	target	demonstrates	accuracy,	but	not	precision.	The	upper-right	target
demonstrates	precision,	but	not	accuracy.	The	lower-left	target	is	both	accurate	and	precise,	while
the	lower-right	target	is	neither.

The	first	step	most	analysts	take	when	assessing	map	accuracy	is	to	visually
evaluate	the	map	and	conclude	either	“This	map	looks	good”	or	“This	map	looks
bad.”	Actually,	four	qualities	or	characteristics	of	a	map	can	be	evaluated.	They
are	1)	logical	consistency,	2)	completeness,	3)	positional	accuracy,	and	4)
thematic	accuracy	(Bolstad,	2012).	Both	logical	consistency	and	completeness
are	qualitative	measures	of	map	accuracy	that	are	more	useful	than	the	simple
idea	that	the	map	“looks	good.”	Of	course,	it	is	important	to	note	that	if	the	map
does	not	look	good	to	the	analyst,	there	is	little	reason	to	continue	with	the
assessment	until	the	map	is	revised	enough	to	at	least	meet	these	minimum
criteria.

Logical	consistency	evaluates	whether	the	map	makes	sense.	Are	objects	in
the	correct	places?	For	example,	are	lamp	posts	or	fire	hydrants	shown	in	the
middle	of	the	road?	Is	still	water	mapped	on	the	slope	of	a	mountain?	Asking



these	questions	to	make	sure	the	map	is	consistent	is	a	valuable	step	in	assessing
its	accuracy.

Completeness	helps	the	map	user	assess	whether	everything	is	on	the	map
that	is	supposed	to	be	represented.	Are	components	missing?	Have	areas	been
left	out	that	obviously	should	have	been	included?	It	is	possible	that	a	map	could
be	very	accurate	for	what	is	included	on	the	map.	However,	if	much	of	what	is
supposed	to	be	included	is	absent,	the	overall	completeness	of	the	map	will	be
low.	Again,	careful	study	of	the	map	to	qualitatively	assess	it	for	completeness	is
a	useful	step	before	beginning	the	more	rigorous	quantitative	measures	of
accuracy.	If	a	map	is	inconsistent	or	incomplete,	it	will	usually	not	look	good.
Using	these	two	qualitative	assessment	methods	are	important	to	make	sure	that
the	map	is	ready	for	more	quantitative	measures	of	accuracy.

In	addition	to	these	methods	for	qualitatively	evaluating	a	map,	there	are	two
very	important	quantitative	accuracy	assessment	techniques:	positional	map
accuracy	assessment	and	thematic	map	accuracy	assessment.	Positional	map
accuracy	assessment	evaluates	the	location	of	objects	on	a	map.	In	other	words,
is	everything	in	the	correct	place?	Assessing	positional	accuracy	to	verify	that
the	data	all	lines	up	and	is	in	the	correct	place	is	key	to	using	any	spatial	data	in
a	GIS.	A	spatial	data	layer	created	using	remotely	sensed	imagery	must	line	up
with	the	other	data	layers	in	the	GIS	to	be	useful.

Thematic	map	accuracy	assessment	evaluates	whether	the	object	has	been
given	the	correct	label	(i.e.,	theme).	Thematic	accuracy	assessment	is	a	critical
component	of	maps	created	from	remotely	sensed	imagery,	because	these	maps
tend	to	be	thematic	(e.g.,	land-cover	types,	crop	maps,	forest	fire	maps).
Positional	and	thematic	accuracy	are	inherently	linked	when	assessing	map
accuracy.	If	an	object	is	labeled	correctly	but	is	in	the	wrong	place,	an	error	will
occur.	If	an	object	is	in	the	right	place	but	is	labeled	incorrectly,	an	error	will
occur.	Therefore,	when	assessing	map	accuracy,	it	is	important	to	consider	both
positional	and	thematic	accuracy.

A	number	of	components	and	considerations	are	common	to	assessing	both
positional	accuracy	and	thematic	accuracy.	These	include	1)	some	initial
considerations	related	to	sources	of	error	and	the	classification	scheme	used,	2)
procedures	for	collecting	the	reference	data	including	sampling	and	other	data
considerations,	and	3)	computing	descriptive	statistics	and	other	analysis
techniques.	Conducting	a	positional	accuracy	assessment	is	somewhat	simpler
than	conducting	a	thematic	accuracy	assessment	and	has	had	more	standards
developed	for	it	over	the	years.	Thematic	accuracy	assessment	is	more	complex
and	requires	balancing	statistical	validity	with	what	can	be	practically	achieved.



This	chapter	next	describes	the	process	of	positional	accuracy	assessment,	and
then	follows	with	thematic	accuracy	assessment.

Positional	Map	Accuracy
Assessment
Assessing	positional	map	accuracy	means	determining	whether	the	location	on
the	map	agrees	with	the	position	on	the	ground.	In	other	words,	is	the	map
location	in	the	correct	place?	Figure	12.2	shows	an	example	of	a	road	map
overlaid	on	an	orthocorrected	image.	The	green	dots	represent	the	location	of
ground	survey	points	of	road	intersections.	As	you	can	see,	some	of	the
intersections	align	well	with	the	survey	locations	and	others	do	not.	It	is
important	to	determine	the	amount	of	positional	error	using	a	positional	map
accuracy	assessment	and	compare	the	results	to	some	standard	to	see	if	the	map
is	acceptable.	In	most	cases,	positional	accuracy	is	measured	using	a	series	of
points.	However,	it	should	be	noted	that	linear	features	could	also	be	used	to
determine	accuracy.



Figure	12.2.	Example	of	positional	accuracy	assessment	of	a	road	network	where	the	points	on
National	Agriculture	Imagery	Program	(NAIP)	imagery	show	the	surveyed	ground	location	and	the
positional	error	in	the	geospatial	road	network	layer

Positional	map	accuracy	assessment	has	always	been	achieved	through	a
series	of	standards	that	set	limits	or	guidelines	for	determining	whether	the
positional	accuracy	of	a	map	was	sufficient	for	that	map	to	be	used.	Initially,
those	standards	were	for	paper	maps.	Only	recently	have	the	standards	expanded
to	address	digital	mapping.	The	very	first	standard	was	called	the	National	Map
Accuracy	Standards	(NMAS)	and	was	developed	by	the	United	States	Bureau	of
the	Budget	in	1947	(United	States	Bureau	of	the	Budget	1947).	NMAS	is	easy	to
apply,	but	is	quite	limited	in	its	usefulness,	as	it	does	not	specify	any	method	for
providing	statistical	bounds	around	the	positional	error.	Instead,	it	simply	uses	a
percentile	calculation	for	accepting	or	rejecting	the	map.

The	next	standard	was	suggested	by	Greenwalt	and	Schultz	(1962	and	1968)
in	a	report	titled	“Principles	of	Error	Theory	and	Cartographic	Applications.”
This	standard	provided	equations—still	important	today—to	estimate	the
maximum	positional	error	interval	for	a	given	statistical	probability	level.



Guidance	was	provided	for	both	a	vertical	or	one-dimensional	map	accuracy
standard	and	a	horizontal	(x	and	y)	or	2D	circular	map	accuracy	standard.

The	American	Society	for	Photogrammetry	and	Remote	Sensing	(ASPRS)
produced	a	standard	in	1989	called	the	ASPRS	Interim	Accuracy	Standards	for
Large	Scale	Maps	(ASPRS	1989).	That	method	computes	a	mean	positional
error	from	a	set	of	samples,	and	then	the	standard	provides	a	stipulated	value	that
this	cannot	exceed	if	the	map	is	to	be	accepted.	The	big	improvement	in	this
standard	was	that	the	errors	are	expressed	in	ground	units	instead	of	map	units,
which	was	an	important	first	step	toward	considering	digital	data	and	not	just
paper	maps.

In	1998,	the	National	Standard	for	Spatial	Data	Accuracy	(NSSDA)	was
developed	by	the	Federal	Geographic	Data	Committee
(http://www.fgdc.gov/standards/projects/FGDC-standards-
projects/accuracy/part3/chapter3).	This	is	still	used	today	as	the	recognized
standard	for	assessing	positional	map	accuracy.	The	NSSDA,	unlike	previous
standards,	does	not	use	a	maximum	allowable	error.	Instead,	it	determines	some
allowable	error	threshold	in	ground	distance	at	the	95	percent	confidence	level.
The	threshold	is	determined	using	the	equations	from	Greenwalt	and	Schultz.
However,	some	confusion	between	computing	standard	deviations	and	standard
errors	has	caused	some	issues	with	the	NSSDA.	This	issue	has	been	minimized
in	recent	times,	because	digital	imagery	has	achieved	significantly	improved
positional	accuracies	well	above	the	standard	set	by	the	NSSDA.

Given	recent	improvements	in	digital	imagery	along	with	the	development	of
lidar,	new	guidelines	have	been	suggested	that	go	beyond	any	of	these	existing
standards.	These	guidelines	address	the	need	to	assess	positional	accuracy	(i.e.,
take	samples)	in	various	vegetation	conditions	(e.g.,	bare	ground,	nonwoody
vegetation,	and	forests).	There	are	guidelines	from	the	Federal	Emergency
Management	Agency	(Federal	Emergency	Management	Agency,	2003)	called
“Guidelines	and	Specifications	for	Flood	Hazard	Mapping	Partners,”	which
specifies	sampling	in	major	vegetation	types.	A	similar	document	was	produced
by	ASPRS	(2004)	called	the	“ASPRS	Guidelines	for	Reporting	Vertical
Accuracy	of	Lidar	Data.”	Finally,	there	is	a	document	called	“Guidelines	for
Digital	Elevation	Data”	from	the	USGS	National	Digital	Elevation	Program
(NDEP	2004).	Each	of	these	documents	deals	with	paper	maps	rather	than	the
digital	maps	prevalent	today.

A	new	standard	was	developed	by	the	ASPRS	Accuracy	Standards
Subcommittee	in	2014,	called	the	“ASPRS	Positional	Accuracy	Standards	for
Digital	Geospatial	Data”	(ASPRS	2014).	This	standard	fully	incorporates	the
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current	state	of	mapping	technology	including	digital	imaging	and	nonimaging
sensors,	airborne	GPS,	inertial	measurement	units,	and	aerial	triangulation.	The
new	standard	uses	the	root	mean	square	error	(RMSE)	as	previous	standards
have	and	allows	cross-referencing	to	previous	standards.	Finally,	the	new
standards	are	independent	of	scale	and	contour	unit,	which	provides	flexibility
for	incorporating	future	technologies	as	they	are	developed.	The	full	standard	is
available	at	https://www.asprs.org/pad-division/asprs-positional-accuracy-
standards-for-digital-geospatial-data.html.

Initial	Considerations
In	thinking	about	conducting	a	positional	accuracy	assessment,	there	are	two
initial	considerations:	sources	of	error	and	classification	scheme.	Actually,	it	is
impossible	to	think	about	one	of	these	without	the	other	because	they	are	closely
linked.	Historically,	positional	accuracy	standards	made	no	mention	of	where
samples	should	be	taken	(i.e.,	reference	data	collected)	to	assess	a	map’s
accuracy.	It	was	usually	assumed	that	bare	ground	would	be	used.	However,
recent	standards,	especially	in	this	century,	have	better	considered	new
technologies	including	digital	imagery,	lidar,	and	GPS.	Therefore,	these	newer
standards	have	insisted	on	sampling	to	assess	positional	accuracy	in	these
different	land-cover	types	to	in	turn	assess	the	magnitude	of	error	associated
with	these	varying	conditions.	While	the	various	guidelines	differ	slightly	on	the
exact	land-cover	types	(classification	scheme)	to	sample	in,	all	are	in	agreement
that	a	minimum	number	of	samples	(usually	20)	should	be	taken	in	each	to
account	for	the	magnitude	of	error	variation	by	land-cover	type.

Collecting	Reference	Data
Factors	to	consider	when	collecting	reference	data	include	independence,	source,
timing,	distribution,	number,	and	consistency.	If	the	data	is	not	properly
collected,	the	positional	accuracy	assessment	is	likely	to	be	invalid.	Data	used	to
evaluate	the	positional	accuracy	of	the	map	must	be	independent	of	the	data	used
to	register	the	map	to	the	ground.	This	is	a	well-known	concept	in	any	type	of
model	building/statistics/map	making.	It	is	critical	to	have	an	independent	set	of
sample	reference	data	with	which	to	test	the	results.	Unfortunately,	there	are	still
far	too	many	situations	in	which	the	data	used	to	register	the	map	to	the	ground
is	then	used	to	report	the	positional	accuracy	of	the	map.	This	data	is	not
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independent	and	represents	an	optimistically	biased	and	invalid	evaluation	of	the
map’s	actual	positional	accuracy.

The	reference	data	also	must	be	more	accurate	than	the	map	being	assessed.
Some	have	suggested	the	data	be	from	one	to	three	times	more	accurate	than	the
anticipated	accuracy	of	the	map	being	tested	(e.g.,	Ager,	2004;	NDEP,	2004;
ASPRS,	2004).	While	different	sources	can	be	used,	such	as	a	map	of	larger
scale	or	a	GPS	or	ground	survey,	NSSDA	recommends	that	the	reference	data	be
the	most	accurate	that	can	possibly	be	collected	(Federal	Geographic	Data
Committee,	1998).

Although	typically	more	important	in	thematic	accuracy	assessment,	when
and	who	performs	the	data	collection	is	also	important.	If	more	than	a	single
individual/team	is	collecting	the	reference	data,	procedures	must	be	put	in	place
to	minimize	human	bias	and	use	the	most	objective	procedures	possible.	It	is
also	important	that	changes	have	not	occurred	on	the	ground	that	may	alter	the
positions	of	sample	locations	(e.g.,	from	earthquakes	or	other	natural	processes).
While	a	change	in	position	is	rare,	it	is	possible	that	land-cover	changes	may
occur	that	would	alter	the	number	of	samples	taken	per	land-cover	type.

Assessing	the	positional	accuracy	of	a	map	requires	sampling.	It	is
impossible	to	evaluate	every	location	on	the	map,	so	a	valid	sample	is	collected
and	used	in	the	assessment.	A	good	sampling	approach	includes	determining	the
sample	size	(i.e.,	the	number	of	samples),	the	sample	unit,	and	the	sampling
scheme	(i.e.,	the	distribution	of	the	samples).	A	poor	sampling	approach	results
in	an	invalid	assessment.	The	NSSDA	(Federal	Geographic	Data	Committee,
1998)	states	that	a	minimum	of	20	samples	must	be	used	in	a	valid	assessment.
Unfortunately,	many	projects	have	not	used	this	number,	and	their	assessments
are	suspect.	Recent	standards	that	have	included	sampling	in	various	land-cover
types	have	required	20	samples	per	land-cover	type.	In	a	large	number	of
statistical	analyses,	30	samples	is	the	minimum	number	recommended.	While
collection	of	the	reference	data	is	time	consuming	and	costly,	the	effort	must	be
made	to	collect	enough	samples	to	conduct	a	valid	assessment.

The	sample	unit	used	in	positional	accuracy	is	a	well-defined	and	easily
identifiable	point.	There	can	be	no	confusion	about	the	exact	location	of	the
sample	on	both	the	map	and	the	source	of	the	reference	data.	Any	issues	with
locating	these	points	will	cause	unacceptable	errors	in	the	estimation	of	the	map
accuracy.	In	urban	areas,	those	points	are	easily	selected	as	corner	points	or	other
clearly	identified	points.	Sometimes,	lines	are	painted	on	the	street	to	mark
points.	In	more	rural	and	vegetated	areas,	fewer	potential	targets	means	that
locating	points	is	more	problematic.	In	that	case,	targets	are	sometimes	placed	on



the	ground	to	augment	any	existing	locations.
Finally,	the	samples	must	be	distributed	appropriately	throughout	the	entire

map.	Samples	cannot	be	selected	only	where	they	are	easy	to	locate.	They	must
include	a	full	range	of	the	variation	in	the	entire	map	including	not	only	the
elevation	changes	but	also	the	land-cover	types.	Figure	12.3	shows	an	approach
suggested	by	ASPRS	(1989)	that	ensures	that	the	samples	will	be	spread	through
the	map.	As	can	be	seen	in	the	figure,	the	map	is	divided	into	four	quadrants,	and
then	a	minimum	of	at	least	20	percent	of	the	samples	are	randomly	placed	in
each	part.	Spatial	autocorrelation,	which	becomes	an	issue	when	the	samples	are
placed	too	close	together,	is	minimized	by	making	sure	that	no	two	points	are
closer	together	that	the	length	of	the	diagonal	(D)	divided	by	10.	This	method	is
a	very	effective	way	of	making	sure	that	the	reference	data	samples	are	well
distributed	throughout	the	map.

Figure	12.3.	An	effective	method	of	ensuring	that	reference	samples	for	positional	accuracy
assessment	are	well	distributed	throughout	the	map.	Source:	ASPRS

Computing	Descriptive	Statistics
Positional	accuracy	is	assessed	by	comparing	a	sample	of	data	(points	assumed
to	be	of	higher	accuracy	than	the	map	being	assessed)	to	the	same	locations	on
the	map	and	computing	a	number	of	statistics.	These	statistics	are	then	compared
to	whichever	standard	the	user	has	selected	to	see	whether	the	map	is	acceptable.



The	most	important	statistic	that	is	computed	for	positional	accuracy	assessment
is	the	RMSE.	The	RMSE	is	defined	as	the	square	root	of	the	mean	of	the	squared
differences	between	the	samples	(i.e.,	locations)	on	the	map	and	those	exact
same	samples	on	the	reference	data.	The	reason	that	this	number	is	squared	is	to
ensure	that	all	values	are	positive,	because	the	actual	differences	between	the
map	and	the	reference	samples	can	be	either	positive	or	negative.	If	the	original
values	were	summed,	the	positive	and	negative	values	would	cross	out,	resulting
in	a	number	not	representative	of	the	true	accuracy.	While	squaring	the	values
works	well,	the	absolute	value	can	also	be	used	as	an	effective	alternative.

Because	position	on	a	map	occurs	horizontally	(i.e.,	in	the	x	and	y	directions)
and	also	vertically	(i.e.,	in	the	z	direction),	two	equations	are	used	depending	on
which	type	of	positional	accuracy	is	to	be	computed.	The	vertical	equation	is
simpler	than	the	horizontal	equation	because	it	measures	in	only	a	single
direction.	The	equation	for	RMSE	for	vertical	accuracy	is:

where

vri	equals	the	reference	elevation	at	the	ith	sample	point,
vmi	equals	the	map	elevation	at	the	ith	sample	point,	and
n	is	the	number	of	samples.
The	equation	for	RMSE	for	horizontal	accuracy	is

where

xri	and	yri	are	the	reference	coordinates,	xmi	and	ymi	are	the	map	coordinates
for	the	ith	sample	point,	and	n	is	the	number	of	samples.

NSSDA	is	the	current	national	standard	(and	is	related	to	the	new	2014
ASPRS	standards)	and	requires	that	positional	accuracy	be	reported	at	the	95-



percent	level,	defined	as	“95%	of	the	locations	in	the	data	set	will	have	an	error
with	respect	to	the	reference	position	that	is	equal	to	or	less	than	the	computed
statistic”	(Federal	Geographic	Data	Committee,	1998).	The	equation	for
computing	NSSDA	for	vertical	accuracy	is	given	in	the	guidelines	as

The	equation	for	computing	the	NSSDA	for	horizontal	accuracy	is,	again,	a
little	more	complicated	because	of	the	two	dimensions	(x	and	y).	It	is	possible
that	the	errors	in	the	x	direction	and	the	y	direction	have	different	distributions
(i.e.,	are	not	circular)	causing	the	errors	around	the	sample	locations	to	be
oblong.	While	this	condition	can	easily	occur,	most	analysts	use	the	simplified
equation,	ignore	the	distribution	of	errors,	and	compute	NSSDA	for	horizontal
accuracy	as

Table	12.1	shows	an	example	of	the	computations	of	NSSDA	and	RMSE	for
a	small	horizontal	dataset	(sample	size	=	23).	A	quick	look	at	this	table
demonstrates	why	the	values	are	squared	to	eliminate	the	positive	and	negative
values	so	that	these	errors	do	not	cross	out	(i.e.,	sum	to	zero	or	close	to	zero).
Computation	of	RMSE	and	NSSDA	can	quickly	be	computed	using	a
spreadsheet	or	may	be	part	of	a	mapping	analysis	software	package.	For	more
details	on	positional	accuracy	assessment,	please	see	Congalton	and	Green
(2009).

Table	12.1.	An	example	of	assessing	the	positional	accuracy	of	a	small	dataset	by	computing
RMSE	and	NSSDA



Thematic	Map	Accuracy
Assessment
Assessing	thematic	map	accuracy	involves	most	of	the	same	issues	and
considerations	as	positional	accuracy	assessment.	That	is,	there	are	some	initial
considerations,	then	collecting	reference	data,	and	finally	computing	descriptive
statistics.	Thematic	map	accuracy	assessment	is	more	complicated	than
positional	accuracy	and	includes	some	basic	analysis	techniques	that	can	be



computed	as	well.
As	previously	discussed,	any	new	technology	experiences	an	explosion	in

use	where	little	time	or	effort	is	devoted	to	issues	of	quality	or	accuracy.	While
the	use	of	remotely	sensed	data	(analog	imagery)	has	been	prevalent	since	the
end	of	World	War	II,	the	use	of	digital	imagery	has	occurred	only	since	the	early
1970s	with	the	launch	of	the	first	Landsat	satellite.	In	the	late	1970s	and	early
1980s,	some	researchers	began	to	explore	assessing	the	accuracy	of	maps
derived	from	remotely	sensed	data.	Initially,	photo	interpretation	of	analog
imagery	was	used	to	compare	with	maps	generated	from	digital	imagery.	The	use
of	photo	interpretation	for	reference	data	may	not	be	appropriate	in	all	situations.
Since	that	time,	great	effort	has	been	put	into	developing	methods	to	effectively
assess	the	accuracy	of	maps	derived	from	remotely	sensed	imagery.	The
convergence	of	remote	sensing	as	a	source	of	geospatial	data	with	the	ever-
growing	field	of	geographic	information	systems	has	further	fostered	the	need
for	assessing	the	accuracy	of	all	data	used	as	part	of	the	spatial	data	decision-
making	process.

Map	accuracy	assessment	has	developed	over	three	periods.	Initially,	no
quantitative	assessment	was	performed,	and	as	long	as	the	map	looked	good	it
was	accepted	as	accurate.	The	second	period	incorporated	some	quantitative
assessment	using	a	non-site-specific	approach.	There,	map	totals	were	compared
to	ground	totals	to	see	how	accurately	the	map	predicted	the	results.	For
example,	the	number	of	acres	of	corn	for	a	county	in	Iowa	could	be	computed
from	a	map	generated	from	remotely	sensed	imagery	and	compared	to	the	corn
acreage	as	reported	by	the	farmers	in	the	county	to	the	Farm	Bureau.	While
quantitative,	this	method	evaluated	only	total	areas	and	indicated	nothing	about	a
specific	location	on	the	map.

The	third	and	current	method	of	thematic	map	accuracy	assessment	uses	a
site-specific	approach	or	error	matrix.	As	the	name	implies,	site-specific
assessment	uses	a	quantitative	method	to	evaluate	the	accuracy	at	specific
sample	locations	on	the	map.	The	technique	used	to	conduct	this	assessment	is
called	an	error	matrix	(see	figure	12.4).	An	error	matrix	is	called	a	contingency
table	in	statistics	and	is	a	square	table	or	cross-classification	set	out	in	rows	and
columns,	in	which	the	rows	represent	the	map	and	the	columns	represent	the
reference	data.	The	size	of	the	matrix	is	determined	by	the	number	of	map
categories	(e.g.,	land-cover	classes,	forest	types)	that	are	being	mapped.	A	map
with	six	land-cover	classes	would	be	evaluated	with	a	6	×	6	error	matrix.	Sample
units	are	selected,	and	the	label	at	that	location	is	recorded	for	both	the	reference
data	and	the	map.	This	information	is	then	used	to	tally	in	the	appropriate	place



in	the	error	matrix.	For	example,	referring	to	figure	12.4,	if	the	reference	sample
unit	is	labeled	as	forest	and	the	map	agrees	that	the	location	is	a	forest,	then	a
tally	would	be	indicated	along	the	major	diagonal	of	the	error	matrix	where	F
(forest)	for	the	reference	data	(down	the	column)	and	F	for	the	map	(across	the
row)	intersect.	However,	if	the	reference	sample	unit	is	labeled	as	Forest,	and	the
map	disagrees	and	indicates	that	the	location	is	Other,	then	the	tally	in	the	error
matrix	would	occur	where	the	F	for	reference	data	(down	the	column)	and	the	O
(other)	for	the	map	(across	the	row)	intersect.

Figure	12.4.	An	example	error	matrix	used	for	assessing	thematic	accuracy

It	is	important	to	note	that	the	term	for	the	data	that	is	compared	to	the	map
to	determine	its	accuracy	is	referred	to	in	this	chapter	as	“reference	data.”
Reference	data	is	often	also	referred	to	as	“ground	truth,”	although	this	term
should	be	avoided	because	it	is	not	always	possible,	even	when	on	the	ground,	to
know	the	answer	with	100	percent	certainty.	Also,	in	many	cases	the	data	used
for	comparison	is	not	collected	on	the	ground,	but	rather	using	some	other	high-
spatial-resolution	imagery.	Referring	to	this	data	as	ground	truth	is	inappropriate
as	there	was	no	visit	to	the	ground.	Therefore,	the	authors	suggest	that	terms
such	as	“reference	data,”	“ground-collected	data,”	“field	data,”	or	the	like	be
used	instead.

Initial	Considerations
As	with	positional	accuracy	assessment,	it	is	important	to	consider	both	the
classification	scheme	and	the	sources	of	potential	error	when	conducting	a
thematic	accuracy	assessment.	However,	unlike	positional	accuracy,	these	two
considerations	are	not	closely	linked.	Each	will	be	discussed	separately	in	this
section.



The	characteristics	and	importance	of	a	good	classification	scheme	have
already	been	discussed	in	chapter	7	of	this	book.	Failure	to	make	sure	that	the
scheme	is	1)	composed	of	labels	and	rules,	2)	mutually	exclusive,	3)	totally
exhaustive,	and	4)	hierarchical	can	cause	serious	issues	with	the	project	and
potentially	invalidate	the	results.	It	is	also	absolutely	critical	that	the	same
classification	scheme	used	for	making	the	map	is	used	for	collecting	the
reference	data.	While	this	statement	may	seem	quite	obvious,	it	is	disturbing
how	often	the	same	scheme	is	not	applied	when	collecting	the	reference	data.	In
that	situation,	further	and	unnecessary	uncertainty	is	introduced	into	the
assessment	process.	Finally,	when	selecting	the	appropriate	classification	scheme
to	be	used	for	the	mapping	and	accuracy	assessment,	the	appropriate	minimum
mapping	unit	(MMU)	must	be	determined.	As	discussed	later	in	“Collecting
Reference	Data,”	the	choice	of	a	valid	MMU	is	important.	Selecting	an	MMU
smaller	that	the	sample	unit	used	in	the	accuracy	assessment	process	prevents
allowing	for	positional	error	on	the	map,	which	makes	it	unclear	when	an	error	is
the	result	of	a	true	thematic	mistake	or	simply	the	result	of	being	in	the	wrong
location.

There	are	many	sources	of	error	in	a	thematic	map.	Errors	can	occur	during
image	acquisition,	during	data	processing,	during	data	analysis,	and	even	in	the
accuracy	assessment	process	itself	(Lunetta	et	al.,	1991).	Some	of	these	sources
of	error	are	easy	to	control,	while	others	can	be	quite	difficult.	Every	effort
should	be	made	to	minimize	the	sources	of	thematic	errors	on	the	map.	For
example,	as	discussed	above,	an	inappropriate	classification	scheme	may	be
selected	for	a	mapping	project.	Also,	a	different	scheme	may	be	used	to	collect
the	reference	data	than	was	used	to	make	the	map.	In	either	case,	errors	will
result.	Another	example	involves	conversion	of	the	map	from	raster	to	vector
format.	While	software	exists	to	easily	convert	between	these	formats,	the	data	is
changed	in	the	process	and	errors	can	result.	Careful	planning	of	not	only	the
mapping	process	but	also	the	thematic	accuracy	assessment	can	help
significantly	reduce	these	errors.

Collecting	Reference	Data
Collecting	reference	data	for	assessing	the	accuracy	of	thematic	maps	is
typically	more	complex	and	time-consuming	than	collecting	reference	data	for
positional	accuracy	assessment.	As	a	result,	even	more	care	must	be	taken	to
ensure	that	sufficient	and	valid	data	is	acquired.	Factors	for	collecting	good
reference	data	include	independence,	proper	sources,	timeliness	of	collection,



objectivity/consistency,	and	sampling	(including	the	sample	unit,	the	sample
size,	the	sampling	strategy,	and	spatial	autocorrelation).	Each	of	these	factors	is
discussed	below.

Just	like	reference	data	collected	to	perform	a	positional	accuracy
assessment,	reference	data	for	conducting	a	thematic	accuracy	assessment	must
be	independent.	A	valid	assessment	cannot	be	done	with	the	same	data	that	was
used	to	create	the	map.	The	reference	data	can	be	collected	at	a	different	time
from	the	training	data	used	to	make	the	map.	It	is	important	to	use	the	same
classification	scheme.	It	is	also	possible	to	collect	the	reference	data	at	the	same
time	as	the	training	data.	In	this	case,	the	data	is	collected,	and	then	randomly
divided	so	that	the	data	selected	as	reference	data	for	the	accuracy	assessment	is
put	aside	and	not	viewed	until	after	the	map	is	complete.	Collecting	the	reference
data	for	the	assessment	simultaneously	with	the	training	data	used	for	mapping	is
often	a	more	effective	approach,	because	going	to	the	field	is	an	expensive	and
time-consuming	activity.	Sometimes,	insufficient	samples	are	taken,	and	it	may
be	necessary	to	augment	the	reference	data	collection	at	a	later	time.

Ideally,	all	reference	data	used	for	thematic	accuracy	assessment	is	collected
in	the	field	(i.e.,	ground-reference	data).	However,	this	is	not	always	possible.
Other	sources	of	reference	data	are	possible	depending	on	the	level	of	detail	on
the	map	(i.e.,	classification	scheme)	and	the	budget	of	the	project.	Sometimes,
existing	reference	data	is	available	for	the	mapping	area.	It	is	important	that	the
same	classification	scheme	is	used	for	labeling	the	reference	data.	If	not,	it	may
be	possible	to	crosswalk	the	reference	data	to	the	map	scheme.	Usually,	the
crosswalk	is	imperfect,	at	best,	and	a	trade-off	between	confidence	in	the
reference	data	versus	costs	of	collecting	new	data	may	be	necessary.	Often,	the
existing	reference	data	used	a	sampling	unit	smaller	that	the	sampling	unit	(or
possibly	the	MMU)	of	the	map.	In	that	situation,	the	existing	reference	data
cannot	be	used	to	assess	the	accuracy	of	the	map.	In	every	case,	the	reference
data	is	assumed	to	be	more	accurate	than	the	map.	Sometimes,	interpretation	of
high-spatial-resolution	imagery	can	be	used	as	reference	data.	Sometimes,	field
visits	are	necessary.	When	in	the	field,	it	may	be	necessary	to	observe	the
physical	conditions	to	determine	the	map	classes.	In	other	situations,	it	may	be
necessary	to	make	exact	measurements	to	ensure	accurate	reference	data.	Each
project	is	different,	and	deciding	on	the	appropriate	source	of	reference	data	is
critical	to	a	valid	thematic	map	accuracy	assessment.	Careful	thought	must	go
into	the	selection,	and	it	is	often	necessary	to	find	a	balance	between	what	is
affordable	and	what	is	accurate.

Another	factor	important	in	collecting	reference	data	is	the	timing	of	the



collection.	For	some	thematic	maps,	the	reference	data	must	be	collected
simultaneously	with	the	image	collection.	For	example,	mapping	agricultural
crops	can	be	very	time	sensitive	and	if	the	reference	data	is	not	collected	at	or
very	near	the	image	collection,	the	crop	might	change.	Other	reference	data	may
be	collected	within	some	reasonable	time	of	the	image	collection,	because	the
land-cover	types	in	that	map	do	not	change	as	rapidly	as	crops.	Finally,	some
reference	data	may	be	generated	long	after	the	imagery	was	collected.	Again,
timing	depends	on	the	classification	scheme	and	other	details	required	on	the
map.	For	example,	if	the	map	classes	are	simple	(e.g.,	general	land-cover	types
such	as	Forest,	Water,	Urban)	then	some	time	can	exist	between	collecting	the
image	and	the	reference	data.	If	changes	occur	between	the	time	periods	(e.g.,
forest	harvesting	or	urban	expansion),	those	changes	will	be	quite	distinct	and
easy	to	identify	to	avoid	collecting	reference	data	from	those	areas.	However,	if
the	changes	are	more	subtle,	for	example,	the	aging	of	a	forest	such	that	the	size
or	species	distribution	changes,	those	changes	would	be	more	difficult	to	detect,
and	therefore	the	reference	data	should	be	collected	as	closely	as	possible	to	the
collection	date	of	the	imagery	used	to	make	the	map.

Consistency	or	objectiveness	is	the	last	nonsampling	factor	that	must	be
considered	when	collecting	reference	data.	Consistency	can	be	ensured	using	a
number	of	techniques.	The	use	of	a	field	form	ensures	that	all	data	is	recorded
the	same	way.	This	field	form	can	be	anything	from	a	simple	sheet	of	paper	to	a
digital	data	logger	or	collector	application	on	an	iPad.	Every	field	form	should
include	basic	information	such	as	date,	collectors’	names,	location,	and
classification	scheme.	Customization	should	be	done	to	record	the	additional
information	specific	to	that	project.	In	addition,	all	anomalies,	issues,	or	special
findings	that	occur	at	a	location	must	be	recorded.	All	field	procedures	for
collecting	the	reference	data	should	be	completely	documented.	Those
procedures	can	then	be	easily	followed	regardless	of	whether	a	single	person	or	a
large	group	of	collectors	is	collecting	the	field	data.	Carefully	following
established	procedures	reduces	collector	bias	and	further	ensures	objectivity.

Finally,	proper	collection	of	reference	data	requires	understanding	some
statistical	concepts	to	ensure	that	the	data	collected	is	valid.	These	concepts
include	1)	the	selection	of	the	proper	sampling	unit,	2)	the	calculation	of	the
proper	sample	size,	3)	the	determination	of	the	proper	sampling	scheme,	and	4)
the	consideration	of	spatial	autocorrelation.	Thematic	map	accuracy	assessment,
like	positional	accuracy	assessment,	involves	sampling	to	test	the	map.	It	is	not
possible	to	evaluate	every	place	on	the	map.	Instead,	a	valid,	representative
sample	must	be	obtained.	Understanding	these	four	statistical	concepts	is	key	to



obtaining	the	proper	sample	needed	to	assess	thematic	accuracy.
In	selecting	the	appropriate	sample	unit	to	assess	thematic	accuracy,	it	is

important	to	consider	the	effect	of	positional	accuracy	on	the	map	as	well.
Selecting	a	sample	unit	that	is	so	small	that	it	is	subject	to	high	positional	error
ensures	that	the	assessment	cannot	determine	whether	the	error	was	an	actual
thematic	error	or	was	due	to	being	in	the	wrong	location.	An	example	helps
illustrate	this	point.	Landsat	imagery	has	a	spatial	resolution	of	30	meters.	It	is
well-recognized	that	Landsat	imagery	can	be	accurately	registered	to	the	ground
(positional	accuracy)	to	about	half	a	pixel	(i.e.,	15	meters).	It	is	also	well	known
that	a	typical	GPS	unit	can	locate	a	place	on	the	ground	to	within	about	5	to	15
meters.	Therefore,	if	a	single	pixel	is	selected	as	the	sampling	unit,	it	will	be
impossible	to	know	whether	the	error	on	the	map	is	thematic	or	positional
(because	of	the	errors	in	image	registration	and	the	GPS	unit).	However,	if	a	3	×
3	grouping	of	pixels	that	are	homogeneous	(i.e.,	the	same	thematic	map	class)	is
selected	as	the	sampling	unit,	and	the	reference	data	is	collected	from	the	center
of	this	grouping,	then	any	positional	error	will	be	eliminated.	Any	error	on	the
map	can	then	be	known	to	be	a	result	of	thematic	error.

Therefore,	as	can	be	seen	from	this	example,	a	single	pixel	should	not	be
selected	as	the	sampling	unit	for	collecting	reference	data.	Some	grouping	of
pixels	or	a	homogeneous	polygon	should	be	chosen	to	minimize	positional	error.
The	issue	is	even	more	important	when	assessing	high-spatial-resolution	image
maps.	If	the	image	has	a	spatial	resolution	of	1	meter,	the	reported	positional
accuracy	of	the	registration	to	the	ground	is	7	meters,	and	the	same	GPS	unit	is
used,	then	it	is	easy	to	see	that	a	3	×	3	grouping	of	pixels	will	not	work	at	all.	A
sampling	unit	closer	to	15	×	15	pixels	or	greater	is	required.	It	is	important	to
note	here	that	the	measurement	is	in	pixels	and	not	meters.	A	15	×	15-pixel
grouping	would	still	only	be	15	×	15	meters	for	1-meter	spatial-resolution
imagery,	while	a	3	×	3	Landsat	pixel	grouping	would	be	90	×	90	meters.
Unfortunately,	there	are	far	too	many	examples	where	a	single	pixel	was	used	to
assess	the	thematic	accuracy	of	a	map.	Those	assessments	do	nothing	to
compensate	for	positional	error	and	result	in	an	invalid	assessment.

Once	the	sampling	unit	has	been	established,	the	next	step	is	to	determine	the
number	of	sample	units	that	must	be	taken	to	generate	the	error	matrix.	Unlike
positional	accuracy,	where	the	standard	requires	that	the	analyst	collect	20	(30
would	be	better)	samples	to	conduct	the	assessment	(for	the	newer	standards,	20
samples	in	each	land-cover	class),	thematic	accuracy	assessment	requires
considerably	more	samples	to	be	taken.	There	are	simple	statistical	equations	for
computing	the	sample	size	to	determine	overall	accuracy.	The	binomial	equation



(i.e.,	right	or	wrong)	applies.	However,	to	generate	a	valid	error	matrix	requires
the	use	of	the	multinomial	sample	size	equation,	because	there	is	one	right
answer	but	n–1	(where	n	is	the	number	of	map	classes)	wrong	answers.	In
addition	to	this	equation,	a	guideline	has	been	published	(Congalton,	1988)	that
proposes	50	sample	units	per	map	class.	A	minimum	number	of	sample	units
must	be	collected	for	each	map	class,	and	then	proportionately	more	samples
taken	in	the	map	classes	that	encompass	the	largest	map	areas.

Balancing	what	can	be	practically	collected	and	statistical	validity	is	a	large
part	of	the	sample-size	component	of	reference	data	collection.	If	insufficient
sample	units	are	collected,	the	assessment	may	become	invalid.	In	some	cases
with	smaller	projects,	it	is	not	possible	to	collect	50	samples	per	class.	In	those
cases,	the	analyst	should	collect	as	close	to	50	as	possible	with	a	minimum	of	30.
The	assessment	must	be	carefully	planned	so	that	the	effort	results	in	useful
information.	If	it	is	not	possible	to	collect	enough	sample	units	for	a	valid
assessment,	then	effort	would	be	much	better	spent	on	improving	the	map	with
more	training	data	and	not	conducting	an	assessment	at	all.	Documentation	of
the	process	and	the	decisions	made	is	imperative	for	the	user	to	understand	the
project.

Like	positional	accuracy	assessment,	the	sampling	scheme	provides	the
mechanism	to	distribute	the	sample	units	across	the	map.	While	many	strategies
are	possible,	the	use	of	a	stratified	random	sampling	approach	is	most	effective.
This	scheme	ensures	that	samples	are	taken	in	each	stratum	(map	class)	and	that
they	are	distributed	across	the	map.	However,	in	many	cases	involving	ground
collection	of	the	reference	data,	these	strata	are	limited	by	access	to	the	potential
sample	locations.	Simple	random	sampling	(not	within	strata)	is	not	effective,
because	small	but	important	map	categories	tend	to	be	undersampled.	Cluster
sampling	is	sometimes	employed	to	maximize	the	collection	of	the	reference
data	over	the	smallest	distances	possible.	However,	care	must	be	taken	because
sample	units	that	are	too	close	together	will	exhibit	spatial	autocorrelation,
rendering	them	invalid.	Finally,	systematic	sampling	in	which	a	sample	is	taken
at	some	regular	interval	is	often	used,	especially	when	the	reference	data	is	being
collected	using	high-spatial-resolution	imagery	instead	of	the	ground.

As	mentioned	above,	the	concept	of	spatial	autocorrelation	is	an	important
factor	when	considering	sampling	schemes.	Spatial	autocorrelation	occurs	when
the	presence,	absence,	or	degree	of	a	certain	characteristic	affects	the	presence,
absence,	or	degree	of	that	same	characteristic	in	neighboring	units	(Cliff	and
Ord,	1973).	In	other	words,	if	sample	units	are	selected	that	are	too	close	to	each
other,	the	information	from	one	sample	is	not	independent	of	that	of	the	nearby



sample.	This	means	that	an	error	at	a	certain	location	will	affect	whether	there	is
an	error	at	nearby	locations.	It	is	important	to	have	sufficient	distance	between
the	sampling	units	so	that	one	sample	has	no	impact	on	the	other.

Computing	Descriptive	Statistics
Once	all	the	initial	considerations	and	factors	for	collecting	valid	reference	data
have	been	accounted	for,	the	result	should	be	a	valid	error	matrix	indicative	of
the	thematic	accuracy	of	the	map.	The	matrix	is	then	the	beginning	point	for	a
series	of	descriptive	statistics	that	can	be	computed	to	provide	more	insight	into
the	thematic	accuracy.	These	statistics	include	the	calculations	of	the	overall
accuracy,	the	producer’s	accuracy,	and	the	user’s	accuracy.	Figure	12.5	shows
the	exact	same	error	matrix	that	was	used	as	an	example	in	figure	12.4,	but	now
shows	the	computation	of	these	three	descriptive	statistics.	This	error	matrix	is
an	effective	way	to	represent	thematic	accuracy,	because	careful	study	of	the
matrix	reveals	information	about	each	map	class	including	both	errors	of
inclusion	(commission	errors)	and	errors	of	exclusion	(omission	errors)	present
on	the	map.	Just	as	a	coin	has	tails	and	heads,	map	errors	also	have	two
components:	commission	error	and	omission	error.	A	commission	error	is
defined	as	including	an	area	into	a	thematic	class	when	it	doesn’t	belong	to	that
class,	while	an	omission	error	is	excluding	that	area	from	the	thematic	class	in
which	it	does	belong.	As	can	be	seen	in	the	error	matrix,	every	error	is	both	an
omission	from	the	correct	thematic	map	class	and	a	commission	to	a	wrong
thematic	map	class.



Figure	12.5.	An	example	error	matrix	showing	the	calculations	for	overall,	producer’s,	and	user’s,
accuracies

Figure	12.5	shows	that	61	sample	units	were	labeled	forest	(F)	on	the	map
and	were	also	labeled	Forest	(F)	on	the	reference	data	(tallied	along	the	major
diagonal	of	the	matrix).	However,	three	times	the	map	said	it	was	Forest	when
the	reference	data	said	it	was	Water	(i.e.,	commission	error	to	Forest	and
omission	error	from	Water).	It	is	important	to	understand	omission	and
commission	errors	before	looking	at	the	other	descriptive	statistics.

The	first	descriptive	statistic	is	called	overall	accuracy	and	is	the	easiest	to
understand.	Overall	accuracy	is	just	the	sum	of	the	major	diagonal	of	the	error
matrix	(i.e.,	the	agreement	between	the	map	and	reference	data—the	correct
sample	units)	divided	by	the	total	number	of	sample	units	taken	in	the
assessment.	In	figure	12.5,	these	values	are	226/285	or	79	percent.	Therefore,	the
overall	accuracy	of	this	map	is	79	percent.	This	value	is	useful,	as	it	represents
the	entire	matrix.	However,	the	next	obvious	question	is,	what	about	the
accuracies	of	each	map	class	alone?	To	know	this	answer,	the	analyst	must
compute	the	producer’s	and	user’s	accuracies	(Story	and	Congalton,	1986).	The
map	producer	would	like	to	know	how	accurate	the	map	is	(the	producer’s
accuracy).	This	value	is	computed	by	dividing	the	value	from	the	major	diagonal
(the	agreement)	for	that	map	class	by	the	total	number	of	sample	units	in	that
map	class	as	indicated	by	the	sum	of	the	reference	data	for	that	map	class.	Figure
12.5	shows	that	the	map	producer	labeled	61	areas	as	Forest,	while	the	reference
data	indicates	a	total	of	73	Forest	areas.	Twelve	areas	were	omitted	from	the



Forest	(five	were	committed	to	Water	and	seven	were	committed	to	Other).
Therefore,	61/73	sample	units	were	correctly	called	Forest	for	a	Forest
producer’s	accuracy	of	84	percent.	However,	this	is	just	the	producer’s	accuracy.
It	is	important	to	consider	the	user’s	accuracy,	as	well.	To	compute	the	user’s
accuracy	for	the	map,	divide	the	61	sample	units	that	were	called	Forest	on	the
map	and	were	actually	forest	by	the	total	number	of	sample	units	called	Forest
on	the	map.	In	other	words,	the	user’s	accuracy	is	61/74	or	82	percent.	It	should
be	noted	that	the	map	labeled	three	samples	Forest	that	were	actually	water,	four
samples	Forest	that	were	actually	developed,	and	six	samples	Forest	that	were
actually	other.	The	map,	therefore,	called	74	samples	Forest,	but	only	61	were
actually	forest.	There	was	commission	error	of	13	samples	into	the	Forest	that
were	not	forest.	In	evaluating	the	accuracy	of	an	individual	map	class,	it	is
important	to	consider	both	the	producer’s	and	the	user’s	accuracies.

Basic	Analysis	Techniques
In	addition	to	these	descriptive	statistics	that	can	easily	be	computed	from	the
error	matrix,	some	additional	analyses	of	the	matrix	can	be	performed.	These
analysis	techniques	allow	the	analyst	to	learn	even	more	about	the	error	matrix.
Two	common	techniques	have	been	applied	called	Margfit	and	Kappa
(Congalton	et	al.,	1983;	Congalton,	1991;	Congalton	and	Green,	2009).	The
Margfit	technique	uses	an	iterative	proportional	fitting	routine	to	normalize	the
error	matrix	so	that	it	can	be	directly	compared	to	another	error	matrix	regardless
of	the	number	of	samples	used	to	create	the	matrix.	Once	the	matrix	has	been
normalized,	a	new	accuracy	measure	akin	to	overall	accuracy	can	be	computed,
called	the	normalized	accuracy,	by	summing	the	major	diagonal	and	dividing	by
the	number	of	map	classes.	The	second	technique	is	Kappa	and	represents	a	third
method	of	representing	the	accuracy	of	the	map	(i.e.,	overall	accuracy,
normalized	accuracy,	and	Kappa).	However,	the	real	power	of	Kappa	is	that	this
statistic	can	be	used	to	test	whether	two	error	matrices	(and	therefore	maps)	have
a	statistically	significant	difference	from	each	other.	This	test	is	useful	in
evaluating	whether	one	classification	algorithm	is	better	than	another,	whether
one	analyst	is	better	than	another,	or	almost	any	other	comparison	imaginable
given	two	or	more	error	matrices.

An	example	helps	to	show	the	usefulness	of	both	of	these	analysis
techniques.	Figure	12.6	shows	the	results	of	normalizing	the	original	error
matrix	that	was	presented	in	figure	12.5.	The	normalized	matrix	shows	the
results	of	the	iterative	proportional	fitting	algorithm,	such	that	all	the	rows	and



columns	now	sum	to	1.	The	value	in	each	cell	of	the	error	matrix	can	then	be
compared	to	that	of	the	same	cell	in	another	matrix	regardless	of	the	sample	size
used	to	create	either	matrix.	Also,	normalized	accuracy	can	be	computed	by
summing	the	major	diagonal	and	dividing	by	four	(the	number	of	map	classes).
Having	a	second	error	matrix	will	further	demonstrate	the	usefulness	of	Margfit.

Figure	12.6.	An	example	showing	the	results	of	normalization	(Margfit)	on	the	error	matrix	in
figure	12.5

Figure	12.7	is	an	error	matrix	of	a	map	generated	from	the	same	imagery	as
figure	12.5,	but	by	a	different	analyst.	Note	that	the	number	of	sample	units	in
the	error	matrix	in	figure	12.7	is	348,	while	the	analyst	that	created	the	error
matrix	in	figure	12.5	used	only	285	sample	units.	As	a	result,	it	is	not	possible	to
directly	compare	these	matrices.	Yes,	the	descriptive	statistics	(overall,
producer’s,	and	user’s	accuracies)	can	be	computed,	but	individual	cell	values
cannot	be	compared,	because	the	sample	size	used	to	create	the	matrices	was
different.	However,	if	the	error	matrix	in	figure	12.7	is	normalized	as	shown	in
figure	12.8,	then	the	cell	values	are	directly	comparable.	For	example,	the	value
in	the	major	diagonal	for	Water	in	figure	12.6	is	0.7628,	or	about	76	percent,
while	the	same	value	in	figure	12.8	is	0.8772	or	about	88	percent.	Therefore,	it	is
clear	that	analyst	#2	did	a	better	job	of	mapping	water	than	did	analyst	#1.	Just
looking	at	the	original	error	matrices	(values	of	51	versus	83)	is	not	meaningful
because	different	sample	sizes	were	used	to	create	the	matrices.



Figure	12.7.	An	example	error	matrix	showing	the	calculations	for	overall,	producer’s	and	user’s
accuracies	for	a	map	made	from	the	same	imagery	as	in	figure	12.5,	but	by	a	different	analyst

Figure	12.8.	An	example	error	matrix	showing	the	results	of	normalization	on	the	error	matrix	in
figure	12.7

As	mentioned	above,	three	accuracy	measures	are	now	possible	once	the
Margfit	and	Kappa	analyses	are	performed.	These	three	accuracies	are	overall
accuracy	computed	from	the	original	error	matrix,	normalized	accuracy
computed	from	the	normalized	error	matrix,	and	Kappa.	Table	12.2	summarizes



these	results	for	the	error	matrices	created	to	assess	the	maps	generated	by	two
separate	analysts.	The	question	of	which	of	these	measures	of	accuracy	is	most
useful	is	open	to	discussion.	Each	measure	incorporates	different	amounts	of
information	about	the	matrix	itself.	Overall	accuracy	is	the	most	common	and
simply	sums	the	major	diagonal	of	the	matrix	and	divides	by	the	total	number	of
samples.	Kappa	incorporates	a	little	more	information	about	the	matrix,	because
it	is	calculated	using	the	sums	of	the	rows	and	columns.	Finally,	normalized
accuracy	incorporates	the	entire	matrix	because	of	the	iterative	proportional
fitting	algorithm	that	directly	uses	each	cell	value	in	the	matrix.	If	the	error
matrix	is	reported,	then	the	analyst	evaluating	the	accuracy	of	the	thematic	map
has	a	choice	of	which	descriptive	statistics	and	measures	of	accuracy	to	consider
in	the	analysis.

Table	12.2.	Three	measures	of	thematic	map	accuracy

Finally,	Kappa	is	not	only	a	measure	of	accuracy,	but	more	importantly	can
be	used	as	a	test	to	see	whether	one	error	matrix	has	a	statistically	significant
difference	from	another.	In	other	words,	in	the	example	in	this	chapter,	did
analyst	#1	produce	a	better	map	as	indicated	by	the	error	matrix	than	did	analyst
#2?	Using	the	Kappa	statistics	computed	for	each	matrix	and	the	corresponding
test	of	significance,	the	resulting	test	value	for	comparing	error	matrix	#1	with
#2	was	computed	to	be	2.08.	At	the	95	percent	confidence	level,	any	resulting
test	value	greater	than	1.96	indicates	a	statistically	significant	result.	Therefore,
matrix	#1	has	a	statistically	significant	difference	from	matrix	#2.	Because	the
accuracy	(overall,	Kappa,	and	normalized)	of	matrix	#2	is	higher,	analyst	#2
produced	a	statistically	more	accurate	map	than	did	analyst	#1.

Summary—Practical	Considerations
Assessing	map	accuracy	is	a	key	component	of	any	project	when	generating	a
map	from	remotely	sensed	imagery.	However,	conducting	the	actual	assessment
does	not	follow	a	simple	step-by-step	process,	but	rather	is	a	series	of



considerations	used	to	balance	statistical	validity	with	practical	application.	It
does	not	make	sense	to	begin	an	assessment	if	insufficient	resources	are
available	to	collect	enough	samples.	However,	while	there	is	no	single	correct
way	to	conduct	an	accuracy	assessment,	there	are	a	great	number	of	wrong	ways
to	do	it.	Therefore,	it	is	critical	that	the	accuracy	assessment	process	be
thoroughly	designed	from	the	beginning	of	the	project	and	well	documented	to
show	how	each	consideration	was	made	and	what	analyses	were	conducted.

Positional	accuracy	and	thematic	accuracy	have	many	considerations	and
techniques	in	common.	Both	require	an	understanding	of	the	errors	involved	and
careful	consideration	of	the	classification	scheme	to	be	used.	Both	require
sampling,	because	it	is	not	practical	to	assess	every	place	on	the	map.	Sampling
for	thematic	accuracy	is	more	complicated,	because	it	requires	more	samples	and
consideration	of	positional	accuracy	when	selecting	the	appropriate	sampling
unit.	Careful	consideration	of	the	practical	issues	related	to	the	assessment	can
lead	to	greater	efficiencies	and	the	more	effective	collection	of	reference	data.

It	is	important	to	remember	that	the	positional	or	thematic	accuracy	of	a	map
must	be	measured	against	what	the	map	is	going	to	be	used	to	accomplish.	A
certain	positional	accuracy	might	be	appropriate	for	one	objective,	but	not	usable
for	a	different	objective.	The	same	is	true	for	thematic	accuracy.	Therefore,	not
only	is	it	important	when	planning	an	accuracy	assessment	to	consider	the
various	factors	to	balance	the	statistical	validity	with	what	can	practically	be
achieved,	but	it	is	also	important	to	consider	the	use	of	the	map.

Many	software	packages	have	some	components	to	aid	the	analyst	in
accuracy	assessment.	The	tools	for	assessing	positional	accuracy	tend	to	be
further	developed	because	of	the	simpler	process	involved.	The	ArcGIS	Data
Reviewer	is	such	a	tool.	These	tools	are	helpful	to	the	analyst	who	understands
their	strengths	and	limitations.	It	is	great	to	be	able	to	compute	the	RMSE
quickly.	However,	simply	using	any	tool	without	a	strong	understanding	of	how
it	works	can	be	quite	harmful.	Plugging	in	incorrect	values	will	still	result	in	a
computed	RMSE,	but	it	is	up	to	the	analyst	to	supply	the	correct	values.	Given
the	many	considerations	and	options	available	to	conduct	an	accuracy
assessment,	it	is	especially	prudent	to	use	these	tools	with	care.

An	even	stronger	warning	is	appropriate	for	the	use	of	many	software	tools
that	attempt	to	help	the	analyst	with	thematic	accuracy	assessment.	It	is	not	that
difficult	to	generate	an	error	matrix.	The	question	is,	is	this	a	valid	error	matrix?
If	it	is	not,	then	even	the	most	sophisticated	analysis	of	the	matrix	will	be
meaningless.	Thematic	accuracy	assessment	is	complex	and	requires	lots	of
good	decisions	that	balance	statistical	validity	with	practicality	to	obtain	a	valid



error	matrix.	No	software	currently	exists	that	can	do	it	all.	It	is	very	helpful	to
have	software	to	compute	RMSE	or	Kappa	or	to	fill	in	an	error	matrix.	However,
it	is	up	to	the	analyst	to	ensure	that	the	assessment	is	done	correctly	and	is	well
documented	to	prove	it.



Chapter	13
Managing	and	Serving	Imagery

Managing	ever-growing,	ever-important	collections	of	imagery	can	be	complex
and	challenging.	There	are	many	ways	to	manage	imagery—this	chapter	focuses
on	Esri’s	solution	for	imagery	management,	the	mosaic	dataset,	and	on	Esri’s
solution	for	providing	access	to	imagery	web	services	hosted	in	ArcGIS
Enterprise.

The	mosaic	dataset	provides	a	robust,	scalable,	and	flexible	solution	for
imagery	management.	Chapter	5	introduced	the	mosaic	dataset	and	basic
information	on	mosaic	dataset	structure,	mosaic	dataset	properties	and	methods,
and	mosaic	dataset	functions.	The	first	part	of	this	chapter	provides	a	more	in-
depth	discussion	of	the	mosaic	dataset.

Imagery	is	of	little	value	unless	it	can	be	easily	shared	to	users	within	an
organization	and	across	the	Internet.	Mosaic	datasets	published	as	web	services
provide	a	mechanism	to	unlock	an	organization’s	investment	in	imagery,	making
it	accessible	to	everyone	across	the	Internet	via	desktops,	browsers,	web	clients,
and	GIS	software.	This	chapter	provides	a	more	detailed	discussion	of	managing
and	serving	imagery	using	mosaic	datasets.	The	second	part	of	the	chapter
discusses	publishing	and	distributing	mosaic	datasets	as	image	services	online.

The	chapter	ends	with	a	discussion	of	creating	and	publishing	geoprocessing
services.	Geoprocessing	services,	which	were	introduced	in	chapter	5,	allow	you
to	expose	the	powerful	analytic	ability	of	ArcGIS	to	the	World	Wide	Web.

Managing	Image	Collections	with



Mosaic	Datasets
This	chapter	provides	an	in-depth	discussion	of	the	mosaic	dataset,	which	was
introduced	in	chapter	5.	The	next	section	elaborates	on	mosaic	dataset	structure
and	the	ArcGIS	tools	for	creating	and	managing	mosaic	datasets.

Mosaic	Dataset	Structure
Introduction
As	discussed	in	chapter	5,	mosaic	datasets	typically	reside	inside	a	file
geodatabase	but	can	reside	in	enterprise	geodatabases.	Mosaic	datasets	have	the
following	components:

A	catalog	of	metadata	about	each	image	(each	of	the	individual	scenes	or
tiles	of	imagery).	Each	entry	in	the	catalog	is	referred	to	as	an	item,	and
each	item	in	the	catalog	contains	a	footprint	of	the	image.	This	footprint
defines	the	extents	of	each	image	and	contains	pointers	to	the	pixel	data.
The	item	also	stores	attributes	of	the	image	and	defines	on-the-fly
processing	steps	to	be	applied	to	each	image	by	the	mosaic	dataset.
A	feature	class	that	defines	the	boundary	of	the	entire	mosaic	dataset.
Mosaic	dataset	properties	that	include	mosaic	methods	that	define	rules	for
the	required	order	of	overlapping	images	as	well	as	a	range	of	other
properties.

Items,	Footprints,	and	the	Mosaic	Dataset	Attribute	Table
Footprints
Each	component	image	of	a	mosaic	dataset	(each	item)	is	represented	by	a
polygon	in	the	mosaic	dataset’s	footprint	vector	feature	class.	Typically,	the
extent	of	each	footprint	represents	the	valid	area	of	pixels	for	the	raster	the
footprint	represents.	The	green	polygon	in	figure	13.1	represents	a	footprint	for	a
mosaic	dataset	component	image	(in	this	case,	the	mosaic	dataset	has	one
Landsat	scene).



Figure	13.1.	A	mosaic	dataset	footprint

When	the	mosaic	dataset	is	displayed,	component	images	can	be	clipped	to
the	extent	of	their	footprints,	or	shown	entirely	(including	NoData).	This	option
is	configured	in	the	mosaic	dataset’s	properties	(change	the	Always	Clip	the
Raster	to	its	Footprint	property).	NoData	values	can	also	be	removed	from
display	in	a	mosaic	dataset	using	the	Define	Mosaic	Dataset	NoData	tool.	This
tool	will	allow	you	to	specify	more	than	one	NoData	value.

Footprints	are	useful	for	excluding	NoData	when	a	mosaic	dataset	is
displayed,	but	they	can	also	be	used	to	remove	other	unwanted	areas	such	as	the
collars	of	scanned	maps,	fiducial	marks	around	scanned	aerial	photographs,	or
even	areas	of	clouds.	Like	polygons	from	any	vector	polygon	layer,	footprint
polygons	can	be	edited	or	reshaped	using	the	editing	tools	in	ArcGIS.

Footprints	can	be	recalculated	at	any	time	using	the	Build	Footprint	tool.
This	tool	can	use	the	radiometry	of	the	imagery	to	build	footprints,	which	is	very
useful	if,	for	example,	the	footprint	includes	“collar”	or	border	areas	of	known
pixel	values,	and	you	want	these	areas	to	be	excluded	from	the	mosaic	dataset.

Mosaic	Dataset	Attribute	Table
The	attribute	table	of	the	items	is	called	the	mosaic	dataset	attribute	table.	The
mosaic	dataset	attribute	table	includes	a	row	for	each	item.	Each	item	has	a
footprint	polygon	(one	polygon	for	each	component	image	in	the	mosaic
dataset).	The	mosaic	dataset	attribute	table	contains	many	fields	that	characterize
the	mosaic	dataset’s	component	images.	The	fields	include	a	Raster	field,	which
contains	a	link	to	the	component	image	and	properties,	functions,	and	metadata



for	the	component	image.	Other	fields	include	low	pixel	size	(LoPS)	and	high
pixel	size	(HiPS),	which	define	the	range	of	display	scales	at	which	a	component
image	is	displayed	in	the	mosaic	dataset.	The	LoPS	and	HiPS	fields	include	the
range	of	pixel	sizes	for	a	component	raster.	For	example,	a	raster	dataset	that
contains	a	pyramid	(or	internal	overview)	will	have	a	range	of	pixel	sizes—the
low	value	represents	the	base	pixel	value,	and	the	high	value	represents	the	top
pyramid	that	is	being	used.	For	raster	datasets	with	no	pyramids,	the	low	and
high	pixel	sizes	may	be	the	same	value.	In	addition	to	the	standard	fields
mentioned	above,	more	fields	can	be	added	to	the	mosaic	dataset	attribute	table.
Added	fields	are	often	used	to	store	metadata	about	the	images,	such	as	the
component	image’s	acquisition	date	or	the	percentage	of	the	component	image
covered	by	clouds.

Mosaic	Dataset	Overviews
Mosaic	datasets	point	to	large	collections	of	imagery,	yet	users	still	expect	to	be
able	to	zoom	out	and	see	the	mosaic	render	quickly	at	a	small	scale.	For
displaying	images	at	small	scales,	mosaic	datasets	make	use	of	image	pyramids
and	service	overviews	(the	concept	of	image	pyramids	is	introduced	in	the	Image
Storage	and	Formats	section	of	chapter	5).	Each	component	image	in	the	mosaic
dataset	can	include	image	pyramids;	the	pyramids	are	shown	when	the	image	is
viewed	at	lower	resolutions.	If	pyramids	exist	for	the	component	images,	the
mosaic	dataset	takes	advantage	of	them	for	quick	display.	When	the	mosaic
dataset	is	viewed	at	very	small	scales,	a	large	number	of	component	image
pyramids	need	to	be	displayed,	slowing	down	the	display	of	the	mosaic	dataset.
For	this	reason,	overviews	are	created	at	these	very	small	scales.	Overviews	act
like	pyramids	for	the	complete	mosaic	dataset,	instead	of	just	for	the	component
rasters.	Figure	13.2	helps	illustrate	the	way	that	image	pyramids	and	mosaic
dataset	overviews	work	together	to	speed	up	dynamic	display	of	the	mosaic
dataset.

The	pyramids	and	overviews,	which	are	much	smaller	files	than	the	full-
resolution	source	imagery,	are	compiled	from	source	images	and	displayed	when
a	user	zooms	to	a	small	scale.	Using	pyramids	and	overviews,	the	mosaic	dataset
provides	faster	access	to	imagery.	Figure	13.2	shows	the	combined	use	of	image
pyramids	and	overviews.



Figure	13.2.	Raster	pyramids	and	mosaic	dataset	overviews

Image	pyramids	are	associated	with	individual	rasters	and	typically	have	the
same	file	name	as	the	image	file,	but	with	a	suffix	of	.ovr	or	.rrd.	File-
geodatabase-based	mosaic	dataset	overviews	are	stored	in	a	folder;	the	folder
name	is	the	name	of	the	mosaic	dataset,	but	with	an	.Overviews	suffix.	Mosaic
datasets	stored	in	an	enterprise	geodatabase	can	have	their	overviews	stored
internally	in	the	geodatabase	or	in	separate	directories	in	the	file	system.

Pyramids	can	be	created	for	the	individual	rasters	that	compose	a	mosaic
dataset	at	any	time.	An	image’s	pyramids	are	typically	created	before	adding	the
image	to	a	mosaic	data-set.	For	example,	pyramids	are	often	created
automatically	when	a	raster	is	created	by	a	geoprocessing	tool.	However,	if
pyramids	don’t	already	exist	for	a	raster,	they	can	be	created	automatically	for
each	raster	when	the	rasters	are	added	to	a	mosaic	dataset.

To	create	overviews	in	a	mosaic	dataset,	the	overviews	are	defined	and	then
generated.	When	they	have	been	defined,	the	application	analyzes	the	mosaic
dataset	and,	using	the	parameters	set	for	the	overviews,	it	defines	how	many	are
needed,	at	what	levels,	and	where.	Then,	pointers	to	the	soon-to-be-created
overviews	are	added	as	items	in	the	mosaic	dataset	attribute	table,	appearing	as
new	rows.	Next,	the	overview	rasters	themselves	are	generated.	Both	defining
overviews	and	generating	them	can	be	done	with	one	tool,	Build	Overviews.
However,	if	you	need	to	modify	any	properties,	such	as	defining	a	new	output
location	or	tile	size	for	the	overviews,	then	you	must	run	Define	Overviews	first
(to	define	the	properties	and	add	the	items	to	the	attribute	table),	and	then	run
Build	Overviews	to	generate	the	overview	files.

The	mosaic	dataset	keeps	track	of	any	changes	made	to	it,	such	as	changes	or
additions	of	component	images	or	alterations	to	footprints.	When	the	analyst
runs	the	Build	Overviews	tool	or	the	Synchronize	Mosaic	Dataset	tool	with	the



appropriate	options,	the	overviews	are	updated	to	reflect	any	changes	to	the
mosaic	dataset’s	component	images	or	footprints.

Mosaic	Methods	—	Dynamic	Mosaicking
As	discussed	in	chapter	5,	dynamic	mosaicking	is	the	ability	to	define	or	refine
the	order	in	which	images	should	be	merged	or	blended	when	displayed	in	a
mosaic	dataset.	The	mosaic	methods	(such	as	Closest	to	Center)	control	the
drawing	order	of	the	mosaic	data-set’s	component	images,	determining	in	areas
of	overlap	which	image	is	displayed	on	top.	Working	side	by	side	with	mosaic
methods,	mosaic	operators	control	how	overlapping	pixels	are	displayed.
Common	mosaic	methods	(discussed	in	chapter	5)	include	First,	Mean,	and
Blend.	First	is	the	most	commonly	used	mosaic	operator	and	results	in	an	output
pixel	value	equal	to	the	topmost	overlapping	image’s	pixel	value.

Mosaic	Dataset	Properties
The	mosaic	dataset	includes	a	set	of	properties	that	apply	to	all	the	rasters
referenced	by	the	mosaic	dataset.	These	properties	control	the	mosaicking.
Figure	13.3	shows	the	mosaic	dataset	properties	window,	which	is	accessible
through	ArcGIS	Desktop.	Mosaic	dataset	properties	fall	broadly	into	three
groups:	image	properties,	catalog	properties,	and	download	properties.	The
properties	are	listed	below	by	group.



Figure	13.3.	Mosaic	dataset	properties	window

Image	Properties
Maximum	Size	of	Requests—This	property	applies	only	when	the	mosaic
dataset	is	published	and	accessed	as	an	image	service.	It	defines	the
maximum	number	of	rows	and	columns	allowed	for	a	single	request.
Allowed	Compression	Methods—Defines	the	method	of	compression
used	to	transmit	the	mosaicked	image	from	the	server	to	the	client.
Default	Resampling	Method—Defines	the	default	sampling	method	of
the	pixels,	which	are	sampled	to	match	the	resolution	of	the	user’s	display
(or	client	request	if	published).
Maximum	Number	of	Rasters	Per	Mosaic—Prevents	the	server	from
mosaicking	an	unreasonably	large	number	of	rasters	if,	for	example,	the
client	zooms	to	an	overview	scale	in	a	nonoptimized	image	service	dataset
that	has	no	overview	tiles	generated.	The	default	is	20.
Allowed	Mosaic	Methods—Defines	the	order	of	the	rasters	that	are
mosaicked	together	to	create	the	image.	You	can	choose	one	or	more
mosaic	methods	and	select	one	as	the	default.	The	end	user	can	choose
from	the	methods	you	select.



Default	Sorting	Order—Controls	the	expected	ordering	of	the	images
defined	by	the	mosaic	methods.
Default	Mosaic	Operator—Lets	you	define	how	to	resolve	the
overlapping	cells,	such	as	choosing	a	blending	operation.
Blend	Width—Defines	the	distance	in	pixels	(at	the	display	scale)	used	by
the	Blend	mosaic	operator.
Always	Clip	the	Raster	to	its	Footprint—You	can	choose	whether	to
limit	the	extent	of	each	raster	to	its	footprint.
Footprints	May	Contain	NoData—Controls	how	the	mosaic	dataset
deals	with	NoData	when	there	are	overlapping	images.	If	Yes,	then	if	the
mosaic	method	uses	rasters	that	contain	NoData,	the	mosaicked	image	will
contain	NoData	values	(and	the	application	will	not	search	for	an
overlapping	raster	that	contains	different	pixel	values).	If	No,	then	the
application	will	try	to	find	values	to	fill	in	the	NoData	using	overlapping
rasters.
Always	Clip	the	Mosaic	Dataset	to	its	Boundary—You	can	choose	to
limit	the	image	extent	to	the	geometry	of	the	boundary	or	to	the	extent	of
the	boundary.
Apply	Color	Correction—If	a	color	correction	has	been	computed	for	the
mosaic	dataset,	you	can	choose	to	apply	it.

Catalog	Properties
Raster	Metadata	Level—Defines	how	much	metadata	will	be	transmitted
from	the	server	to	the	client.
Maximum	Number	of	Records	Returned	Per	Request—Limits	the
requested	number	of	records	that	will	be	returned	by	the	server	when
viewing	the	mosaic	data-set	as	a	published	image	service.
Allowed	Fields—Defines	which	fields	from	the	attribute	table	will	be
visible	to	the	client	when	the	mosaic	dataset	is	served.
Time—If	the	mosaic	dataset	contains	attribute	fields	that	define	time,	you
can	create	a	mosaic	dataset	that	will	automatically	be	time	aware,	meaning
the	time	properties	in	the	layer	will	be	defined	by	default.
Geographic	Coordinate	System	Transformation—If	the	spatial
reference	system	of	the	mosaic	dataset	is	based	on	a	different	spheroid
than	the	spatial	reference	system	of	the	source	raster	data,	you	may	need	to
specify	a	specific	geographic	transformation.



Download	Properties
Maximum	Number	of	Items	Downloadable	per	Request—Limits	the
number	of	rasters	that	a	client	can	download	from	an	image	service.

Creating	and	Maintaining	Mosaic	Datasets
Creating	Mosaic	Datasets
Mosaic	datasets	can	be	authored	directly	in	ArcGIS	Desktop	and	ArcGIS	Pro.
They	can	be	used	in	all	ArcGIS	Desktop	applications,	with	processing	being
applied	as	the	data	is	accessed.	For	providing	optimized	access	to	a	larger
number	of	users,	mosaic	datasets	can	be	served	as	image	services	through
ArcGIS	Image	Server.

Adding	Rasters
Rasters	are	added	to	a	mosaic	dataset	using	the	Add	Rasters	to	Mosaic	Dataset
tool.	Many	rasters	have	minimal	metadata,	such	as	georeferencing,	the	number
of	bands,	and	bit	depth.	These	rasters	can	simply	be	added	to	a	mosaic	dataset	by
referring	to	the	directories	where	they	reside.	Mosaic	datasets	also	support	the
ingestion	of	a	wide	range	of	raster	products	from	imagery	providers	that	contain
sensor-specific	metadata.	These	rasters	are	added	to	mosaic	datasets	using
“raster	types”	that	crawl	through	directories	to	extract	all	the	relevant	metadata
from	vendor	products,	as	well	as	setting	up	the	appropriate	functions	such	as
orthorectification	and	pan	sharpening	used	to	transform	the	raw	imagery	into
higher-value	products.	The	use	of	raster	types	simplifies	the	ingesting	process.
Many	organizations	also	have	existing	databases	or	tables	that	provide	metadata
and	other	parameters	about	the	rasters	to	be	added	to	a	mosaic	dataset.	Such
tables	can	also	be	quickly	added	to	mosaic	datasets	using	the	“table	raster	type.”
The	metadata	ingested	is	used	to	aid	in	defining	the	correct	processing	as	well	as
to	enable	queries	and	filters.

Raster	Functions
Esri	raster	functions	allow	for	the	on-the-fly	rendering	of	derivative	image
products	from	a	mosaic	dataset,	transforming	the	pixels	from	data	values	stored
on	disk	to	values	required	by	the	end	user	or	application.	For	example,	when	the



analyst	applies	a	slope	raster	function	to	a	mosaic	dataset	of	digital	elevation
model	(DEM)	tiles,	the	mosaic	dataset	appears	as	a	slope	image	instead	of	a
DEM.	The	concept	of	raster	functions	was	introduced	in	chapter	5.

Raster	functions	are	applied	in	the	“function	chain,”	which	exists	for	each
individual	raster	in	a	mosaic	dataset,	as	well	as	for	the	mosaic	dataset	as	a	whole.
As	a	result,	raster	functions	can	be	applied	to	the	individual	rasters	that	compose
a	mosaic	dataset,	or	to	the	mosaic	dataset	as	a	whole.	Figure	13.4	shows	a
function	chain	for	a	Landsat	7	scene.	In	this	example,	the	functions	are	applied
to	an	individual	mosaic	dataset	component	raster,	not	to	the	entire	mosaic
dataset.

Figure	13.4.	A	function	chain

On-the-Fly	Processing	with	the	Mosaic	Dataset
Function	Chain
As	mentioned	above,	function	chains	apply	on-the-fly	processing	to	component
rasters	of	a	mosaic	dataset	or	to	the	mosaic	dataset	as	a	whole.	A	wide	range	of
functions	is	available.	The	geometric	functions	transform	the	location	of	the
pixels	and	are	used	to	perform	processing	such	as	reprojection	of	imagery
between	different	coordinate	systems	or	orthorectification	of	satellite	or	aerial
imagery.	The	radiometric	functions	transform	the	pixel	values	and	are	used	for
processes	such	as	image	enhancement,	the	pan	sharpening	of	satellite	imagery,	or



the	computation	of	vegetation	indices	or	band	arithmetic.	These	functions	are
able	to	work	with	the	full	bit	depth	of	the	imagery,	enabling	the	full	dynamic
range	of	the	imagery	to	be	exploited.	This	is	especially	important	when	working
with	newer	satellite	and	aerial	imagery	or	with	elevation	and	scientific	datasets.
ArcGIS	provides	a	large	library	of	functions	that	can	be	chained	together.	The
functions	can	also	be	extended	using	the	Python	Adapter	function,	which	enables
new	function	chains	to	be	written	using	Python,	allowing	the	end	user	to	exploit
a	wide	range	of	NumPy-	and	SciPy-based	image	processing	and	analysis
functions.

The	function	chain	can	be	edited	manually	in	ArcGIS	Desktop	or	modified
with	the	Edit	Raster	Function	tool,	which	can	be	used	to	add	a	new	function,
such	as	image	enhancement,	to	a	selection	of	images	in	a	mosaic	dataset.	The
Edit	Raster	Function	tool	can	also	be	used	to	change	the	parameters	of	existing
functions	in	the	function	chain.	For	example,	the	accurate	orthorectification	of
imagery	requires	appropriate	sensor	model	parameters	and	elevation	models.
Those	parameters	can	be	set	during	the	creation	of	the	mosaic	dataset	and	later
refined	using	the	Edit	Raster	Function	tool.

Advanced	Tools
Processing	Templates
Processing	templates	are	powerful	because	they	allow	a	single	mosaic	dataset	to
house	multiple	function	chains.	The	end	user	or	client	application	chooses	the
function	chain	that	they	want	the	mosaic	dataset	to	display.	For	example,	a
mosaic	dataset	of	DEM	rasters	could	include	three	processing	templates:	one	for
slope,	one	for	aspect,	and	one	for	elevation.	The	end	user	of	the	mosaic	dataset
simply	selects	the	processing	template	they	want	to	view—slope,	aspect,	or
elevation—and	the	mosaic	dataset	appears	in	that	format.

Processing	templates	are	defined	and	configured	in	the	mosaic	dataset
properties	window	in	the	Processing	Templates.

Mosaic	Dataset	Block	Adjustment
Block	adjustment	is	a	set	of	tools	designed	to	improve	the	georeferencing
accuracy	of	overlapping	but	misaligned	imagery.	Block	adjustment	is	a
technique	used	to	reduce	the	shifts	between	images.	It	is	used	in	mosaicking
collections	of	satellite	images	or	aerial	photographs	for	an	area	or	a	project,



which	is	called	a	block.	Block	adjustment	is	the	process	of	computing
adjustment	(or	transformation)	based	on	the	internal	relationship	between
overlapping	images	(referred	to	as	tie	points)	and	ground	control	points,	which
define	the	spatial	relationships	between	points	in	the	image	and	points	on	the
ground.	The	block	adjustment	process	determines	refined	transformation
parameters	that	reduce	the	shifts	between	images	and	applies	the	adjustment	to
the	images	within	a	block.	Block	adjustment	is	one	of	the	most	important	steps
in	creating	a	seamless	orthomosaic	from	a	collection	of	images.

In	ArcGIS,	the	block	adjustment	solution	contains	a	set	of	geoprocessing
tools	to	apply	a	block	adjustment.	Also,	there	is	a	Block	Adjustment	window	for
the	quality	control	of	tie	points	and	control	points,	which	includes	tools	to	edit
points	that	have	high	errors.	The	ArcGIS	10.4	block	adjustment	tools	provide	a
solution	based	on	applying	polynomial	transforms	to	each	of	the	images.	The
tools	in	ArcGIS	10.5	and	ArcGIS	Pro	1.4	provide	rigorous	adjustment	of	frame
camera	and	rational	polynomial	coefficients	that	take	into	consideration	the
digital	terrain	model	to	refine	the	orientation	of	the	sensors.

Mosaic	Dataset	Color	Correction
Sometimes,	a	mosaic	dataset’s	images	are	collected	at	different	times	or	on
different	dates,	so	tonal	differences	between	the	component	images	result	in
visible	faults	in	the	mosaicked	results.	Color	balancing	removes	those	tonal
differences,	creating	a	seamless	mosaic	or	reducing	the	severity	of	the	seams.
The	mosaic	dataset	color	correction	tools	offer	robust	functionality	for	color
balancing.

The	color	correction	tools	apply	adaptive	enhancements	to	each	image	in	the
mosaic	dataset,	resulting	in	a	more	seamless-looking	image	mosaic.	There	are
three	options	for	color	balancing	in	the	color	correction	tools:	Dodging,
Histogram,	and	Standard	Deviation.	Dodging	typically	provides	the	best	results.
There	is	also	an	Exclude	Area	option	in	the	color	correction	tools,	which	allows
areas	to	be	excluded	from	the	color	correction	algorithm.	These	exclude	areas
ensure	that	outlier	areas,	such	as	houses	with	bright	red	roofs	or	strong	blue
water	bodies,	do	not	influence	the	correction	process.

Mosaic	Dataset	Seamline	Generation
Seamlines	can	be	used	instead	of	footprints	when	mosaicking	the	raster	data	in	a
mosaic	dataset.	They	define	the	line	along	which	the	rasters	in	the	mosaic	dataset



will	be	mosaicked	when	using	the	seamline	mosaic	method.
When	using	the	seamline	mosaic	method,	the	mosaicked	image	will	not

change	as	you	move	around	the	image,	as	can	happen	when	using	mosaic
methods	like	Closest	to	Center.	Also,	if	you	create	seamlines,	you	can	ensure	the
mosaicked	image	is	the	best	possible	mosaic	by	editing	the	seamlines	so	that
features,	such	as	buildings,	are	not	along	the	line	and	that	the	seam	between
images	is	not	obvious.	The	seamline	generation	tools	can	be	used	to
automatically	determine	the	best	locations	for	seamlines	that	define	where	to
blend	images	together.

The	Build	Seamlines	tool	creates	seamlines	for	a	mosaic	dataset.	Seamlines
are	like	footprints,	in	that	one	polygon	represents	each	image.	The	shape	of	the
polygon	represents	the	part	of	the	image	that	will	be	used	to	generate	the
mosaicked	image	when	viewing	the	mosaic	dataset.	Once	the	seamlines	are
built,	a	seamline	layer	will	be	present	in	the	table	of	contents	each	time	you	add
the	mosaic	dataset	to	ArcMap.

There	are	many	options	for	how	the	Build	Seamlines	tool	creates	seamlines,
including	an	option	for	automatically	creating	seamline	polygons	from	the
radiometry	and	spectral	patterns	of	the	areas	of	overlap.

In	areas	of	image	overlap	along	a	seamline,	blending	can	be	applied,	which
results	in	a	smooth	transition	between	one	image	and	the	other.	By	default,	the
Blend	Width	is	defined	in	the	mosaic	dataset’s	default	properties.

Use	Cases	for	Mosaic	Datasets
Scaling	to	Massive	Collections
Mosaic	datasets	are	scalable.	They	can	be	used	to	work	with	a	few	images	or
many	millions	of	images.	The	images	can	be	added,	edited,	or	removed	at	any
time,	enabling	the	use	of	mosaic	datasets	in	dynamic	environments	where	new
imagery	is	frequently	received.

Mosaic	datasets	work	with	a	wide	range	of	imagery	and	can	be	scaled	to
house	massive	image	collections.	An	example	is	a	US	state	housing	its	collection
of	statewide	orthophotography	using	mosaic	datasets.	In	this	case,	there	is
orthophotography	from	multiple	years	of	collection	in	various	spatial	resolutions
and	projections.	Some	of	the	older	imagery	is	panchromatic;	the	new
orthophotos	are	either	true	color	(red,	green,	and	blue)	or	4-band	(red,	green,
blue,	and	near	infrared).	A	single	mosaic	dataset	or	multiple	mosaic	datasets	(one
per	statewide	date	of	collection)	could	be	used	to	manage	the	entire	statewide	set



of	imagery,	providing	seamless	access	to	the	imagery	for	desktop	and	web-based
users	without	duplicating	or	reprocessing	any	of	the	raw	data.

Integrating	Satellite	Data	with	Different	Levels	of
Processing
The	source	and	resolution	of	the	imagery	in	a	mosaic	dataset	may	be	varied.	For
example,	a	single	mosaic	dataset	can	include	collections	of	different	high-
resolution	satellite	imagery,	such	as	a	mix	of	DigitalGlobe’s	WorldView-3	and
Airbus	Pleiades	imagery.	In	this	example,	the	mosaic	dataset’s	component	rasters
are	a	mix	of	level	2	products	that	have	already	been	orthorectified	and	level	1
products	that	require	orthorectification	and	pan	sharpening.	In	this	case,	the	level
2	products	would	be	added	directly	to	the	mosaic	dataset	and	the	level	1	products
would	be	added	and	include	on-the-fly	orthorectification	and	pan-sharpening
functions.	Atmospheric	correction,	color	balancing,	or	seamline-based	blending
can	be	applied	between	the	different	images.

Imagery	from	Unmanned	Aerial	Systems	and	Aircraft
Massive	collections	of	aerial	and	unmanned	aerial	system	imagery	can	be	added
to	a	mosaic	dataset.	Imagery	from	such	aerial	cameras	could	be	preorthorectified
unprocessed	imagery	directly	from	the	frame	cameras.	As	with	satellite	imagery,
the	parameters	for	orthorectification	and	pan	sharpening	can	be	defined	in	the
function	chains	of	the	component	rasters	and	applied	as	required.	The	ability	to
orthorectify	and	pan	sharpen	the	imagery	on	the	fly	enables	significant	savings
in	storage	and	processing	and	still	provides	access	to	the	original	nonrectified
pixel	data.	This	is	especially	useful	for	oblique	imagery	stored	in	a	mosaic
dataset,	which	can	be	accessed	by	the	user	of	the	mosaic	dataset	either	as
orthorectified	imagery	in	map	space	or	as	the	raw,	undistorted,	oblique	imagery.

Elevation	Data
Mosaic	datasets	work	with	all	forms	of	elevation	data.	Mosaic	datasets	can
house	elevation	data	in	the	form	of	gridded	DEMs,	lidar	(LAS	or	zLAS)	point
clouds,	or	terrain	datasets.	By	applying	raster	functions	in	the	mosaic	dataset’s
function	chain,	many	derivatives	can	be	produced	on	the	fly	from	elevation	data.
These	include	slope,	aspect,	and	hillshades.	Using	a	mosaic	dataset,	global
datasets	such	as	those	from	the	Shuttle	Radar	Topography	Mission	(SRTM)	can



be	combined	with	higher-resolution	local	datasets	collected	by	photogrammetric
or	lidar	methods.	The	user	of	the	mosaic	dataset	can	get	access	to	the	data	as	a
single,	virtually	blended	dataset	at	any	resolution	with	the	SRTM	data	appearing
at	smaller	scales	and	the	local	data	showing	up	at	a	larger	scale.	Alternatively,
the	mosaic	dataset	user	can	query	the	mosaic	dataset	based	on	attributes	and
filter	the	result,	so	as	to	view	a	single	dataset	or	some	custom	selection	of	the
data.

Scientific	Multidimensional	Rasters
The	management	of	scientific	multidimensional	rasters	is	another	compelling
use	case	for	mosaic	datasets.	Such	rasters	are	often	stored	in	NetCDF,
hierarchical	data	format,	and	general	regularly	distributed	information	in	binary
form	formats.	These	formats	can	be	added	to	a	mosaic	dataset	with	each	slice	of
the	dataset	becoming	a	separate,	uniquely	identified	record.	It	is	then	easy	to
query	the	mosaic	dataset’s	attribute	table	to	get	any	individual	slice	and	obtain
temporal	profiles	or	data	cubes	for	powerful	visualization	and	analysis.

Full-Motion	Video
Mosaic	datasets	can	be	created	from	full-motion	video	using	the	ArcGIS	Full
Motion	Video	(FMV)	add-In.	Instead	of	each	frame	existing	as	a	separate
component	in	the	mosaic	data-set,	the	FMV	extension	enables	the	creation	of	a
mosaic	dataset	from	key	frames	that	are	based	on	time	or	movement.	In	this	way,
a	virtual	mosaic	of	the	imagery	can	provide	a	quick	overview	of	different
missions	as	well	as	the	ability	to	quickly	filter	and	find	suitable	sections	of
footage.

Publishing	Mosaic	Datasets	as
Image	Services

Introduction
Image	services	were	introduced	in	chapter	5.	This	section	elaborates	on	the
details	of	configuring	and	managing	image	services.	Here	we	discuss	optimizing



image	services	for	performance,	client-defined	processing	of	mosaic	datasets,
open	standards,	considerations	when	publishing	image	services	in	the	cloud,	and
big	raster	processing.

Image	services	can	be	consumed	by	web	maps,	applications	such	as	ArcGIS
Desktop	and	ArcGIS	Pro,	and	by	mobile	and	web	apps	that	have	access	to	the
image	services	through	Esri’s	JavaScript	API.

Mosaic	datasets	are	excellent	data	models	for	cataloging	and	managing	data.
They	are	also	a	great	tool	for	disseminating	imagery	across	the	web	as	image
services.	A	server	administrator	can	modify	many	properties	of	a	mosaic	dataset,
such	as	the	maximum	image	size,	the	level	of	metadata,	the	compression
method,	or	the	maximum	number	of	downloads	according	to	user	needs.	When
web	clients	connect	to	a	mosaic	dataset	published	as	an	image	service	to	see	a
mosaicked	image,	their	application	can	control	the	same	mosaic	methods	and
other	properties	that	a	directly	connected	user	will	have	access	to,	along	with	the
ability	to	select	raster	datasets	and	download	them	to	their	local	disk.

As	discussed	in	chapter	5,	there	are	two	types	of	image	services:	dynamic
and	tile	cache	services.	Tile	cache	services	are	useful	for	displaying	static	images
that	won’t	be	used	for	analysis	and	don’t	require	enhancing	for	visual	display.
Tile	cache	services	do	not	change	once	they	are	published	and	don’t	afford	the
end	user	access	to	the	raw	pixel	data.	Tile	cache	services	are	fast,	versatile,	and
are	well	suited	to,	for	example,	serving	up	orthophoto	base	images	for	visual
reference.	They	do	not	provide	access	to	the	source	pixel	values	and	require
preprocessing	to	create.	Dynamic	image	services,	on	the	other	hand,	provide	full
access	to	the	image	pixels	and	can	be	used	for	analysis,	stretched,	or	even
downloaded	locally.	Dynamic	services	are	in	many	cases	not	as	fast	to	get	access
to	as	tiled	services	as	the	server	needs	to	process	the	pixels	being	accessed,	but
dynamic	services	provide	complete	access	to	the	raw	imagery.

Image	services	published	without	a	cache	are	dynamic	by	default.	Image
services	published	with	a	cache	can	be	accessed	either	as	dynamic	services	or	as
cached	services.

Tile	Cache	Services
About	Tile	Cache	Services
Image	service	caching	improves	the	performance	of	image	services	when	they
are	displayed	in	client	applications.	When	you	cache	an	image	service,	the	server
pregenerates	tiles	at	different	levels.	These	static	tiles	can	be	delivered	from	the



server	to	the	client	faster	and	use	less	server	processing	power	than	delivering
the	actual	pixels	from	the	mosaic	dataset.	An	image	service	cache	does	not	serve
imagery	that	is	processed	on	the	fly;	it	preprocesses	the	imagery	to	create	the
cached	tiles	and	then	serves	the	cached	tiles.

Some	applications	or	users	require	imagery	as	a	simple	background	for
visual	context.	In	cases	where	such	access	needs	to	be	scaled	to	large	numbers	of
users,	it	is	often	advantageous	to	use	tile	cache	services.

The	tile	cache	can	then	be	generated	in	ArcGIS	Desktop	or,	for	large
projects,	ArcGIS	Enterprise,	which	can	run	across	multiple	servers.	The
processing	generates	a	very	large	number	of	tiles	that	are	stored	in	an	optimized
format,	enabling	the	server	to	quickly	return	requested	tiles	with	no	additional
processing.	Applications	that	need	tile	cached	imagery	obtain	from	the	server	the
schema	of	the	tile	layout	and	can	request	only	the	tiles	required	to	cover	the
screen	at	the	appropriate	scale.

Tiles	can	be	preprocessed	for	all	areas	covered	by	a	mosaic	dataset,	but
ArcGIS	also	provides	the	option	for	on-demand	tile	cache	generation,	so	that
cache	tiles	are	created	only	when	first	used.

Image	service	caching	results	in	a	dual-purpose	image	service	that	is
accessed	depending	on	its	purpose.	One	purpose	is	to	provide	the	fastest	access
to	the	image	as	a	tiled	service.	The	other	purpose	is	to	provide	access	to	the	data
for	queries,	downloading,	access	to	individual	rasters,	and	for	use	in	processing
and	analysis.

When	you	display	an	image	service	that	has	been	cached,	it	will	have	limited
image	service	capabilities	by	default.	However,	if	you	need	to	work	with	the
image	service	dynamically	and	get	access	to	the	full	pixel	data	or	change	the
mosaic	method,	then	you	can	change	the	layer’s	mode.	To	change	the	mode,	you
right-click	the	image	service	layer	and	uncheck	Enable	Cache	View	Mode.	To
use	the	image	service	as	a	cache	service,	you	just	check	this	option	back	on.

Cache	Configuration
The	cache	tiles	are	processed	and	stored	in	a	selected	format	(see	Cache	Formats
for	Image	Services	below)	so	that	the	server	can	distribute	these	images
whenever	there	is	a	request.

For	all	its	performance	benefits,	caching	comes	with	some	overhead.	You
need	time	and	server	power	to	create	the	cache	tiles	and	the	hardware	to	store
them.	You	may	also	need	to	perform	cache	updates	if,	for	example,	your	source
mosaic	dataset	is	edited	or	changed.	If	your	application	offers	imagery	for	a	vast



area	at	a	large	scale,	you	may	decide	that	the	time	and	storage	required	to	build
and	maintain	the	cache	outweighs	the	performance	benefit.

Tiling	Scheme
The	scales	that	you	pick	and	the	properties	you	set	for	the	cache	constitute	the
tiling	scheme.	The	tiling	scheme	should	be	consistent	with	the	other	layers	you
may	be	integrating.	For	example,	you	can	choose	to	use	the	well-known	tiling
scheme	of	ArcGIS	Online/Google	Maps/Bing	Maps	so	that	you	can	easily
overlay	your	caches	with	these	online	mapping	services,	or	you	can	create	your
own	tiling	scheme	to	be	consistent	within	your	own	web	application.	Each	cache
has	a	tiling	scheme	file	that	you	can	import	when	you	create	new	caches	so	that
all	your	caches	use	the	same	tile	sizes	and	scales.

If	your	tiling	scheme	doesn’t	match	the	one	used	by	the	other	layers	in	your
application,	then	you	may	not	see	your	cached	layers.	This	is	because	web
clients	often	cannot	resample	your	data	to	display	it	at	a	different	level.

When	caching	imagery	in	ArcGIS	the	system	generates	the	highest-
resolution	data	first.	Subsequent	levels	can	be	generated	by	using	the	imagery
from	the	mosaic	dataset	or	by	resampling	the	higher-resolution	data.	If	your
source	data	has	a	mix	of	spatial	resolutions,	then	you	will	want	to	cache	from	the
mosaic	dataset;	if	the	source	has	a	single	resolution,	or	overviews	have	not	been
built,	then	you	can	let	the	system	resample	the	higher-resolution	data.	This	is
controlled	by	entering	a	value	for	the	Maximum	Source	Cell	Size	on	the
Advanced	Settings	page	for	caching.

Cache	Formats	for	Image	Services
Common	formats	for	cached	tiles	include	PNG,	JPEG,	MIXED,	and	Limited
Error	Raster	Compression	(LERC);	these	raster	formats	are	discussed	below:

JPEG—Use	this	format	for	base	image	services	that	have	large	color
variation	and	do	not	need	to	have	a	transparent	background.	The	JPEG
format	works	well	for	caching	continuous	raster	data,	such	as	orthophotos.
JPEG	is	a	lossy	image	format.	It	attempts	to	selectively	remove	data
without	affecting	the	appearance	of	the	image	(see	chapter	5).
PNG	(PNG,	PNG8,	PNG24,	and	PNG32)	—	PNG	is	a	lossless
compression	that	works	well	for	data	that	is	not	continuous.	PNG	is
typically	used	to	cache	vector	data,	but	it	can	also	be	used	to	cache
thematic	raster	data	such	as	the	results	of	a	classification.	It	also	has	the



advantage	of	transparency,	because	NoData	areas	can	be	displayed	as
blank	or	transparent	using	the	PNG	format.	Due	to	its	lossless
compression,	PNG	tiles	can	be	significantly	larger	than	JPEG	when	used
for	continuous	imagery.	PNG	is	not	recommended	for	caching	imagery
such	as	orthophotos.
MIXED—A	mixed	cache	uses	both	JPEG	and	PNG	tiles.	Tiles	without
transparent	pixels	are	cached	using	the	JPEG	format;	remaining	pixels	are
coded	using	PNG.	In	many	projects,	the	result	is	that	nearly	all	tiles	are
JPEG	except	for	the	ones	at	the	edge.	Use	of	Mixed	mode	is	typically
recommended	for	continuous	imagery.
LERC—LERC	is	an	efficient,	controlled,	lossy	compression	method.
LERC	compression	is	used	for	creating	cached	tiles	of	elevation	data	that
is	typically	32-bit	float	and	would	not	compress	well	using	either	JPEG	or
PNG.

On-Demand	Cache
On-demand	caching	lets	you	set	up	the	tiling	scheme	and	publish	the	image
service,	but	generate	the	cache	only	when	and	where	you	get	access	to	the	image
service.	The	first	user	to	navigate	to	an	uncached	area	must	wait	while	the
corresponding	cache	tiles	are	created	by	the	server.	The	tiles	are	then	added	to
the	service’s	cache	folder	and	remain	on	the	server	until	updated	or	deleted	by
the	server	administrator.	This	means	that	subsequent	visitors	to	the	area	will	not
have	to	wait	for	the	tile	to	be	created.

When	used	wisely,	on-demand	caching	can	save	you	processing,	time,	and
disk	space.	Many	image	services	contain	areas	that	are	barren	or	uninteresting	to
the	end	user,	especially	at	large	scales	(zoomed	in).	Caching	on	demand	relieves
you	of	the	burden	of	creating	and	storing	these	unneeded	tiles	but	leaves	the
possibility	that	a	user	could	still	view	the	area	if	needed.

Cache	Best	Practices
Test	before	Deploying
Before	committing	to	an	image	format	for	a	large	cache,	build	a	small	cache	of	a
representative	area	of	your	map,	and	examine	the	tile	quality	and	performance	in
a	test	application.	If	you’ll	be	working	with	multiple	caches,	build	a	small	test
cache	for	each,	and	add	them	to	a	test	application	to	make	sure	they	overlay	as
expected.	This	will	allow	you	to	make	adjustments	before	you	create	the	entire



cache.
To	make	a	small	test	cache,	use	the	editing	tools	in	ArcGIS	Desktop	or

ArcGIS	Pro	to	create	a	new	feature	class	consisting	of	a	small	rectangle	around
the	area	you	want	to	test.	Then	use	the	option	at	the	bottom	of	the	Manage	Map
Server	Cache	Tiles	tool	dialog	box	that	allows	you	to	create	tiles	based	on	the
boundary	of	a	feature	class.	Browse	to	the	feature	class	containing	your	test	area
and	create	the	tiles.

Optimizing	Services	for	Performance
Mosaic	datasets	published	as	image	services	may	have	little	or	no	processing
applied	by	their	function	chains	or	may	have	lengthy	processing	chains	applied.
Complex	on-the-fly	processing	chains	can	place	heavy	processing	loads	on	a
server	and	contribute	to	sluggish	performance.	Most	processes	such	as
reprojection,	orthorectification,	or	pan	sharpening	have	relatively	little	effect	on
performance.	The	biggest	contributor	to	slow	performance	is	typically	not	the
processing,	but	the	speed	of	access	to	the	source	data.	Huge	performance
improvements	can	be	achieved	in	some	cases	by	preprocessing	the	data	into	a
more	efficient	format	for	resampling	and	on-the-fly	processing.

For	applications	that	use	tiled	base	image	layers,	some	performance
improvements	can	be	achieved	by	aligning	the	pixel	sizes	of	the	overviews	with
the	scales	of	the	base	image	tiling	scheme.	Figure	13.5	shows	the	recommended
pixel	sizes	to	use	as	the	base	pixel	size	when	creating	overviews	using	the
ArcGIS	Online/Bing	Maps/Google	Maps	tiling	scheme.



Figure	13.5.	Recommended	pixel	sizes	to	use	as	the	base	pixel	size	when	creating	overviews

The	file	format	and	compression	type	of	source	data	can	also	have	a	huge
impact	on	performance.	GeoTIFF	with	internal	tiles	is	recommended	for
situations	where	it’s	necessary	to	reformat	the	imagery	from	a	slower	format.
Pixel	compression	has	the	potential	to	either	increase	or	decrease	performance
depending	on	the	how	the	data	is	stored	and	accessed	by	the	server.	Some
formats,	such	as	JPEG,	are	fast	to	decompress	and	provide	reduced	file	size,
resulting	in	increased	performance.

Client	applications	can	also	play	a	role	in	dynamic	image	service
performance.	There	is	a	direct	relationship	between	service	performance	and	the
size	of	the	map	window	(extent	of	the	imagery	shown)	in	an	application.
Applications	running	full	screen	on	very-high-resolution	monitors	will	make
much	larger	requests	to	the	server,	resulting	in	higher	data	access	and	server
processing.

Client-Defined	Processing
Image	services	enable	the	creation	of	advanced,	lightweight	web	applications
that	fully	leverage	the	power	and	configurability	of	the	mosaic	dataset	that
underpins	the	image	service.	The	image	service’s	representational	state	transfer
(REST)	API	enables	client	applications	to	get	access	to	and	control	all	aspects	of
how	the	server	gets	access	to	and	processes	imagery.	Function	chains	configured



on	the	image	service	to	accomplish	different	processing	tasks	can	be	exposed
along	with	the	image	service	via	the	REST	API.	An	application	consuming	the
service	can	apply	one	of	the	preconfigured	processing	function	chains.	For
example,	an	elevation	image	service	could	have	preconfigured	function	chains
for	elevation,	slope,	and	aspect;	the	client	application	would	specify	in	its	call	to
the	service	which	processing	chain	should	be	applied.	The	image	service’s
function	chains	can	contain	collections	of	functions	to	be	processed	by	the
server,	enabling	applications	to	specify	and	control	a	wide	range	of	dynamic,	on-
the-fly	processing	to	be	applied	to	the	service	that	the	client	consumes.	Client
applications	can	also	transmit	individual	functions	or	chains	of	functions	to	the
server	to	be	applied	on	the	imagery	before	it	is	transmitted	back	to	the	client.
This	enables	the	analyst	to	create	a	wide	range	of	applications	while	using	the
server	to	get	access	to	and	process	the	imagery.	For	users	requiring	very
advanced	raster	analysis,	the	Python	raster	adapter	can	be	used.	This	enables
Python-based	functions	to	be	developed	that	use	the	extensive	libraries	of	both
NumPy	and	SciPy.	Such	Python	functions	can	be	associated	with	services	and
invoked	by	client	applications.	Python	raster	functions	are	useful	for	the
development	of,	for	example,	more	advanced	change	detection	algorithms	or	the
processing	of	multidimensional	scientific	data.

The	image	service	REST	API	is	rich	and	enables	the	configuration	of	a	wide
range	of	processing	parameters	in	a	client	application.	For	example,	a	client
application	using	the	API	can	specify	the	resampling	method	applied	to	the
image	service	that	it	consumes	(the	choices	are	nearest	neighbor,	bilinear
interpolation,	or	cubic	convolution).	Via	the	API,	a	client	is	able	to	request
information	other	than	the	imagery	itself.	For	example,	if	the	source	image
service	includes	sensor	orientation	information,	the	client	can	perform
mensuration	to	determine	the	heights	of	objects.	In	this	case,	for	example,	the
application	could	request	that	the	user	define	the	displayed	locations	of	the	top
and	base	of	a	building	(with	two	mouse	clicks),	and	then	use	the	service	to
compute	and	return	the	building	height.	Similarly,	image	services	can	be	used	by
client	applications	to	return	image	statistics	and	other	information	about
polygons	digitized	in	the	client	application.	These	client-defined	processing
functions	enable	the	development	of	applications	that	invoke	advanced	image-
processing	capabilities	beyond	just	visualizing	the	data.

Open	Standards
In	addition	to	the	ArcGIS	REST	API,	ArcGIS	Enterprise	also	supports	Open



Geospatial	Consortium	(OGC),	Web	Map	Service,	Web	Map	Tile	Service,	web
coverage	service,	Wi-Fi	Protected	Setup,	and	Keyhole	Markup	Language
standards.	These	OGC	standards	can	be	used	to	quickly	get	access	to	imagery
from	all	OGC	conforming	applications	to	aid	in	interoperability.	Although	the
OGC	standards	support	some	features	such	as	temporal	control,	they	do	not
provide	the	rich	API	provided	by	ArcGIS	REST.

Cloud	Considerations
Traditionally,	organizations	have	stored	imagery	on	direct	access	storage,
enterprise	network	attached	storage,	or	storage	area	networks.	Such	storage
systems	are	typically	optimized	for	fast,	low-latency	access	and	provide	block
level	access	through	file	systems	such	as	network	file	systems.	These	storage
systems	are	relatively	expensive	to	scale,	resulting	in	significant	costs	for	large
volumes	of	imagery.	The	advent	of	cloud	computing	has	promoted	the
abundance	of	object	storage	such	as	Amazon	S3	or	Azure	Blob	storage,	which
can	be	accessed	simultaneously	by	large	numbers	of	computers.	Such	object
storage	is	available	from	most	cloud	infrastructure	providers,	but	can	also	be
implemented	in	on-premise	and	hybrid	cloud	environments.	Object	storage
offers	simple	storage	for	massive	data	collections	with	significantly	lower
storage	costs	while	providing	very	high	durability.	However,	object	storage	does
not	provide	the	same	levels	of	access	performance	or	latency	as	traditional
storage	and	cannot	be	effectively	accessed	through	a	file	system,	so	it	is	typically
not	suitable	for	image-processing	applications.	ArcGIS	includes	technology	that
overcomes	these	limitations.	To	optimize	performance,	the	cloud-hosted	imagery
should	be	converted	to	a	cloud-optimized	format	such	as	metaraster	format	as	it
is	transferred	to	the	cloud.	Fast	access	is	achieved	by	minimizing	the	number	and
size	of	requests	as	well	as	using	tile-based	caching.	ArcGIS	can	also	get	access
to	tiled	formats	such	as	TIFF	or	JP2000	stored	in	object	storage,	although
performance	is	not	as	good.	These	techniques	enable	organizations	to	manage
their	imagery	holdings	on	inexpensive	cloud	storage	and	then	provide	fast	access
to	the	imagery	as	image	services.	Making	use	of	the	elasticity	in	cloud
infrastructure	also	enables	the	systems	to	efficiently	handle	the	often	varying
loads.

An	example	of	such	a	cloud-based	image	service	is	the	Landsat	archive
service	hosted	by	Esri	(http://www.esri.com/landsatonaws).	These	publicly
accessible	image	services	provide	global	access	to	hundreds	of	thousands	of	full-
resolution,	multispectral	Landsat	8	and	global	land	survey	scenes.	The	services
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are	updated	daily	with	new	scenes.	Access	to	all	the	multispectral	bands	with
various	band	combinations	and	indices	are	provided	with	all	processing	being
applied	on	the	fly.	The	source	multispectral	Landsat	scenes	are	stored	on
Amazon	S3	object	storage	as	tiled	GeoTIFF	files	as	part	of	the	Amazon	Public
Datasets.	Each	band	of	each	scene	is	a	separate	file.	A	mosaic	dataset	defines	the
processing	to	be	applied	as	the	data	is	accessed,	but	client	applications	can	also
refine	the	processing	and	analysis.	The	mosaic	dataset	is	served	as	an	image
service	using	elastic	Amazon	Machine	Images	that	can	scale	up	or	down
depending	on	the	server	load.	These	services	can	be	used	in	a	range	of	web	and
desktop	applications	to	quickly	visualize	and	analyze	this	phenomenal	dataset
made	available	by	the	US	Geological	Survey.

Spatial	Analysis	in	the	Cloud	—
Geoprocessing	Services

Overview	of	Geoprocessing	Services
Geoprocessing	services	contain	geoprocessing	tasks;	a	geoprocessing	task	takes
simple	spatial	data	captured	in	a	web	application,	processes	it,	and	returns
meaningful	and	useful	output	in	the	form	of	features,	maps,	reports,	and	files.	A
task	could	calculate	the	probable	evacuation	area	for	a	hazardous	chemical	spill,
the	predicted	track	and	strength	of	a	gathering	hurricane,	a	report	of	land	cover
and	soils	within	a	user-defined	watershed,	a	parcel	map	with	historical	details	of
ownership,	or	a	permitting	application	for	a	septic	system.

ArcGIS	geoprocessing	tasks	can	be	served	through	ArcGIS	Enterprise.
Geoprocessing	services	have	access	to	the	extensive	range	of	geoprocessing
tools	within	ArcGIS	as	well	as	tools	developed	by	Esri	partners.	Unlike	image
services,	geoprocessing	tasks	are	asynchronous	and	can	return	all	forms	of
geospatial	data,	tables,	or	maps.	A	task	may	return	a	result	within	a	second,	but
for	larger	processing	tasks	the	response	may	take	longer	(hence	the
asynchronicity).	Geoprocessing	tasks	can	get	access	to	raster	data	directly	from	a
mosaic	dataset,	an	image	service,	or	some	other	raster	data	type.	Geoprocessing
can	be	used	to	perform	simple	tasks	such	as	the	computation	of	a	viewshed,	but
also	be	the	interface	to	Big	Data	analytics	where	a	geoprocessing	task	can
initiate	a	set	of	processing	steps	on	many	machines,	and	then	compile	and	return



the	results.

Geoprocessing	Service	Examples
An	example	of	a	geoprocessing	service	is	the	Trace	Downstream	analysis	tool
available	on	ArcGIS	Online	web	maps.	This	tool	enables	a	user	to	define	a
starting	point	on	their	web	map	and	submit	the	starting	point	to	a	geoprocessing
service.	The	geoprocessing	service	uses	the	user-submitted	point	to	run	a	trace
against	a	geometric	network	of	flowlines,	returning	the	resulting	geometry—a
line	feature	class	representing	areas	downstream	of	the	submitted	point—to	the
web	map	user.	Another	geoprocessing	service	example	is	the	Clip	and	Email
Viewer	shown	in	figure	13.6.	This	viewer	enables	access	to	high-resolution
imagery	for	Sonoma	County,	California,	providing	users	with	clipped
orthophotography	and	lidar-derived	DEMs	clipped	to	their	area	of	interest.	To
use	it,	the	viewer	logs	onto	a	JavaScript	application
(http://sonomavegmap.org/imagery)	in	a	browser,	digitizes	an	area	of	interest
(polygon),	and	enters	a	desired	contour	interval	and	an	email	address.	The	shape
of	the	polygon	and	the	user’s	information	is	passed	to	the	geoprocessing	service
via	Esri’s	JavaScript	API.	The	geoprocessing	script,	which	exists	as	a	Python
script	on	the	ArcGIS	Server,	takes	the	geometry	of	the	user-defined	polygon	and
clips	the	countywide	mosaic	datasets	of	the	requested	high-resolution	rasters	to
the	user’s	area	of	interest.	The	resulting	clipped	images	are	zipped	and	uploaded
by	the	geoprocessing	service	to	an	FTP	server.	As	a	final	step,	the	geoprocessing
service	sends	an	email	to	the	user	of	the	application,	providing	a	link	for
downloading	the	clipped	and	zipped	raster	data.

http://sonomavegmap.org/imagery


Figure	13.6.	The	Sonoma	County	clip	and	email	viewer	(esriurl.com/IG136).	Source:	Sonoma
County	Agriculture	Preservation	and	Open	Space	District

Summary—Practical	Considerations
The	mosaic	dataset	offers	a	revolutionary	approach	for	managing	and	serving
imagery	and	can	scale	to	massive	collections	of	raster	data.	It	is	important	to
remember	that	the	mosaic	dataset	doesn’t	store	pixels	of	imagery;	instead,	it
provides	a	framework	for	cataloging	and	managing	imagery.	The	raw	imagery
itself	isn’t	part	of	the	mosaic	dataset	but	instead	is	referenced	by	the	mosaic
dataset.

This	chapter	reviewed	the	structure	of	the	mosaic	dataset	and	provided
information	on	how	to	implement	mosaic	datasets.	Several	use	cases	for	mosaic
datasets	are	included	in	this	chapter;	they	include	information	on	best	practices
for	implementing	mosaic	datasets	for	various	types	of	imagery	(such	as	videos
and	elevation	data).

The	final	part	of	the	chapter	focuses	on	the	details	of	serving	mosaic	datasets
as	web	services.	The	section	begins	with	a	discussion	of	tile	cache	services	and
instructions	and	best	practices	about	how	to	implement	them.	Cache	services	can
greatly	improve	the	performance	of	image	services	used	for	visual	display.	The
discussion	of	cache	services	is	followed	by	more	information	on	the	capabilities
of	and	best	practices	for	serving	mosaic	datasets	as	web	services,	including
sections	on	optimizing	services	for	performance,	client-defined	processing,	and
cloud	considerations.	The	chapter	concludes	with	a	discussion	of	creating	and

http://esriurl.com/IG136


publishing	geoprocessing	services,	which	provide	client	access	to	powerful
geospatial	processing	through	web	services.



Chapter	14
Concluding	Thoughts

This	book	provides	you	with	the	foundational	knowledge	needed	to	use	imagery
within	a	GIS	to	support	informed	decisions.	You	now	know	how	imagery	can
bring	value	to	your	GIS	projects	and	how	GIS	can	enhance	imagery
classification.	The	level	of	involvement	and	importance	of	imagery	varies
project	to	project	depending	on	the	goals	and	objectives	of	each	project.	Often,
imagery	is	used	only	as	a	base	layer	providing	context	for	other	geospatial	layers
used	in	a	project.	In	that	case,	only	basic	understanding	about	where	the	imagery
came	from,	how	it	was	processed/corrected,	and	how	it	can	be	displayed	is
needed	to	make	effective	use	of	it.	In	other	situations,	imagery	can	be	used	to
add	additional	information	to	the	project.	The	elements	of	imagery	discussed	in
this	book	can	be	combined	to	manually	identify	and	map	objects	on	the	ground.
They	also	can	be	processed	using	any	of	the	classification	algorithms	discussed
in	the	book	to	create	new	geospatial	layers.	Using	imagery	to	identify	objects	or
make	a	map	requires	a	solid	understanding	of	the	imagery	itself,	exploring	the
imagery	to	determine	the	relationship	between	the	image	and	the	ground,
developing	an	effective	classification	scheme,	choosing	the	appropriate
classification	methodology,	and	assessing	the	accuracy	of	the	results.	This	book
has	provided	you	with	the	knowledge	needed	to	integrate	imagery	into	GIS
projects,	and	for	extracting	information	from	imagery.	This	chapter	concludes
the	book	by	offering	some	nuggets	of	wisdom	that	the	authors	have	learned
through	their	decades	of	remote-sensing	research	and	operational	mapping
projects.	These	nuggets	are	presented	below	in	bullet	form	with	a	brief
explanation	of	each.	It	is	our	hope	that	this	book	has	provided	you	with	the
knowledge	you	require	to	obtain	the	most	value	from	imagery	in	your	geospatial



analysis	projects.

Imagery	technology	will	continue	to	rapidly	improve,	and	the	supply	and
accessibility	of	imagery	products	will	continue	to	expand.	Over	the	last	20
years,	the	supply	and	demand	for	imagery	have	changed	remarkably.
These	changes	will	continue	and	the	pace	of	change	will	increase.
Unmanned	aerial	vehicles,	small	satellites,	lighter	electronics,	higher
Internet	speeds,	global	Internet	access,	and	new	sensor	technologies	will
combine	to	increase	the	supply	of	imagery.	As	the	barriers	to	entry	into
imagery	markets	dissolve,	the	markets	will	become	more	competitive	and
transparent,	prices	will	continue	to	fall,	access	will	increase,	and	use	will
soar.

Building	a	robust	classification	scheme	is	vitally	important	to	project
success.	The	classification	scheme	sets	the	objectives	regarding	the	exact
information	that	the	analyst	wishes	to	acquire	from	the	imagery.	In	some
cases,	specific	items	need	to	be	identified.	In	others,	very	general	map
classes	such	as	Water,	Vegetation,	and	Developed	are	sufficient.	In	all
situations,	it	is	vital	that	the	map	classes	are	well	defined	to	ensure	there	is
no	confusion	about	what	composes	each	class.	It	is	easy	for	analysts	and
map	users	with	different	backgrounds	and	training	to	make	assumptions
about	what	is	meant	by	a	particular	map	label.	Defining	each	class	clearly
by	establishing	rules	for	class	membership	avoids	these	biases	and
eliminates	confusion.	Once	defined,	the	classification	scheme	becomes	the
starting	point	for	data	exploration	where	the	relationship	between	what	is
recorded	on	the	image	and	what	is	actually	on	the	ground	is	investigated.
Detailed,	specific	map	classes	require	significantly	more	data	exploration
than	general	classes.	Therefore,	determining	the	scheme	at	the	beginning
of	the	project	is	vital	to	all	the	steps	that	follow.	The	classification	scheme
also	dictates	the	classification	algorithms	that	are	most	appropriate	for
creating	an	accurate	map	of	those	particular	map	classes.	Spending	time
developing	or	selecting	the	appropriate	classification	scheme	at	the
beginning	of	the	project	is	well	worth	the	effort	and	ultimately	produces	a
more	cost-effective	and	accurate	map.

Use	your	classification	scheme	to	drive	the	choice	of	imagery	for	your
project.	The	abundance	of	imagery	available	can	make	the	choice	of	the
most	appropriate	imagery	an	overwhelming	task.	Focus	your	decision
making	by	matching	your	classification	scheme’s	requirements	to	the



technical	and	organizational	characteristics	of	available	imagery	products,
thereby	using	your	classification	scheme	to	guide	your	selection	of
imagery.	Be	open	to	relaxing	the	requirements	of	your	classification
scheme	to	meet	your	budget	constraints,	if	needed.

Imagery	sources	and	products	will	continue	to	rapidly	expand.	An
abundance	of	excellent	imagery	is	available	and	served	online	such	as
Landsat,	Sentinel,	and	the	National	Agricultural	Imagery	Program.	Every
day,	new	sources	of	imagery	are	added	to	our	geospatial	world.	More	and
more	countries	and	public	agencies	are	flying	their	own	sensors.	and	there
is	a	trend	toward	making	most	civilian	government	acquired	imagery
available	for	free	on	the	web.	Imagery	is	being	collected	by	sensors	in
orbit,	but	also	on	airplanes,	balloon,	helicopters,	and	most	recently
unmanned	aerial	systems.	This	growing	body	of	imagery	is	becoming
more	and	more	easily	accessible	as	Internet	and	search	technologies
improve.	Abundant	imagery	is	available	to	aid	your	project.	Great
synergies	can	be	created	by	using	more	than	a	single	source	of	imagery.
Spend	the	time	needed	to	become	familiar	with	all	the	imagery	that	is
available	or	could	be	acquired	for	your	study	area.

Lidar	imagery	will	significantly	improve	many	projects.	Lidar	imagery
brings	the	image	element	of	height	into	semiautomated	image
classification.	When	a	lidar	instrument	is	flown	over	an	area,	the	data
collected	provides	a	comprehensive	and	detailed	picture	of	the	elevation	of
the	earth’s	surface	as	well	as	the	height	of	vegetation,	buildings,	and	other
features.	The	data	provides	a	detailed	view	of	the	vertical	structure	of	our
environment.	High-resolution	elevation	data	and	forest	structure	metrics,
such	as	tree	height	and	canopy	density,	significantly	enhance	our	ability	to
assess	and	monitor	carbon	stocks,	document	sea-level	rise,	map
groundwater,	and	assess	vegetation	and	habitat.	Lidar	data	improves
almost	any	mapping	effort	and	has	myriad	applications	across	many
disciplines.

Landsat	and	Sentinel	imagery	can	add	valuable	information	to	all
mapping	projects	including	high-spatial-resolution	image	classification.
Even	if	you	are	creating	a	map	from	high-	or	very-high-spatial-resolution
imagery,	moderate-resolution	Landsat	or	Sentinel	imagery	can	add	value	to
your	project	because	of	its	high	temporal	resolution	and	the	increased
information	provided	by	its	short-wave	infrared	and	thermal	(in	the	case	of



Landsat)	bands,	which	are	not	available	from	most	high-spatial-resolution
systems.	In	remote	sensing	systems,	there	is	usually	a	trade-off	between
spatial	resolution	and	temporal	and/or	spectral	resolution.	As	a	result,
much	high-	and	very-high-resolution	imagery	is	collected	infrequently	and
captures	only	one	to	four	bands	in	the	optical	and	infrared	portions	of	the
electromagnetic	spectrum.	Landsat	and	Sentinel	complement	high-
resolution	imagery	by	providing	a	valuable	spectral	representation	of	the
near-infrared,	mid-infrared,	and	thermal,	which	are	extremely	useful	for
vegetation	mapping	and	analysis.	These	sensors	also	produce	remarkably
consistent	imagery	and	aren’t	prone	to	the	spectral	inconsistency	often
present	in	high-resolution	aerial	imagery.	Because	Landsat	and	Sentinel
images	are	free	and	accessible	via	the	web,	it	is	easy	to	incorporate	them
into	any	project,	and	they	often	add	value,	even	in	high-spatial-resolution
projects.

Spectral	accuracy	and	calibration	are	critically	important.	Not	all	sensors
are	the	same.	While	many	sensors	may	collect	red,	green,	blue,	and
infrared	bands,	the	spectral	accuracy	of	those	measurements	may	vary
greatly	depending	on	the	quality	of	the	sensor.	As	a	result,	data	collected
will	vary	from	sensor	to	sensor,	with	some	sensors	offering	limited
separability	of	similar	features.	Additionally,	few	sensors	are	rigorously
calibrated	on	a	regular	basis.	If	your	goal	is	to	use	imagery	to	identify	and
label	variation	on	the	ground	or	to	monitor	change,	you	must	be	confident
that	the	sensor’s	measurements	are	capable	of	distinguishing	those	features
from	one	another.	Make	sure	you	learn	about	and	understand	the	spectral
accuracy	and	calibration	of	the	sensors	capturing	your	imagery.

Spatial	accuracy	is	essential,	especially	in	high-spatial-resolution
mapping.	A	key	reason	that	imagery	has	become	a	valuable	component	of
any	geospatial	analysis	is	that	the	imagery	can	now	be	very	accurately
registered	to	the	ground	and	the	other	geospatial	data	layers.	As	imagery
increases	in	spatial	resolution	and	more	and	more	detail	can	be	seen,	it	is
increasingly	important	that	the	imagery	is	registered	with	high	spatial
accuracy.	If	not,	there	will	be	a	noticeable	shift	in	the	position	of	the	image
relative	to	the	other	geospatial	layers	and	the	ground.	Spatial	accuracy
must	be	tested	with	a	set	of	checkpoints	that	are	independent	of	the	ground
control	points	used	in	the	imagery	registration	process.	The	results	of
analyzing	those	checkpoints	allow	the	analyst	to	know	how	well	the
imagery	will	register	to	the	other	geospatial	layers	and	the	ground.



Hyperspectral	imagery	will	become	more	commonplace.	There	are
significant	gains	in	spectral	information	available	from	hyperspectral
imagery.	Wavelengths	of	electromagnetic	energy	that	may	be	represented
by	a	single	band	in	multispectral	imagery	are	divided	into	much	smaller
portions,	resulting	in	more	refined	spectral	patterns.	These	patterns	can
reveal	subtler	relationships	in	the	imagery	than	previously	possible	from
multispectral	imagery.	While	hyperspectral	imagery	is	available	now,	it	is
far	from	prevalent.	Soon,	more	hyperspectral	imagery	will	be	available,
and	there	will	be	great	advantages	to	the	analyst	who	knows	how	to	use	it.

Licensing,	pricing,	and	other	organizational	characteristics	of	imagery
products	will	become	more	fluid.	The	market	for	imagery	is	rapidly
expanding	as	microelectronics	are	incorporated	into	sensors,	resulting	in
decreasing	costs	for	sensor	launch	and	operation.	As	the	commercial
market	evolves	from	a	few	to	multiple	providers,	imagery	producers	will
start	to	compete	on	organizational	characteristics.	The	current	business
model	for	commercial	high-	and	very-high-resolution	imagery,	which
restricts	the	sharing	of	imagery	through	licensing	agreements,	will
probably	erode	as	more	and	more	competitive	imagery	providers	enter	the
market.	If	you	acquire	imagery,	especially	large	amounts	of	imagery,	push
for	licensing	restrictions	to	be	relaxed	and	prices	to	be	lowered.

Data	exploration	is	the	key	to	understanding	the	variation	in	the	imagery
and	how	it	relates	to	variation	on	the	ground.	Remote	sensing	is	an
effective	tool	for	identifying	objects	and	creating	maps	because	what	is
recorded	in	an	image	is	highly	correlated	with	what	is	occurring	on	the
ground.	Therefore,	the	image	is	often	a	good,	but	not	perfect,
representation	of	the	ground.	Anything	that	detracts	from	the	correlation
between	the	image	and	the	ground	should	be	known	and	investigated.
Many	powerful	tools	can	be	used	to	understand	the	variance	in	the	imagery
and	how	it	relates	to	the	ground.	Exploring	this	relationship	allows	the
analyst	to	select	the	appropriate	classification	scheme	for	the	project,	the
most	suitable	imagery,	and	the	classification	algorithms	that	are	likely	to
produce	the	most	accurate	map.	Failure	to	explore	this	relationship
between	the	imagery	and	the	ground	results	in	a	less	accurate	and	more
expensive	map.

Nonimagery	geospatial	data	can	add	significantly	to	the	effective	use	of
imagery.	The	power	of	a	GIS	is	the	ability	to	combine	many	layers	of



geospatial	data	and	consider	all	of	them	simultaneously	for	decision
making.	Imagery	is	just	another	source	of	geospatial	information.	When
using	imagery,	especially	when	creating	maps	from	the	imagery,	adding
other	geospatial	data	layers	can	significantly	improve	the	effectiveness	of
the	imagery.	As	described	in	this	book,	the	confluence	of	evidence	of	the
elements	of	imagery	result	in	the	analyst	developing	a	label	for	the	map.
However,	not	all	the	elements	can	always	be	derived	from	imagery	alone.
Slope,	elevation,	and	aspect	are	very	useful	geospatial	layers	that	can
improve	the	accuracy	of	a	map.	Other	layers	such	as	fire	history,	weather
patterns,	previously	created	land-cover	maps,	tidal	maps,	and	crop
calendars	can	also	be	very	helpful.	Think	about	your	classification	scheme
and	spend	some	time	determining	and	locating	other	geospatial	data	layers
that	can	help	produce	the	best	possible	map	from	the	imagery.

Classification	of	high-	and	very-high-spatial-resolution	imagery	requires
segmentation	and	object-oriented	classification.	Per-pixel	classification	of
high-resolution	imagery	is	not	recommended	at	the	pixel	level	because
there	is	so	much	information	and	noise.	For	example,	making	a	per-pixel
map	of	vegetation	types	from	high-resolution	(six-inch)	pixels,	would	be
very	difficult	because	a	stand	of	oaks	trees,	for	example,	might	include
hundreds	of	pixels	that	represent	the	very	detailed	components	of	the	stand
including	bare	ground,	leaf	litter,	illuminated	oak	canopy,	dark	shadows,
tree	branches,	etc.	None	of	these	pixels	alone	represents	the	oak	class
being	mapped,	but	collectively	the	pixels	do.	Hence,	it	is	essential	when
using	high-resolution	imagery	to	map	vegetation	type	and	land	cover	to
group	the	pixels	into	objects	(this	process	is	called	segmentation)	and	to
classify	the	objects,	not	the	individual	pixels	that	compose	them.

Semi-automated	image	classification	makes	sense	only	if	economies	of
scale	can	be	captured.	Collecting	training	data,	performing	data
processing,	and	choosing	and	tuning	algorithms	for	automated
classification	is	time	consuming.	Most	automated	classifications	require
manual	editing	even	after	they	are	run	to	achieve	acceptable	accuracies.
Consider	the	time	it	will	take	to	perform	a	semi-automated	workflow,	and
be	sure	that	your	project	is	large	enough	that	significant	economies	of
scale	can	be	captured.	If	you	will	spend	the	same	amount	of	time	to
perform	an	automated	classification	as	you	would	to	perform	a	manual
classification	of	your	entire	project	area,	then	choose	manual	interpretation
over	a	semi-automated	approach.	In	general,	don’t	use	semi-automated



methods	on	a	project	smaller	than	10,000	acres.

Combined	classification	algorithms	can	increase	classification	accuracy.
Just	as	there	is	no	longer	any	reason	to	use	only	one	imagery	source	in
your	project,	there	is	no	reason	to	use	only	one	classification	algorithm.
All	classification	algorithms	have	strengths	and	weaknesses.	Ensemble
classification,	which	involves	the	use	of	multiple	classification	algorithms,
can	exploit	the	strengths	and	identify	the	weaknesses	of	each	algorithm,
thereby	increasing	the	robustness	of	the	classification.

Automating	image-processing	workflows	with	Python	or	other	scripting
languages	opens	doors	in	terms	of	workflow	repeatability,	scalability,	and
efficiency.	Image	analysis	and	image	processing	is	often	complex	and
requires	many	steps.	A	typical	workflow	uses	many	functions	applied	in	a
sequence	that	produces	intermediate	results	and	eventually	a	final	result.
Performing	a	sequence	of	functions	manually	is	laborious	and	prone	to
error.	Often	a	sequence	of	functions	needs	to	be	rerun	because—after
reviewing	the	results—an	additional	function	is	added	to	the	workflow	or	a
change	is	made	to	one	of	the	functions.	Automating	image-processing
workflows—even	very	small	ones—is	easily	done.	Python	is	an	easy-to-
learn	language	that	is	deeply	integrated	into	Esri	products	and	is	ideal	for
imagery	workflow	automation.	Automation	is	desirable	because	it	makes
the	workflow	repeatable,	provides	documentation	of	the	workflow,	and
brings	much	greater	efficiency	to	workflows.	It	also	makes	it	easy	to
quickly	rerun	existing	workflows	or	easily	adapt	already	written	code	to
new	situations.	In	addition	to	Python,	other	great	additions	to	the	image
analyst’s	toolset	include	R,	MATLAB,	and	interactive	data	language
(IDL).

Web	services	have	significant	advantages.	Over	the	past	decade,	web
services	for	providing	Internet-based	access	to	GIS	data	and	imagery	have
come	of	age.	With	the	ability	to	easily	serve	massive	volumes	of	high-
resolution	imagery	and	data,	imagery	is	no	longer	cloistered	within	the
GIS	department.	Esri’s	mosaic	dataset	provides	a	framework	for	managing
imagery	collections,	and	ArcGIS	Enterprise	provides	a	mechanism	for
these	collections	as	image	services,	unlocking	these	critical	imagery
investments	for	use	throughout	organizations.

Change	analysis	offers	significant	new	information	about	a	project	area.



When	an	analyst	works	to	create	a	map	from	imagery	for	a	single	date	in
time,	she	or	he	learns	a	great	deal	about	that	area	through	field	visits,
developing	the	classification	scheme,	performing	data	exploration,
performing	the	classification,	and	conducting	the	accuracy	assessment.
When	an	analyst	gets	to	work	on	a	change	analysis,	the	effort	taken	and
information	gained	are	not	simply	doubled,	but	increase	significantly.	Not
only	are	the	two	or	more	different	dates	of	imagery	investigated,	but	also
how	and	often	why	the	imagery	(and	the	ground)	have	changed	over	that
period.	Determining	what	has	changed	can	be	extremely	valuable.	The
change	map	may	show	the	results	of	poor	zoning	on	urban	development,
the	impact	of	a	hurricane	on	a	coastal	town,	the	effect	of	sea-level	rise,	or
the	loss	of	wetlands	due	to	poor	management.	Using	the	imagery	from
multiple	dates	forces	the	analyst	to	thoroughly	understand	the	dynamics	of
the	project	areas.

Geospatial	analysis	and	imagery	are	vibrant.	One	of	the	most	exciting
things	about	the	field	of	geospatial	analysis	is	that	it	is	constantly	changing
—improving	all	the	time.	New	hardware,	software,	and	methods	are
always	emerging	and	changing	the	way	you	do	your	work.	It	is	vital	to
stay	abreast	of	these	developments	by	reading	about	new	work,	attending
conferences	and	user-group	meetings,	participating	in	webinars,	and
having	a	cohort	of	colleagues	that	you	can	share	ideas	and	challenges	with.
It	a	challenge	to	keep	up,	but	it	is	more	than	worth	it	in	productivity	and
satisfaction	in	doing	a	great	job.

Technology	has	now	made	communicating	your	results	easier.	With	the
rapid	development	of	web	technology	over	the	past	decade	and	the
maturation	of	web	mapping,	it	is	easier	than	ever	to	communicate	spatial
information	with	your	organization,	your	stakeholders,	or	the	public.	Esri’s
ArcGIS	Online	provides	a	suite	of	tools	that	makes	it	simple	to	publish
spatial	data	and	imagery	in	the	form	of	web	maps,	apps,	and	story	maps.
Geoprocessing	services	expose	the	full	power	of	Esri’s	ArcGIS	suite	of
GIS	analytics	to	end	users	via	web	maps	and	apps.



Acronyms

μm micrometer
3DEP 3D	Elevation	Program
6S second	simulation	of	the	satellite	signal	in	the	solar	spectrum
ACIC Aeronautical	Chart	and	Information	Center
ACORN atmospheric	correction	now
AFPO Aerial	Photography	Field	Office
ALI Advanced	Land	Imager
AMI Amazon	machine	image
ANN artificial	neural	network
API application	programming	interface
ASPRS American	Society	of	Photogrammetry	Remote	Sensing
ASTER Advanced	Spaceborne	Thermal	Emission	and	Reflection

Radiometer
AT aerial	triangulation
ATCOR atmospheric	correction
AVHRR Advanced	Very	High	Resolution	Radiometer
AVIRIS Airborne	Visible/Infrared	Imaging	Spectrometer
BigML big	machine	learning
BIL band	interleaved	by	line
BIP band	interleaved	by	pixel
BLM Bureau	of	Land	Management
BRDF bidirectional	reflectance	distribution	function
BSP bispectral	plots
BSQ band	sequential
CART classification	and	regression	tree
CBP Chesapeake	Bay	Program



C-CAP Coastal	Change	Analysis	Program
CCD charged	coupled	device
CCDC continuous	change	detection	and	classification
CE90 circular	error	90	percent
CEOS Committee	on	Earth	Observation	Satellites
CHM canopy	height	model
CIR color	infrared
CLASS Comprehensive	Large	Array-Data	Stewardship	System
CMAS circular	map	accuracy	standard
CPU central	processing	unit
CRF cloud	readiness	format
DA divergence	analysis
DAAC Distributed	Active	Archive	Center
DAS direct	access	storage
DEC deciduous
DEM digital	elevation	model
DHM digital	height	model
DN digital	number
DOS dark	object	subtraction
DOT Department	of	Transportation
DOY day	of	year
DRA dynamic	range	adjustment
DSM digital	surface	model
DTM digital	terrain	model
ECW enhanced	compression	wavelet
EG evergreen
EM electromagnetic
EO earth	observation
EOL end	of	life
EROS Earth	Resources	Observation	and	Science
ESA European	Space	Agency
ETM Enhanced	Thematic	Mapper
EVI Enhanced	Vegetation	Index



FAA Federal	Aviation	Authority

FAO Food	and	Agricultural	Organization
FEMA Federal	Emergency	Management	Agency
FGDC Federal	Geographic	Data	Committee
FLAASH fast	line-of-sight	atmospheric	analysis	of	spectral	hypercubes
FMV Full	Motion	Video
FOV field	of	view
FRAP Fire	Resource	Assessment	Program
FSA feature	space	analysis
FTP file	transfer	protocol
GAP Gap	Analysis	Program
GCP ground	control	point
GDAL Geospatial	Data	Abstraction	Library
GEDI Global	Ecosystem	Dynamics	Investigation
GIBS Global	Imagery	Browse	Services
GIS geographic	information	system
GloVis Global	Visualization	Viewer
GLS global	land	survey
GPS global	positioning	system
GRIB general	regularly-distributed	information	in	binary	form
GSD ground	sample	distance
HAC height	above	channel
HAR height	above	river
HDF hierarchical	data	format
HH horizontal	transmit	and	horizontal	receive
HiPS high	pixel	size
HOT Humanitarian	Open	Street	Map	Team
HV horizontal	transmit	and	vertical	receive
HVH high	and	very	high
ICS image	coordinate	system
IDL interactive	data	language
IFOV instantaneous	field	of	view



IFSAR interferometric	synthetic	aperture	radar
IMD image	metadata
IMU inertial	measurement	unit
IR infrared
ISODATA iterative	self-organizing	data	analysis
JPEG Joint	Photographic	Experts	Group
KML Keyhole	Markup	Language
LCCS Land	Cover	Classification	System
LERC limited	error	raster	compression
LoPS low	pixel	size
LUT lookup	table
LZW Lempel–Ziv–Welch
MAPPS Management	Association	of	Private	Photogrammetric	Surveyors
MAS map	accuracy	standard
MIR middle	infrared
MMU minimum	mapping	unit
MODIS Moderate	Resolution	Imaging	Spectroradiometer
MODTRAN moderate	resolution	atmosphere	transmission
MRF meta	raster	format
MrSID multiresolution	seamless	image	database
MSS multispectral	scanner
NAARA National	Archives	and	Records	Administration
NAIP National	Agricultural	Imagery	Program
NAPP National	Aerial	Photography	Program
NAS network	attached	storage
NASA National	Aeronautics	and	Space	Administration
NBR normalized	burn	ratio
NCAR National	Center	for	Atmospheric	Research
NDEP National	Digital	Elevation	Program
NDMI normalized	difference	moisture	index
NDS native	display	scale
NDVI normalized	difference	vegetation	index
NED National	Elevation	Dataset



NetCDF network	common	data	form
NFS network	file	system
NGA National	GeoSpatial-Intelligence	Agency

NGO nongovernmental	organization
NHAP National	High	Altitude	Program
NHD National	Hydrography	Dataset
NIR near	infrared
NLCD national	land	cover	data
nm nanometer(s)
NMAS National	Map	Accuracy	Standards
NOAA National	Oceanic	and	Atmospheric	Administration
NRCS Natural	Resources	Conservation	Service
NSSDA National	Standard	for	Spatial	Data	Accuracy
NVCS National	Vegetation	Classification	Standard
OGC Open	Geospatial	Consortium
OLI Operational	Land	Imager
OOB out	of	bag
OpenCV open	source	computer	vision
PCA principal	components	analysis
PNG Portable	Network	Graphics
RBF radial	basis	function
REST representational	state	transfer
RGBN red,	green,	blue,	and	near-infrared
RMSE root	mean	square	error
RPC rational	polynomial	coefficient
SAN storage	area	network
SAR synthetic	aperture	radar
SAVI soil-adjusted	vegetation	index
SID security	identifier
SIR shuttle	imaging	radar
SLC Scan	Line	Corrector
SPA spectral	pattern	analysis



SPOT Satellite	Pour	l’Observation	de	la	Terre	(satellite	for	observation	of
Earth)

SQL structured	query	language
SRTM Shuttle	Radar	Topography	Mission
sUAS small	unmanned	aerial	system
SVM support	vector	machine
SWaP Size,	weight,	and	power
SWIR short-wave	infrared
TCA tasseled-cap	analysis
TCT tasseled-cap	transformation
TIFF tagged	image	file	format
TIN triangular	irregular	network
TIR thermal	infrared
TIRS thermal	infrared	sensor
TM thematic	mapper
TWI topographic	wetness	index
UAS unmanned	aerial	system
UAV unmanned	aerial	vehicle
URL universal	resource	locator
USDA United	States	Department	of	Agriculture
USGS United	States	Geological	Survey
UTM Universal	Transverse	Mercator
UVM University	of	Vermont
VIIRS Visible	Infrared	Imaging	Radiometer	Suite
VNIR visible	and	near-infrared
VV vertical	transmit	and	vertical	receive
WCS web	coverage	service
WELD web-enabled	Landsat	data
WMS Web	Map	Service
WMTS Web	Map	Tile	Service
WPS Wi-Fi	Protected	Setup



Glossary

A
accuracy	assessment:	Quantitative	sampling	and	analysis	that	identifies	and
measures	map	error.

affine	transform:	Method	of	warping	an	image	by	applying	scale,	rotation	and
shear	such	that	parallel	lines	remain	parallel.

agility:	Ability	of	a	remote	sensing	platform	to	change	position,	including
positioning	itself	over	a	target,	remaining	in	the	target	area,	or	slewing	across	the
target	area.

airborne	imagery:	Data	collected	by	sensors	on	airborne	platforms;	airborne
platforms	include	airplanes,	helicopters,	balloons,	and	unmanned	aerial	vehicles.

Anderson	classification	scheme:	Early	land	cover/land	use	classification
scheme	developed	by	the	US	Geological	Survey	for	use	with	remotely	sensed
imagery.

annulus:	The	area	bounded	by	two	concentric	circles,	often	used	to	determine	a
neighborhood	for	statistical	calculations.

anthropogenic:	Caused	by	or	resulting	from	human	activity.

arcsecond	(as	“arc	second”):	The	distance	traversed	on	the	Earth’s	surface
while	traveling	1/3600th	of	a	degree	of	latitude	or	longitude.

aspect:	The	downslope	direction	of	the	maximum	rate	of	change	in	value	from
each	cell	to	its	neighbors.

B
band:	The	information	stored	in	one	raster,	often	recording	reflectance	or
radiation	in	a	specific	range	of	the	electromagnetic	spectrum.	An	image	may	be
composed	of	one	or	more	bands.



basemap:	a	collection	of	orthorectified	imagery	or	vector	data	used	as	the
background	for	a	map.

bathymetry:	The	science	of	measuring	and	charting	the	depths	of	water	bodies
to	determine	the	topography	of	a	lake	bed	or	seafloor.

bispectral	plot:	Graph	where	samples	from	two	bands	are	plotted
simultaneously,	with	one	band	on	the	x	axis	and	the	other	on	the	y	axis,	used	to
evaluate	the	linkage	between	the	variation	in	the	image	and	the	ground.

block	adjustment:	A	technique	used	in	photogrammetry	to	align	and	accurately
georeference	satellite	images	or	aerial	photographs	of	an	area	or	a	project	(i.e.	a
block).	The	process	produces	the	best	statistical	fit	between	images,	for	the
whole	contiguous	block,	minimizing	errors	with	the	ground	control	and	between
images.

breakline:	Linear	feature	that	defines	the	location	of	a	sudden	change	in	the
slope	of	the	terrain.

C
classification:	The	manual	or	semi-automated	process	of	assigning	the	pixels	or
objects	of	an	image	to	a	set	of	categories	or	classes	as	determined	by	the
classification	scheme.

classification	scheme:	Hierarchical	rules	that	determine	the	class	categories	to
which	image	pixels	or	objects	will	be	assigned	when	an	image	is	classified.
Classification	schemes	are	driven	by	user	requirements.

collection	characteristics:	Attributes	of	a	remote	sensing	system	that	determine
how	imagery	is	collected,	including	spectral,	radiometric,	spatial,	and	temporal
resolutions,	viewing	angle,	and	extent.

color	(image	element):	The	intensity	of	spectral	response	of	an	object	across
more	than	one	band;	used	to	help	identify	the	object.

color	balancing:	A	technique	used	to	adjust	the	color	rendition	between	images
to	make	transitions	from	one	image	to	an	adjoining	image	appear	seamless.

compression:	The	process	of	reducing	the	size	of	a	digital	file	or	database.
Compression	can	improve	data	handling,	storage,	and	database	performance.	See
also	lossy	compression,	lossless	compression.

confluence	of	evidence:	The	convergence	of	image	elements	that	indicates	the



most	likely	label	for	an	image	pixel	or	object	as	defined	by	the	classification
scheme.	The	concept	of	the	confluence	of	evidence	is	used	in	both	manual	and
semi-automated	image	classification.

context	(image	element):	The	neighbors	of	an	object	of	interest,	used	to	help
identify	the	object

convolution	filter:	A	function	applied	to	the	pixel	values	in	an	image	used	for
sharpening,	blurring,	detecting	edges,	or	other	kernel-based	image
enhancements.

crosswalk:	Table	illustrating	equivalent	categories	in	two	or	more	classification
schemes.

D
date	(image	element):	The	date	and	time	an	image	was	acquired,	used	to	help
identify	an	object	of	interest.

datum:	Defines	the	origin	and	orientation	of	a	coordinate	system,	providing	a
frame	of	fixed	reference	for	measuring	location	on	the	earth’s	surface.

dendrogram:	Diagram	with	a	tree-like	structure	representing	hierarchical
clustering.

derivative	bands:	The	result	of	processing	imagery	to	create	transformed	bands
representing	information	or	characteristics	different	from	the	original	bands.

digital	elevation	model	(DEM):	A	raster	whose	pixel	values	represent
elevations	of	a	surface,	most	commonly	the	elevations	of	the	ground.

digital	ortho	quarter-quad	(DOQQ):	1-meter	resolution	aerial	image	that	has
been	orthorectified	to	remove	image	displacements,	resulting	in	map-level
accuracy;	covers	an	area	of	3.75	minutes	longitude	by	3.75	minutes	latitude.

discrete	cosine	transform:	Method	of	lossy	compression;	used	by	JPEG	format,
for	example.

divergence	analysis:	Statistical	technique	used	to	determine	which	bands	to	use
for	creating	the	best	thematic	map	for	a	given	mapping	project	and	classification
scheme.

drone	imagery:	Still	images	and	video	gathered	from	sensors	mounted	on
remotely	piloted	vehicles.	Drones	are	also	known	as	unmanned	aerial	vehicles
(UAV)	or	unmanned	aerial	systems	(UAS).



dynamic	image	service:	Provides	web	access	to	a	collection	of	images	such	that
the	calling	application	can	define	the	processing	to	be	applied	to	the	source
raster	as	well	as	how	the	resulting	image	is	composed	from	overlapping	rasters.
Processing	can	affect	both	the	radiometry	and	geometry	of	the	pixels	and	the
ordering	can	preference	one	raster	over	the	other	or	have	the	pixels	blended.	See
also	image	service.

E
electromagnetic	energy:	Energy	(such	as	that	emitted	from	the	sun)	that	moves
through	space	at	the	speed	of	light	at	different	wavelengths.	Types	of
electromagnetic	wavelengths	include	gamma,	x,	ultraviolet,	visible,	infrared,
microwave,	and	radio.

ellipsoid	height:	Distance	above	the	reference	ellipsoid	used	to	approximate	the
earth’s	surface.	(See	also	orthometric	height).

envelope:	The	minimum	bounding	rectangle	that	defines	the	extent	of	a	selected
map	or	raster.

error	matrix:	Table	used	to	determine	thematic	map	accuracy	by	comparing	the
map	classification	to	reference	data,	also	called	a	contingency	table	in	statistics.

extent:	The	minimum	bounding	area	of	a	geospatial	data	layer	(raster	or	vector).

F
feature	space	analysis:	2	dimensional	plot	of	all	of	the	values	of	two	bands	of
an	image	dataset	used	to	determine	the	degree	of	between-band	correlation;
similar	to	a	bispectral	plot.

float:	A	numeric	data	type	capable	of	storing	large	numbers	with	an	accuracy	of
seven	digits	after	the	decimal	point.

flow	accumulation:	The	number	of	cells	(weighted	or	not)	flowing	into	each
cell	in	a	raster.	Represents	a	cell’s	upstream	catchment	area.	Can	be	used	to
identify	stream	channels	and	local	topographic	height.

footprint:	The	extent	of	each	image	or	raster	dataset.	A	mosaic	dataset	contains
footprints	of	all	the	rasters	comprising	the	mosaic	dataset.

function	chain:	An	ordered	list	of	image	processing	functions	applied	to	a	raster
or	mosaic	dataset	that	are	performed	as	the	data	is	accessed.



G
Gamma:	The	degree	of	contrast	between	the	midlevel	gray	values	of	a	raster
dataset	(it	does	not	affect	the	black	or	white	values).	By	applying	a	gamma
correction,	you	can	control	the	overall	brightness	of	a	raster	dataset,	as	well	as
the	ratios	of	red	to	green	to	blue.

geoid:	An	approximation	of	the	earth’s	mean	sea	level	surface	with	respect	to	a
defined	ellipsoid.	Orthometric	heights	are	referenced	to	a	geoid.

geoprocessing	service:	Geoprocessing	services	run	on	servers.	They	take
requests	and	perform	processing	or	analysis	of	data	on	defined	inputs	and	then
return	the	results	in	the	form	of	features,	maps,	reports,	and	files.

georeferencing:	Aligning	geographic	data	to	a	known	coordinate	system	so	it
can	be	viewed,	queried,	and	analyzed	with	other	geographic	data.
Georeferencing	may	involve	shifting,	rotating,	scaling,	skewing,	and	in	some
cases	warping,	rubber	sheeting,	or	orthorectifying	the	data.

GeoTIFF:	A	Tagged	Image	File	Format	(TIFF)	with	spatial	reference
information.

Global	Positioning	System	(GPS):	A	system	of	radio-emitting	satellites	used
for	determining	positions	on	the	earth.	The	orbiting	satellites	transmit	signals
that	allow	a	GPS	receiver	anywhere	on	earth	to	calculate	its	own	location
through	trilateration.	Developed	and	operated	by	the	U.S.	Department	of
Defense,	the	system	is	used	in	navigation,	mapping,	surveying,	and	other
applications	in	which	precise	positioning	is	necessary.	GPS	positions	are
referenced	to	the	WGS84	ellipsoid	and	datum.

H
height	(image	element):	Distance	between	the	highest	and	lowest	points	of	an
object	of	interest,	used	to	help	identify	the	object.

histogram:	A	graph	showing	the	distribution	of	values	in	a	set	of	data.
Individual	values	are	displayed	along	a	horizontal	axis,	and	the	frequency	of
their	occurrence	is	displayed	along	a	vertical	axis.

I
image	elements:	All	the	characteristics	of	an	image,	including	its	tone/color,



shape,	size,	pattern,	shadow,	texture,	location,	context,	height,	and	date;	also
known	as	the	elements	of	image	interpretation.

image	filter:	On	a	raster,	an	analysis	boundary	or	processing	window	which
changes	the	pixel	values	at	the	center	of	the	window..	Filters	are	used	mainly	in
cell-based	analysis	where	the	value	of	a	center	cell	is	changed	to	the	mean,	the
sum,	or	some	other	function	of	all	cell	values	inside	the	filter.	A	filter	moves
systematically	across	the	entire	raster	until	each	cell	has	been	processed.	Filters
can	be	of	various	shapes	and	sizes,	but	three-cell	by	three-cell	squares	are
common.

image	service:	A	web	service	that	provides	access	to	raster	data.	Image	services
can	be	consumed	in	web	maps,	apps,	and	in	ArcGIS	Desktop.	See	also	dynamic
image	service.

image	statistics:	Statistics	that	are	calculated	from	the	cell	values	of	each	band
in	a	raster,	including	the	minimum,	maximum,	mean,	and	standard	deviation.
Typically	used	to	enable	a	suitable	stretch	to	be	applied	to	the	raster	for
visualization.	For	multispectral	imagery,	covariance	matrix	values	may	be
included.	For	thematic	datasets,	the	number	of	classes	are	included.	Statistics	are
required	for	many	rendering	and	geoprocessing	operations.

image	stretch:	A	display	technique	applied	to	the	histogram	of	raster	datasets,
most	often	used	to	increase	the	visual	contrast	between	cells.

imaging	surface:	A	device	that	measures	the	electromagnetic	energy	captured
by	a	remote	sensing	device.

index:	A	ratio	of	original	image	bands,	sometimes	with	other	factors	or
coefficients	included.

inertial	measurement	unit:	An	electronic	device	that	measures	the	linear
acceleration	and	angular	velocity	of	a	body,	used	to	determine	the	precise
location	of	the	imaging	surface	when	an	image	is	captured.

infrared:	The	portion	of	the	electromagnetic	spectrum	between	visible	and
microwave	wavelengths	with	wavelengths	from	700nm	to	1mm.

insolation:	The	amount	of	solar	radiation	received	by	an	area	over	a	given
period	of	time.

J
JPEG:	(1)	file	format	for	digital	imagery,	(2)	method	of	lossy	compression	for



digital	imagery.

K
Kappa	technique:	Statistic	representing	map	accuracy	that	can	be	used	to	test
whether	two	error	matrices	(and	therefore	maps)	have	a	statistically	significant
difference	from	one	another.

key:	An	attribute	or	set	of	attributes	in	a	database	that	uniquely	identifies	each
record.

L
Landsat:	Multispectral,	earth-orbiting	satellites	developed	by	NASA	and
operated	by	USGS	that	gather	imagery	for	numerous	applications	including	land
use	and	land	cover	mapping,	forest	management,	agricultural	monitoring,
wetlands	management,	and	change	detection.

LERC:	Limited	Error	Raster	Compression.	An	image	or	raster	compression
method	which	supports	rapid	encoding	and	decoding.	Users	set	the	maximum
tolerance	per	pixel	while	encoding,	so	the	precision	of	the	original	input	image	is
preserved	within	user	defined	error	bounds.

light	fall	off:	The	reduction	of	brightness	at	the	edges	of	an	image	compared	to
its	center.

lidar:	(light	detection	and	ranging)	An	active	optical	remote-sensing	technology
that	uses	laser	pulses	to	densely	sample	the	surface	of	the	earth,	producing
highly	accurate	x,y,z	measurements.

location	(image	element):	The	x,	y,	and	z	coordinates	of	an	object	of	interest,
used	to	help	identify	the	object.

lossless	compression:	Data	compression	that	has	the	ability	to	store	data	without
changing	pixel	values,	but	is	only	able	to	compress	the	data	at	a	low
compression	ratios	(typically	2:1	or	3:1).	In	GIS,	lossless	compression	is	often
used	to	compress	raster	data	when	the	pixel	values	of	the	raster	will	be	used	for
analysis	or	deriving	other	data	products.	See	also	lossy	compression,	LERC.

lossy	compression:	Data	compression	that	provides	high	compression	ratios	(for
example	10:1	to	20:1),	but	does	not	retain	all	the	information	in	the	original
pixel	data.	In	GIS,	lossy	compression	is	used	to	compress	raster	datasets	that	will



be	used	as	background	images,	but	is	typically	not	suitable	for	raster	datasets
used	for	analysis	or	deriving	other	data	products.	See	also	lossless	compression,
LERC.

M
machine	learning:	A	branch	of	artificial	intelligence	that	is	often	applied	to
imagery	and	GIS	datasets	to	perform	semi-automated	mapping.	Machine
learning	is	used	to	map	all	sorts	of	features	and	land	use	types.

map	accuracy:	The	degree	to	which	a	value	or	label	on	the	map	matches	values
or	labels	measured	on	the	ground	or	from	other	reference	data.	Accuracy	is	a
measure	of	correctness.	It	is	distinguished	from	precision,	which	measures
exactness.

map	precision:	The	closeness	of	a	repeated	set	of	observations	of	the	same
quantity	to	one	another.

mapping	key:	See	classification	scheme.

Margfit	technique:	Method	of	analyzing	an	error	matrix’s	accuracy	that	uses	an
iterative	proportional	fitting	routine	to	normalize	the	error	matrix	so	that	it	can
be	directly	compared	to	another	error	matrix	regardless	of	the	number	of	samples
used	to	create	the	matrix.

mensuration:	Applying	geometric	rules	to	find	the	length	of	a	line,	area	of	a
surface,	or	volume	of	an	object	using	the	information	obtained	from	lines	and
angles.

microwave:	The	portion	of	the	electromagnetic	spectrum	between	infrared	and
radio	wavelengths,	with	wavelengths	from	1mm	to	1	meter.

minimum	mapping	unit:	The	size	of	the	smallest	object	to	be	identified	on	the
ground;	determines	the	required	spatial	resolution	of	imagery	for	a	mapping
project.

MIXED:	Common	file	format	for	cached	tiles	that	contains	both	JPEG	and	PNG
files.

mosaic	dataset:	In	ArcGIS,	a	data	model	within	a	geodatabase	used	to	manage
collections	of	raster	datasets	stored	as	a	catalog	and	viewed	as	a	single
mosaicked	image	or	individual	images.

multitemporal:	Characteristic	of	a	collection	of	rasters	or	other	features	that



have	multiple	time	or	date	stamps.

MXD:	File	extension	for	an	Esri	ArcGIS	map	document.

N
nadir:	In	aerial	photography	or	satellite	imagery,	the	point	on	the	ground
vertically	beneath	the	perspective	center	of	the	camera	lens	or	scanner’s
detectors.

near-infrared:	The	portion	of	the	electromagnetic	spectrum	from	about	700	nm
to	2500	nm.

NoData:	pixels	without	data,	often	represented	by	a	value	that	is	not	valid
elsewhere	in	the	dataset.

nonparametric:	Describing	statistics	that	do	not	make	assumptions	about
variables’	probability	distributions.

O
occlusion:	The	phenomenon	in	which,	due	to	viewing	angle,	one	object	blocks
another	object	from	view	in	an	image.

off-nadir	angle:	The	angle	between	nadir	and	a	ray	of	light	from	the	sensor	to
the	object	being	observed.

off-nadir	view:	The	view	of	any	object	not	directly	beneath	a	scanner’s
detectors	or	camera	lens,	but	rather	off	at	an	angle;	results	in	relief	displacement.

on-demand	caching:	An	Esri	image	service	feature	that	allows	you	to	set	up	a
tiling	scheme	and	publish	an	image	service,	but	only	generate	the	cache	when
and	where	a	user	accesses	the	service.	The	tiles	are	drawn	by	the	server	when	an
initial	user	navigates	to	an	un-cached	area,	then	added	to	the	service’s	cache
folder	(where	they	remain	until	updated	or	deleted	by	the	server	administrator).

ordination:	A	type	of	multivariate	statistical	analysis	used	in	community
ecology	and	remote	sensing	to	order	observations	along	axes	for	each	variable
measured.

ortho:	See	orthophotography.

orthocorrected:	See	orthorectification.

orthogonal:	Uncorrelated	or	independent.



orthoimage:	See	orthophotography.

orthometric	height:	Vertical	distance	above	an	approximation	of	the	earth’s
mean	sea	level	(called	a	geoid).	Water	should	always	run	downhill	on	a	terrain
model	with	orthometric	heights.

orthomosaic:	Georeferenced	image	product	mosaicked	from	an	image
collection,	where	the	geometric	distortion	of	the	individual	images	has	been
corrected	by	orthorectification.

orthophotography:	Photographs	or	images	from	which	displacements	due	to
camera	orientation	and	ground	relief	have	been	removed.	An	orthophoto	has	the
same	scale	throughout	and	can	be	used	as	a	map.

orthorectification:	Process	by	which	imagery	is	geometrically	corrected	so	that
coordinates	in	the	imagery	accurately	represent	coordinates	on	the	ground.

overall	accuracy:	The	most	common	measure	of	a	map’s	thematic	accuracy;
sums	the	samples	on	the	major	diagonal	of	the	error	matrix	which	is	then	divided
by	the	total	number	of	samples.

P
pan	sharpening	(as	“pan-sharpening”):	A	radiometric	transformation	in	which
a	higher-resolution	panchromatic	image	is	fused	with	a	lower-resolution
multiband	raster	dataset.	It	is	used	to	increase	spatial	resolution	and	better
visualize	a	multiband	image.

parallax:	The	apparent	displacement	of	the	position	of	an	object	relative	to	a
reference	point	due	to	a	change	in	the	point	of	observation;	used	to	create	stereo
imagery.

parallelepiped:	An	algorithm	used	to	label	unknown	pixels	in	an	image	based
on	training	statistics	that	uses	minimum	and	maximum	values	as	a	surrogate	for
variance.

pattern	(image	element):	The	spatial	arrangement	or	configuration	of	objects,
used	to	identify	an	object	of	interest.

phenology:	The	study	of	the	seasonal	cycles	of	plants,	animals,	and	climate.

pixel	value:	Digital	number	(DN)	representing	information	stored	in	one	pixel
(or	cell)	of	a	raster.	The	area	summarized	by	one	pixel	value	is	determined	by	the
spatial	resolution	of	the	imagery.



pixel:	In	remote	sensing,	the	fundamental	unit	of	data	collection.	A	pixel	is
represented	in	a	remotely	sensed	image	as	a	cell	in	an	array	of	data	values.

platform:	The	vehicle	that	supports	and	transports	sensors	that	gather	remote
sensing	data.

PNG:	portable	network	graphic.	A	lossless	format	for	compressing	images	that
is	supported	by	all	web	browsers.

positional	accuracy:	The	comparison	of	sample	locations	of	an	image	or	a	map
to	the	same	locations	surveyed	on	the	ground.

principal	component	analysis:	A	data	transformation	method	that	rotates	the
axes	of	the	input	bands	to	a	new	multivariate	attribute	space	in	which	the	axes
are	uncorrelated/orthogonal.	The	main	reason	to	transform	the	data	in	a	principal
component	analysis	is	to	reduce	the	number	of	necessary	bands	by	eliminating
redundancy.

processing	template:	A	function	chain	in	which	the	user	uses	a	raster	variable	in
place	of	a	specific	dataset	so	that	the	function	chain	can	be	applied	to	other	raster
datasets.	Used	to	generate	on-the-fly	information	layers.

pyramid:	Reduced-resolution	datasets	stored	for	an	individual	image	that	are
used	to	read	and	display	imagery	quickly	at	lower	resolutions.

Q
quad:	See	digital	ortho	quarter-quad.

R
radar:	radio	detection	and	ranging.	A	device	or	system	that	detects	surface
features	on	the	earth	by	bouncing	radio	waves	off	them	and	measuring	the
energy	reflected	back.

radiometric	resolution:	Describes	the	sensitivity	of	a	sensor	to	differences	in
electromagnetic	energy	It	is	often	represented	by	the	bit	depth	of	the	sensor.
Typical	sensors	have	8bit,	11bit	12bit	or	16bit	depth	per	band;	the	higher	the	bit
depth	the	higher	the	sensitivity	and	radiometric	resolution	of	the	sensor.

raster	function:	Defines	processing	operations	that	can	be	applied	to	one	or
more	rasters	on	the	fly	as	the	data	is	accessed	and	viewed,	speeding	up
processing	time.	See	also	function	chains.



raster:	Matrix	of	cells	(or	pixels)	organized	into	rows	and	columns	where	each
cell	contains	a	value	representing	data	or	information.

ratio	bands:	A	derivative	band	generated	by	dividing	one	original	band	by
another.

reference	data:	A	baseline	dataset	used	to	compare	processed	or	classified	data
to	assess	accuracy	of	results.	It	is	primarily	used	to	assess	geo-positional	or
feature	classification	accuracy.	Reference	data	is	often	collected	with	ground
sampling.

reprojection:	The	mathematical	conversion	of	a	map	or	raster	from	one
projected	coordinate	system	to	another,	generally	used	to	integrate	maps	from
two	or	more	projected	coordinate	systems	into	a	GIS.

resolving	power:	The	amount	of	detail	the	sensor	can	capture	in	each	image,
determined	by	the	combination	of	the	sensor’s	lens	and	the	resolution	of	the
imaging	surface.

REST	API:	representational	state	transfer.	An	interface	that	simplifies
interactions	between	GIS	applications	and	web	servers.	The	REST	API	allows
applications	to	make	a	collection	of	standardized	requests	to	a	server	and	get
well	defined	responses.

S
satellite	imagery:	Data	(often	images	of	the	earth)	collected	by	sensors	on
satellite	platforms.

scale:	The	ratio	or	relationship	between	a	distance	or	area	on	a	map	and	the
corresponding	distance	or	area	on	the	ground,	commonly	expressed	as	a	fraction
or	ratio.	A	map	scale	of	1/100,000	or	1:100,000	means	that	one	unit	of	measure
on	the	map	equals	100,000	of	the	same	unit	on	the	earth.

seamline:	A	polygon	or	polyline	that	defines	the	boundary	between	adjoining
rasters	in	a	mosaic.	Overlapping	rasters	can	be	blended	along	the	seamline	by	a
specified	width	so	as	to	reduce	the	sudden	change	from	one	raster	to	the	next.

sensor:	An	electronic	device	for	detecting	electromagnetic	energy	and
converting	it	into	a	signal	that	can	be	recorded	as	numbers	and	displayed	as	an
image.

serpentine:	A	type	of	soil	originating	from	ultramafic	rocks,	often	associated
with	plants	that	tolerate	extreme	soil	conditions.



shadow	(image	element):	The	consequence	when	the	sensor’s	ability	to	capture
reflectance	or	radiance	of	a	feature	on	the	ground	is	hindered	by	another	feature;
used	to	help	identify	objects	of	interest.

shape	(image	element):	The	form	of	the	outline	of	an	object	of	interest,;	used	to
help	identify	objects	of	interest.

size	(image	element):	The	area	of	an	object	of	interest,;	used	to	help	identify
objects	of	interest.

slope:	The	incline,	or	steepness,	of	a	surface,	measured	in	degrees	from
horizontal	(0–90),	or	percent	slope	(the	rise	divided	by	the	run,	multiplied	by
100).	The	slope	of	a	TIN	face	is	the	steepest	downhill	slope	of	a	plane	defined
by	the	face;	the	slope	for	a	cell	in	a	raster	is	the	steepest	slope	of	a	plane	defined
by	the	cell	and	its	eight	surrounding	neighbors.

solar	insolation:	The	amount	of	solar	radiation	received	by	an	area	over	some
user-defined	period.

spatial	resolution:	(1)	The	smallest	spatial	element	on	the	ground	that	is
discernible	on	an	image,	(2)	the	smallest	spatial	unit	on	the	ground	that	a	sensor
is	able	to	image.

Spectral	pattern	analysis:	A	x,	y	plot	of	the	mean	value	for	each	map	class	for
each	band	in	the	imagery	(original	and	derivative	bands).	The	bands	are	on	the	x
axis	and	the	reflectance	values	(DNs)	are	on	the	y	axis.	SPA	is	used	to	determine
the	bands	that	show	the	most	separability	between	the	map	classes.

spectral	resolution:	The	wavelengths	of	the	electromagnetic	spectrum	that	an
imaging	system	can	detect;	determined	by	the	location	of	the	bands,	the	number
of	bands	and	the	wavelength	range	detected	by	each	band.

stability:	The	ability	of	a	sensor	to	resist	changes	in	position	and	angle.

T
Tasseled	Cap	Transformation:	Also	known	as	the	Kauth-Thomas
transformation;	uses	an	empirically	derived	transformation	of	image	bands	into
new	bands	that	measure	brightness,	greenness,	and	wetness.

temporal	resolution:	The	frequency	at	which	images	are	captured	over	the	same
location	on	the	earth’s	surface.

texture	(image	element):	The	arrangement	or	repetition	of	tone/color	across	an



image,	often	defined	as	the	feel	or	appearance	of	the	surface	of	an	object	of
interest,	used	to	help	identify	the	object.	Mathematically,	it	is	usually	calculated
as	the	standard	deviation	of	a	defined	window	of	pixels.

thematic	accuracy:	Measures	whether	map	feature	labels	are	different	from	the
actual	feature	label	as	determined	from	the	ground	or	other	reference	data.

tile	cache	service:	Highly	compressed,	preprocessed	imagery	delivered	from
servers	to	applications	and	end	users,	used	primarily	for	providing	background
imagery	and	unsuitable	for	analysis.

tiling	scheme:	Describes	how	clients	should	reference	the	tiles	in	a	cache.	The
tiling	scheme	maps	between	the	spatial	reference	of	the	source	map	document
and	the	tiling	grid.	It	also	defines	the	scale	levels	at	which	the	cache	has	tiles,	the
size	of	the	tiles	in	pixels,	and	the	screen	resolution	for	which	the	tiles	are
intended	to	be	displayed.

tiling:	The	internal	subsetting	of	a	spatial	dataset,	especially	a	raster,	typically
used	to	process	or	analyze	a	large	dataset	without	consuming	vast	quantities	of
computer	memory.

TIN:	triangulated	irregular	network;	a	data	structure	used	in	a	GIS	to	represent	a
surface.

tone	(image	element):	Characteristic	of	an	object	of	interest	derived	from	the
intensity	of	spectral	response	in	each	band	of	an	image,	used	to	help	identify	the
object.

topography:	The	study	and	mapping	of	land	surfaces,	including	relief	(relative
positions	and	elevations)	and	the	position	of	natural	and	constructed	features.

transform:	A	function	that	takes	an	image	as	input	and	generates	an	image	as
output	by	applying	changes	to	the	radiometry	and	or	geometry	of	the	pixels,

transformed	band:	The	result	of	applying	a	function	to	a	band.

U
UAV:	unmanned	aerial	vehicles;	Platforms	used	to	collect	remote	sensing	data
which	are	piloted	by	users	on	the	ground	rather	than	in	the	aircraft;	also	referred
to	as	drones	or	unmanned	aerial	systems	(UAS).

V



vegetation	alliance:	A	lower-level	unit	in	the	National	Vegetation	Classification
Standard	that	identifies	ranges	with	similar	species	composition	and	abundance.

visualization	imagery:	Imagery	used	to	help	the	user	understand	the	context	of
a	location.

visible:	The	portion	of	the	electromagnetic	spectrum	that	human	eyes	can	sense,
typically	wavelengths	from	390	to	700nm.

W
wavelet	transform:	Method	of	lossy	compression;	used	by	JPEG	2000,	for
example.

web	map	(as	“webmap”):	Interactive,	shareable	display	of	geographic
information	accessed	online.

web	service:	A	software	component	accessible	over	the	internet	for	use	in	other
applications.	Web	services	are	built	using	industry	standards	such	as	XML	and
SOAP,	and	thus	are	not	dependent	on	any	particular	operating	system	or
programming	language,	allowing	access	to	them	through	a	wide	range	of
applications.

X
xeric:	Needing	very	little	moisture,	as	in	drought-tolerant	plants.
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using,	in	ArcGIS	desktop

Image	stretch
Image-to-map	comparisons,	multitemporal
Image-to-map	registration,	See	also	Geometric	correction



Image	variance,	managing
Imaging	surfaces
Indices

for	change	images
as	derivative	bands

Inertial	measurement	units	(IMUs)
Information

continuous	vs.	discrete
data	vs.
turning	data	into	map
types	of

Informed	decisions,	making
Instantaneous	field	of	view	(IFOV)
Interferometric	synthetic	aperture	radar	(IFSAR)
International	Society	for	Photogrammetry	and	Remote	Sensing
International	Space	Station
Interpretation	key

iOS,	app	development	for

Iterative	self-organizing	data	analysis	technique	(ISODATA)	clustering	algorithm

Japan,	radar	platforms
JavaScript	API
Jet	aircraft	sensing	platform
JPEG	file	format
Kalaupapa	National	Historical	Park	(Hawaii)
Kappa	analysis	technique
Kauth–Thomas	transform
Kentucky	Geological	Survey
Kernel	(filtering)
Kernel	(SVM)
K-means	clustering	algorithm
Kodak

Lambert	conformal	projection
Land	cover,	slope/aspect	correlation	with
Land	Cover	Atlas
Land	Remote	Sensing	Commercialization	Act	(1984)
Land	Remote	Sensing	Policy	Act	(1992)
Landsat	(satellite),	first	launch
Landsat

Scan	Line	Corrector
spectral	resolution
WELD	data

Landsat
image	service
and	NDVI
spectral	resolution



thematic	map	created	from
Landsat	Operational	Land	Imagery	sensor
Landsat	archive	service
Landsat	Explorer
Landsat	Global	Land	Survey
Landsat	imagery

access	to
calibration	quality
and	continuous	change	analysis
effects	of	price	and	licensing	on	use	of
and	Esri	World	Imagery
extent
first	civilian	digital	satellite	scanners
importance	of
moderate-	and	low-spatial-resolution
multispectral
multitemporal	image	analysis
positional	accuracy
in	public	domain
public	domain	imagery
and	Sonoma	Vegetation	Mapping	project
spatial	resolution
spectral	data	accuracy
thermal	imaging	sensors
viewing	angle

Landsat	Multispectral	Scanner	(MSS)
Landsat	TM/ETM
Landsat	TM	imagery

and	BSPs
and	PCA
and	SPA

Landsat	TM	sensor
Large-scale	imagery
LASer	(LAS)	data	format
Las	Vegas,	Nevada,	vegetation	change	in
Latitude
Leica	Geosystems
Lenses
LERC	(Limited	Error	Raster	Compression)
LibSVM
Licensing
Lidar	imagery

data	formats
and	DEMs
and	DSMs
and	elevation	data
and	forest	canopy	metrics
for	forest	canopy	metrics



future	of	data	collection	by
and	hillshades
point	cloud	(See	Point	cloud)
point	density
stream	centerline	imaging

Limited	Error	Raster	Compression	(LERC)
Lines
Living	Atlas
Location	(image	element)
Logical	consistency	of	map
Longitude
Lossless	compression
Lossy	compression
Louisiana,	2016	floods
Low-pass	filters

Machine	learning	techniques
artificial	neural	networks
best	practices
CART	analysis
Random	Forests
support	vector	machines

Management	Association	of	Private	Photogrammetric	Surveyors
Managing	image	collections.	See	Mosaic	dataset
Manual	image	interpretation
Map(s)

accuracy	assessment	(See	Accuracy	assessment)
confluence	of	evidence	and	creation	of
feature
image	classification	for
thematic
types	of,	created	from	imagery
validation	and	editing

Map	classes
Map	error	differences,	managing
Map	projections
Margfit	analysis	technique
Marin	County,	California

maximum	likelihood	algorithm	classification
supervised	image	classification
supervised	vs.	unsupervised	classification
unsupervised	classification

Masking	(postclassification)	change	detection
Maximum	likelihood	algorithm
Mercator	projection
Military	applications
Minimum	distance	algorithm
Minimum	mapping	units	(MMUs)

and	classification	schemes



and	image	segmentation
and	manual	interpretation
and	spatial	resolution	requirements
and	thematic	map	accuracy	assessment

Minimum-maximum	stretch
Mining
Misregistration
Mississippi	River	Delta
Mixed	caches
MMUs.	See	Minimum	mapping	units
ModelBuilder
Moderate-	and	low-spatial-resolution	imagery
Moderate	Resolution	Imaging	Spectroradiometer	(MODIS)

land	surface	reflection	data
moderate-	and	low-spatial-resolution	imagery
multitemporal	image	analysis
spectral	resolution
thermal	imaging

MODTRAN	(MODerate	resolution	atmospheric	TRANsmission)
Mosaic	datasets

about
adding	rasters	to
advanced	tools
attribute	table
block	adjustment
catalog	properties
client-defined	processing
cloud	considerations	for	image	services
color	correction
components
creating
download	properties
dynamic	mosaicking
elevation	data
footprints
from	full-motion	video
image	mosaics	and
image	properties
imagery	from	aircraft	and	unmanned	aerial	systems
integrating	satellite	data	with	different	levels	of	processing
managing	image	collections	with
mosaic	methods
mosaic	operators	for
on-the-fly	processing	with	function	chain
open	standards
optimizing	services	for	performance
overviews
processing	templates



properties
publishing	as	image	services
pyramids
raster	functions
scaling	to	massive	collections
scientific	multidimensional	raster	management
seamline	generation
structure
use	cases

Mosaicking
Mount	St.	Helens
MSS	(Landsat	Multispectral	Scanner)
Multispectral	data
Multispectral	imagery
Multispectral	Imagery	Service
Multispectral	satellite	systems
Multispectral	sensors
Multitemporal	image	analysis

continuous	change	analysis
image	differencing
image-to-map	comparisons
managing	nonchange	differences
manual	interpretation	of	change	from	imagery
map-to-map	comparisons
unsupervised/supervised	classification

MXD	files
Myrtle	Beach,	South	Carolina

Nadir
NAIP.	See	National	Agriculture	Imagery	Program
National	Aeronautics	and	Space	Administration	(NASA)

DAACs
EO-1
program
first	Landsat	satellite
free	access	to	imaging	from
GEDI	mission
Global	Land	Surveys	datasets
Landsat	Global	Land	Survey
public	domain	earth	science	data
SRTM
thermal	imagery

National	Agriculture	Imagery	Program	(NAIP)
and	Esri	World	Imagery
HVH-resolution	imagery
imagery	web	services
multitemporal	image	analysis
and	NDVI
positional	accuracy	assessment	of	imagery



pricing	of	imagery	from
public	domain	imagery	from
Sonoma	Vegetation	Mapping	project
spatial	resolution

National	Archives
National	Center	for	Atmospheric	Research	(NCAR)
National	Elevation	Dataset	(NED)
National	Geospatial	Agency	of	the	Department	of	Defense
National	Geospatial-Intelligence	Agency	(NGA)
National	Hydrography	Dataset	(NHD)
National	Imagery	and	Mapping	Agency
National	Land	Cover	Database
National	Map
National	Map	Accuracy	Standards	(NMAS)
National	Oceanic	and	Atmospheric	Administration	(NOAA)

Climate	Data	Online
Coastal	Change	Analysis	Program	(See	C-CAP)
Digital	Coast
free	access	to	imaging	from
Landsat	program
public	domain	data

National	Park	Service
National	Standard	for	Spatial	Data	Accuracy	(NSSDA)
National	Vegetation	Classification	(NVC)

basis	for	new	classification	schemes
basis	for	Sonoma	County	vegetation	map	classification	key
vegetation	hierarchy

Native	display	scale	(NDS)
Natural	disaster	assessment
Natural	Resources	Conservation	Service	(NRCS)
NCAR	(National	Center	for	Atmospheric	Research)
NDS	(native	display	scale)
NDVI.	See	Normalized	Difference	Vegetation	Index
Nearest	neighbor	interpolation
Near-infrared	(NIR)	light

and	change	images
and	NDVI

NED	(National	Elevation	Dataset)
Neighborhood,	image	filtering	and
New	Orleans,	Louisiana
NGA	(National	Geospatial-Intelligence	Agency)
NHD	(National	Hydrography	Dataset)
NIR	light.	See	Near-infrared	(NIR)	light	NIR/red	ratio
NMAS	(National	Map	Accuracy	Standards)
NOAA.	See	National	Oceanic	and	Atmospheric	Administration
NOAA	Coastal	Change	Analysis	Program.	See	C-CAP
NoData	pixel	value
Nonimagery	geospatial	data



Normalized	burn	ratio
Normalized	difference	moisture	index
Normalized	Difference	Vegetation	Index	(NDVI)
Normalized	DSMs.	See	also	Digital	height	models	(DHMs)
Normalized	Vegetation	Index/red	ratio
NovaSAR-S
NRCS	(Natural	Resources	Conservation	Service)
NSSDA	(National	Standard	for	Spatial	Data	Accuracy)
NVC.	See	National	Vegetation	Classification

Object-based	mapping
Objects,	supervised	image	classification	and
Off-nadir
OGC	(Open	Geospatial	Consortium)
Oil	and	gas	exploration
OLI	(Operational	Land	Manager)
Olympic	Mountains,	Washington
On-demand	caching
Open	Geospatial	Consortium	(OGC)
Openings
Operational	Land	Manager	(OLI)
Oregon	white	oak	(Quercus	garryana)
Organizational	characteristics	of	projects

access
pricing/licensing

Orthorectification
Overall	accuracy	formula
Overviews,	mosaic	dataset

Panchromatic	and	multispectral	imagery
from	active	sensors
passive	(See	Passive	panchromatic	and	multispectral	imagery)

Panchromatic	sensors
Parallax
Parallelepiped	algorithm
Passive	panchromatic	and	multispectral	imagery

growing	supply	of
high-	and	very-high	spatial	resolution
hyperspectral	imagery
moderate	and	low	spatial	resolution
satellites,	comparison	of
sources	of
thermal	imagery

Passive	sensors
active	sensors	vs.
wavelengths	sensed	by

Passive	systems
Paz
PCA	(principal	components	analysis)



Pentagon	(Washington,	D.C.)
Percent	clip	stretch
Percentile	height	metrics
Per-pixel	classification

segmentation	and	object-oriented	classification
in	semiautomated	image	classification

Pflugerville,	Texas
Photoelectric	effect
Photogrammetry,	DEMs	from
Photo	interpretation
Pitch
Pixels

band	ordering
and	digital	array	imaging
recommended	sizes	when	creating	overviews
as	sampling	unit	for	reference	data
in	semiautomated	image	classification
storage	formats
supervised	image	classification
and	supervised	image	classification
tiling

Plainfield,	Vermont
Platforms

agility	of
altitude	of
defined
piloted	vs.	unpiloted
power	of
speed	of
stability	of
types	of

Pleiades	satellite	imagery
PNG	format
Point	cloud
Point	density
Points
Polygons
Positional	map	accuracy	assessment

collecting	reference	data
computing	descriptive	statistics
initial	considerations
with	thematic	map	accuracy	assessment

Postclassification	change	detection	(masking),	See	also	C-CAP	(NOAA	Coastal	Change	Analysis	Program)
Precipitation
Precision,	accuracy	vs.
Precision	agriculture
Pricing
Primary	colors



Prime	Meridian
Principal	components	analysis	(PCA)
Processing	templates
Producer	accuracy	formula
Projective	transform
Properties,	mosaic	dataset
Push	broom	(along-track)	scanners
Pyramids.	See	Image	pyramids
Python

automating	image-processing	workflows	with
and	client-defined	processing
and	NDVI
Python	Adapter	function
and	TCT

Quercus	agrifolia	(coast	live	oaks)
Quercus	garryana	(Oregon	white	oak)
Quercus	lobata	(valley	oaks)
Query	filters
QuickBird

R	(statistical	package)
Rabben,	E.	L.
Radar	imagery
Radar	images
Radial	basis	function	(RBF)	kernel
Radiance

and	atmospheric	correction
reflectance	vs.

Radiometric	correction
atmospheric	correction
sensor	correction
sun	angle	and	topographic	correction

Radiometric	resolution
Random	error
Random	Forests	(machine	learning	algorithm)
Raster(s)

adding	to	mosaic	dataset
bands	in
cell	size	of
scientific	multidimensional	raster	management
types	of
vectors	vs.

Raster	algebra
Raster	data	(raster	grids)
Raster	functions
Raster	products
Raster	pyramids
Raster	web	services



Ratio	(derivative	band)
Rational	polynomial	coefficients	(RPCs)
RBF	kernel
Rectangular	arrays
Redwood	(Sequoia	sempervirens)
Reference	data

ground	truth	vs.
nonsampling	factors
sampling	factors
for	thematic	map	accuracy	assessment

Reflectance
and	atmospheric	correction
radiance	vs.

Reflection
Registration.	See	Image	registration
Relative	atmospheric	correction
Remote	sensors

active	vs.	passive
bodies	of
correcting	radiance	to	reflectance
defined
imaging	surfaces	of
lenses	in
openings	in

Representational	state	transfer	(REST)	API
Resampling
REST	(representational	state	transfer)	API
Riparian	Topography	toolbox
Roll
Root	mean	square	error	(RMSE)
RPCs	(rational	polynomial	coefficients)

Sampling	units/schemes
Satellite	imagery.	See	also	Passive	panchromatic	and	multispectral	imagery;	specific	sources,	e.g.:	Landsat

imagery	atmospheric	correction
integrating	for	mosaic	dataset

Satellite	Imaging	Corporation
Satellites
SAVI	(soil-adjusted	vegetation	index)
Scale,	image
Scaling,	mosaic	datasets
Scan	Line	Corrector	(SLC)
Scanners
Scientific	multidimensional	rasters
Seamlines
Seasat	radar	mission
Second-order	polynomial	transform
Selection	of	imagery

accessibility



budgetary	considerations
determination	of	smallest	identifiable	image
framework	for
needs	vs.	availability
project	area	size/shape/accessibility
project	time	frame
sharing	considerations
spatial/spectral	accuracy	requirements
types	of	features	needed
for	visualization	vs.	mapping

Semiautomated	image	classification
algorithms	for
combined	approaches	to
economies	of	scale	and
history	of
image	segmentation
map	validation	and	editing
supervised	classification
unsupervised	classification

senseFly	eBee
Sensor	correction
Sensors.	See	Remote	sensors
Sentinel
Sentinel-1B
Sentinel-2
Sequoia	sempervirens	(redwood)
Serving	imagery.	See	Image	services
Shadow
Shift	and	scale	change
Shuttle	Imaging	Radar	(SIR)
Shuttle	Radar	Topography	Mission	(SRTM)
Site-specific	accuracy	assessment
6S	(Second	Simulation	of	the	Satellite	Signal	in	the	Solar	Spectrum)
SLC	(Scan	Line	Corrector)
Slope	and	aspect
Small-scale	imagery
Smoothing	(low-pass)	filters
Snow
Soil-adjusted	vegetation	index	(SAVI)
Soil	data
Solar	insolation
Solar	insolation	rasters
Sonar	images
Sonoma	County,	California,	Vegetation	Mapping	project

bare-earth	DEM
clip	and	email	viewer
data	for	DEMs
fog	in



HAR
hierarchical	forest	classification	scheme
imagery	datasets	used	for
lidar-derived	bare-earth	hillshade
manual	interpretation	of	vegetation	types
map
map	classification	key
multispectral	imagery
Random	Forest	importance	matrix
stream	centerlines
supervised	image	classification
vineyard	patterns
wildfire	history

Sonoma	County	Agricultural	Preservation	and	Open	Space	District
Sources	of	imagery

active	sensors
ArcGIS	Online
commercial	photogrammetric	and	remote	sensing	firms
commercial	satellite	companies
comparison	of
government	agencies
passive	panchromatic	and	multispectral	imagery
unmanned	aerial	systems

SPA	(spectral	pattern	analysis)
Spain,	radar	platforms
Spatial	accuracy,	importance	of
Spatial	aliasing
Spatial	analysis
Spatial	Analyst

flow	accumulation	rasters
machine	learning	algorithms
raster	calculation
Slope	tool
solar	insolation

Spatial	autocorrelation
Spatial	awareness
Spatial	information,	mainstreaming	of
Spatial	resolution
Spectral	accuracy/calibration,	importance	of
Spectral	pattern	analysis	(SPA)
Spectral	resolution
Spinning	filters
SPOT	(Satellite	Pour	l’Observation	de	la	Terre)
Spurr,	Stephen
SRTM.	See	Shuttle	Radar	Topography	Mission
Standard	deviation	stretch
Standard	frame	camera	model	(orthorectification)
Stereoscope



Stereo	viewing
Story	maps
Stream	centerlines
Stretch.	See	Image	stretch
Subtractive	primary	colors
Sun	angle
Sun-synchronous	platforms
Supervised	image	classification

machine	learning	techniques	for
manually	derived	rulesets	for
multitemporal
per-pixel	classification
traditional	techniques	for
training	sites

Support	vector	machines	(SVMs)
Surfaces,	imaging

active	vs.	passive	energy	sources	for
and	electromagnetic	spectrum
film	vs.	digital	array
wavelengths	sensed	by

SVMs	(support	vector	machines)
Syncom
Systematic	error

Tasseled-cap	transformation	(TCT)
Technology,	for	communicating	results
Teledyne	Optech	bathymetric	lidar	system
Teledyne	Optech	Titan	system
Temperature,	vegetation	mapping	and
Temporal	resolution
Texture	(image	element)
Thematic	maps.	See	also	Digital	elevation	models	(DEMs)

accuracy	assessment
defined
reference	data	collection
supervised	vs.	unsupervised	classification
SVMs	and
totally	exhaustive	classification	schemes

Thermal	imagery
Thermal	Infrared	Sensor	(TIRS)
3D	Elevation	Program	(3DEP)
3D	transform
3D	viewing
TIFF	files
Tile	cache	services

about
best	practices:	test	before	deploying
cache	configuration
cache	formats



imagery	in	visualization	applications
image	services
on-demand	caching
tiling	scheme

TIRS	(Thermal	Infrared	Sensor)
Tone
Topographic	correction
Topographic	displacement
Topographic	lidar
Training	sites/samples
Transformations	(derivative	bands)
Transmittance
Transverse	Mercator	coordinate	system
Tree	canopy
Triangulation
2D	transforms

UAS.	See	Unmanned	aerial	systems
United	Kingdom,	radar	platforms	in
United	Nations
US	Department	of	Agriculture	(USDA)

Aerial	Photography	Field	Office
Farm	Services	Agency
National	Agriculture	Imagery	Program	(See	National	Agriculture	Imagery	Program)
Natural	Resources	Conservation	Service

US	Forest	Service
US	Geological	Survey	(USGS)

Anderson	classification	scheme
data	for	DEMs
EO-1	program
EROS
Global	Land	Surveys	datasets
Landsat	Global	Land	Survey
Landsat	imagery
Landsat	Look	Viewer
Landsat	spectral	data	accuracy
Landstat	imagery	services
lidar	specifications
NDEP
NHD	flowlines
3DEP

US	National	Satellite	Land	Remote	Sensing	Archive
US	National	Vegetation	Classification	(USNVC).	See	National	Vegetation	Classification	(NVC)
Universal	transverse	Mercator	(UTM)	coordinate	system
University	of	Maryland
University	of	Vermont	(UVM)	UAS	Team
Unmanned	aerial	systems	(UASs;	drones)

adding	imagery	collections	to	mosaic	dataset



HVH-resolution	imagery
mapping	woody	debris	in	Great	Brook
sensing	platforms
thermal	imagery	from

Unsupervised	image	classification
multitemporal
per-pixel	classification

Urban	Observatory
UTM	(Universal	transverse	Mercator)	coordinate	system

Validation	of	maps
Valley	oaks	(Quercus	lobata)
Valtus
Variation,	in	imagery	and	on	ground
Vectors,	rasters	vs.
Vegetation	indices
Vegetation	maps

classification	key
hydrology	data	and
precipitation	and	temperature

Vernal	pools
Video,	mosaic	dataset	creation	from
Viewing	angle
Viewsheds
Volumetric	analysis
Washington,	D.C.,	infrared	imagery
Washington	Monument	(Washington,	D.C.)
Water

and	BRDF
and	supervised	image	classification

Wavelet	compression
Weather	satellites
Web	services,	See	also	Image	services

advantages	of
in	apps
in	ArcGIS	desktop
in	ArcGIS	web	maps
dynamic	image	services
Esri	story	maps
geoprocessing	services
machine	learning	algorithms
for	raster	data

WELD	data
Whisk	broom	scanners
Wildfire	history
Windows,	app	development	for
World	Elevation	services
World	files
WorldView	satellite



Esri	World	Imagery
HVH-resolution	imagery
spatial	resolution
viewing	angle

World	War	I
World	War	II
Wurman,	Richard	Saul

Yaw

Zaatari	refugee	camp,


	Cover Page
	Title Page
	Copyright Page
	Dedication
	Contents
	Acknowledgments
	Section 1: Discovering Imagery
	Chapter 1: Introduction
	Chapter 2: Thinking About Imagery
	Chapter 3: Imagery Fundamentals
	Chapter 4: Choosing and Accessing the Right Imagery

	Section 2: Using Imagery
	Chapter 5: Working with Imagery
	Chapter 6: Imagery Processing: Controlling Unwanted Variation in the Imagery

	Section 3: Extracting Information from Imagery
	Chapter 7: Understanding Variation on the Ground — the Importance of the Classification Scheme
	Chapter 8: Digital Elevation Models
	Chapter 9: Data Exploration: Tools for Linking Variation in the Imagery to Variation on the Ground
	Chapter 10: Image Classification
	Chapter 11: Change Analysis

	Section 4: Managing Imagery and GIS Data
	Chapter 12: Accuracy Assessment
	Chapter 13: Managing and Serving Imagery
	Chapter 14: Concluding Thoughts

	Acronyms
	Glossary
	References
	Image Credits
	Index

